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Multimodal sentiment analysis has been an active subfield in natural language processing.*is makes multimodal sentiment tasks
challenging due to the use of different sources for predicting a speaker’s sentiment. Previous research has focused on extracting
single contextual information within a modality and trying different modality fusion stages to improve prediction accuracy.
However, a factor that may lead to poor model performance is that this does not consider the variability between modalities.
Furthermore, existing fusion methods tend to extract the representational information of individual modalities before fusion.*is
ignores the critical role of intermodal interaction information for model prediction. *is paper proposes a multimodal sentiment
analysis method based on cross-modal attention and gated cyclic hierarchical fusion network MGHF. MGHF is based on the idea
of distribution matching, which enables modalities to obtain representational information with a synergistic effect on the overall
sentiment orientation in the temporal interaction phase. After that, we designed a gated cyclic hierarchical fusion network that
takes text-based acoustic representation, text-based visual representation, and text representation as inputs and eliminates
redundant information through a gating mechanism to achieve effective multimodal representation interaction fusion. Our
extensive experiments on two publicly available and popular multimodal datasets show that MGHF has significant advantages
over previous complex and robust baselines.

1. Introduction

Every day, a large and meaningful amount of information is
generated around us. Most of this information is generated
on the web, and social media is a centralized area of in-
formation on the web. It covers many topics, opinions,
sentiments, and emotions closely related to our lives.
Multimodal sentiment analysis (MSA) has been an active
subfield in natural language processing [1, 2]. *is is mainly
due to its wide range of applications, such as government
elections [3], intelligent healthcare [4], and chatbot rec-
ommendation systems for human-computer interaction [5].
Compared to traditional sentiment analysis, MSA uses
multiple sources (excerpted raw text, acoustic, and visual
information) to make predictions about the sentiment
expressed by a specific object in a specific period. One of the
multimodal sentiment analysis challenges is to model the
interactions between different modalities because they

contain supplementary and complementary information [6].
Another factor that limits the performance of multimodal
sentiment analysis tasks is data fusion. *is is because there
are multiple recurring problems, such as missing values and
misalignment in visual and auditory modalities [7].

In recent years, researchers have designed sophisticated
fusion models. Zadeh et al. [8] designed the tensor fusion
network, which uses a Cartesian product to fuse the feature
vectors of three modalities; this provided a new idea for
multimodal data processing. Tsai et al. [9] designed a
multimodal transformer that processed all modalities to-
gether to obtain the predicted sentiment scores. Although
these methods have achieved good results, a problem that
may affect the final prediction effect is that these models
ignore the differences between different modalities, which
may lead to the loss of crucial prediction information during
the modal representation acquisition stage. Hazarika et al.
[10] designed a modality-specific and modality-invariant
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feature space, combining two types of representations with
similarity loss, reconstruction loss, and dissimilarity loss to
evaluate the model effect. Yu et al. [11] used a multitask
format and introduced an automatic modal label generation
module in the training phase to assist the main task channel,
saving manual labelling time, and thus improving efficiency.
Although these studies also achieved encouraging results,
they lacked intermodal information interaction during the
modal fusion phase. Doing so may result in the redundant
information present in the upper stage being retained in the
final prediction stage, making the model performance poor.
As shown in Figure 1, there are two opposite prediction
results after the same text interacts with different modalities.
For example, an ordinary language with ordinary acoustic
features is predicted as a negative sentiment. In contrast, the
same type of language with positive visual features is pre-
dicted as a positive sentiment. *is indicates that different
modal combinations have a fundamental impact on senti-
ment prediction. It should be noted that, in Figure 1, “?”
indicates that sentiment cannot be accurately identified, “−”
represents negative sentiment, and “+” represents positive
sentiment. *e number of these symbols signifies the in-
tensity of the sentiment.

To address the mentioned issues, inspired by cross-
modal matching and interaction modelling, we propose a
novel multimodal sentiment analysis framework, MGHF. It
includes mid-term interactions performed in the modal
representation phase and post-term interactions in the
modal fusion phase. *is approach allows the model to fully
perceive various modalities’ potential representational
sentiment information, which helps us improve the fusion
and prediction results. Although previous studies have
shown that text modality is the most critical [9, 12], we still
believe that the information implied by any modality should
be considered in the MSA task. Specifically, MGHF employs
a flexible strategy for modality variability by using appro-
priate neural networks for different modalities. In the me-
dium-term interaction learning phase, MGHF performs
cross-modal attention interactions for acoustic modality,
visual modality, and text modality, respectively, to obtain
text-based acoustic representation and text-based visual
representation. Several past studies [13] have pointed out
that task-related information is not evenly distributed across
modalities, with the text modality contributing much more
than other modalities.*ere are also studies [8, 9] that would
fuse the text-video and audio modalities as a ternary sym-
metric structure, which does not take into account the
variability of the various modalities and thus fails to fuse
them correctly. According to previous experience, in order
to make the text modality occupy a higher weight than other
modalities in the later fusion stage. We combined the text-
based acoustic representation with the text representation,
the text-based visual representation with the text repre-
sentation, and the text-based acoustic representation with
the text-based visual representation in a two-by-two com-
bination. We also design gated recurrent hierarchical fusion
networks that dynamically interact with learning informa-
tion representations between modal combinations to
complement the information between combinations. Our

extensive experiments on the publicly available and popular
datasets CMU-MOSI [14] and CMU-MOSEI [15] show that
MGHF shows strong competitiveness over previous com-
plex interaction and fusion baselines.

*e contributions of this paper are summarized as
follows:

(i) A gated cyclic hierarchical fusion network for
multimodal sentiment analysis is proposed. It dy-
namically interacts with information representa-
tions between 3 different modal pairs. *e gated
cyclic hierarchical fusion network enables sufficient
interaction between each modal pair, eliminates
redundant information between modal pairs, and
maximizes the retention of valid representations for
modal prediction.

(ii) Inspired by distribution matching, we consider
the interactions within different modalities. In the
modal representation acquisition stage, we make the
nonverbal sequences to cross-modal attention with
text sequences, which can capture potential repre-
sentations within different modalities while making
the modal representations closer to the real senti-
ment expressions.

(iii) Experiments conducted on two publicly available
multimodal datasets show that our model has sig-
nificant advantages over previous advanced com-
plex baselines.

2. Related Work

*is section introduces multimodal sentiment analysis, as
well as related work on multimodal representation learning
and data fusion.

2.1. Multimodal Sentiment Analysis. Unlike traditional
sentiment analysis, multimodal sentiment analysis often
uses multiple sources (excerpted text, audio, video, and other
information) to fully and accurately predict the speaker’s
sentiment orientation. Researchers have various ways to deal
with MSA tasks, one of which is representative of the ex-
traction of intramodal temporal information and the other is
the extraction of intermodal interaction information. *e
former mainly uses neural networks such as the Long Short-
Term Memory (LSTM) Network [16] for the extraction of
modal contextual information [10, 17]. *e latter can be
further divided into early, late, and hybrid, depending on the
fusion stage. Early fusion is the fusion approach used in the
pre-extraction phase of the data. Rozgic et al. [18] used early
fusion to connect multimodal representations as input to an
inference model, which provides a novel idea for modal
fusion. Zadeh et al. [19] designed a memory fusion network
(MFN) using multiview sequential learning, which explicitly
illustrates two interactions in the neural architecture. *e
post-fusion approach performs a series of necessary pro-
cessing within the modality and intermodal data fusion in
the final stage. Liu et al. [20] proposed a low-rank multi-
modal fusion approach to reduce the computational
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complexity by using low-rank tensor fusion to improve
efficiency. Other researchers have used hybrid fusion to
improve the performance of MSA tasks. Dai et al. [21] used a
simple but very effective hybrid modal fusion approach
using weakly supervised multitask learning to improve the
generalization performance of the dataset.

We differ fundamentally from previous work in that.
First, there is a modal divide between different modalities,
and using only the same neural network does not seem to
yield useful information. Instead of considering a piece of
single contextual information, we use the most appropriate
strategy based on the modal sequence characteristics. After
obtaining the initial representations, unlike in previous
work, our interaction fusion does not only occur in the final
stage. Useful potential information can be induced from the
companion representations through the intermediate in-
teraction stage. Similarly, the post-interaction stage of the
modality is used to better retain information useful for
prediction and eliminate redundant information. It is worth
noting that instead of the traditional approach of treating
text, audio, and video equally, we flexibly utilize the in-
formation useful to the task for each modality based on the
contribution of the modality.

2.2. Representation Learning and Data Fusion.
Representation learning methods can also be applied to
multimodal sentiment analysis and have achieved significant
results. Wang et al. [22] proposed a recursive attentional
change embedding network to generate multimodal shifts.
Hazarika et al. [10] proposed a way to learn multimodal
invariant and specific representations while combining four
different losses to evaluate the performance of the model. Yu
et al. [11] proposed self-supervised multitask learning to
learn modality-specific representations and introduced a
single-peak annotation generation module to assist the main

task channel. In the context of sentiment analysis, multi-
modal fusion is essential because sentiment cues are usually
distributed over different modalities [23]. Xiangbo et al. [24]
proposed an extended-squeezed-excitation fusion network
(ESE-FN) that fuses multimodal features in the modal and
channel directions. *e network learns extended-squeezed-
excitation (ESE) caveats in the modal and channel directions
to effectively solve the elderly activity recognition problem.
Shu et al. [25] proposed a new weakly shared deep transport
network (DTN) for converting cross-domain information
from text to images. *is provides ideas for interconversion
across modalities. Based on this, Tang et al. [26] proposed a
new generalized deep transmission network (DTN) for the
transmission of information across heterogeneous, textual,
and visual domains by establishing parameter sharing and
representation sharing layers.

In view of this, our model is based on the late fusion of
representation learning. Unlike previous studies, we learn
representations across intramodal interactions while
employing different combinations of modal interactions to
obtain intermodal representations.

3. Materials and Methods

In this section, we will detail the main components of our
model and their specific roles.

3.1. Task Setup. Multimodal data sequences in sentiment
analysis consist of three main modalities which are the text
modality (t), acoustic modality (a), and visual modality (v),
respectively. *e goal of multimodal sentiment analysis
(MSA) is to predict the speaker’s emotional polarity from a
segment of discourse, which is also the input to the model in
this paper. First, given the input discourse Us∈ t,a,v\{ }, this
paper uses Uv to denote visual modal information, Ua to
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Figure 1: *e combination of different modal pairs and sentiment prediction results.
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denote acoustic modal information, and Ut to denote textual
modal information. Here, a ∈ RTa×da , t ∈ RTt×dt , v ∈ RTv×dv ,
and Ts∈\ t,a,v\{ } denote the sequence length of a discourse, and
ds∈\ t,a,v\{ } denote the dimensionality of the respective
features.

3.2. Overall Architecture. In this paper, our multimodal
sentiment analysis architecture consists of three primary and
flexible modules as shown in Figure 2. *ey are the feature
extraction module for each modality, the (acoustic-text/vi-
sual-text) cross-attention module, and the gated recurrent
hierarchical fusion networkmodule. For the text channel, we
use pretrained BERT for its high-dimensional semantic
extraction. For the acoustic and visual channels, we first feed
the initial sequence into a 1D temporal convolution to
obtain enough perceptual and temporal information. *e
obtained (acoustic/visual) representations are then learned
cross-modally with textual representations, which can in-
duce potential representational information for both
acoustic and visual modalities, synergistic to the overall
effective orientation. Notably, this cross-modal matching
has been prominent in recent cross-modal learning ap-
proaches [27, 28]. Afterward, we feed the output of the two
cross-modal attention (text-based acoustic representation
and text-based visual representation) and the extracted
textual modal representation into a gated recurrent hier-
archical fusion network, which eliminates redundant modal
information to obtain the final information for prediction.
Of course, some of the modules in our model are flexible and
can be reconfigured with any suitable baseline to accomplish
different types of tasks.

3.3. Modality Representation. *e acquisition of represen-
tation for our model is divided into three channels, namely,
text channel, video channel, and audio channel. In the
following, we describe the essential details of the model
acquisition of representations.

3.3.1. Text Channel. For the text channel, we fine-tuned the
pretrained model BERT [29] used as an extractor of text
features, consisting of a 12-layer stacked transformer. *e
input text is preprocessed and fed to BERTfor embedding by
adding two special tags CLS and SEP. Consistent with recent
work, the first word vector of the last layer is chosen in this
paper as the average representation of the representation in
the final 768-dimensional implicit state [30].

ti � [CLS], w1, w2, . . . , wn, [SEP]􏼈 􏼉,

ft � BERT ti, θ
bert
t􏼐 􏼑 ∈ R

dt , i ∈ [1, n].
(1)

Here, t represents the initial sequence of text and θbertt

represents the hyperparameters of the BERT pretrained
model.

3.3.2. Audio and Video Channels. For the audio and video
channels, we designed two independent modal character-
ization modules for the nonverbal sequences, and they
function before fusion. We followed previous work [11] and
processed the raw data using a pretrained toolkit to obtain
the initial vector features.

Temporal Convolutions. First, to make our modalities
sufficiently perceptible, we pass the input sequence
through a one-dimensional temporal convolution
layer.

U
∗
m � Conv1 D Um, km( 􏼁 ∈ R

Tm×d
, (2)

where Conv1D(•) is the one-dimensional temporal
convolution function, km is the size of the convolution
kernel used by the modality m, Um is the input se-
quence of modality m, d is the common dimension, and
Tm denotes the discourse length of modality m; here,
m ∈ \ a, v\{ }.
Positional Embedding. To equip the sequences with
temporal information, following Vaswani et al. [31], the
position embedding (PE) is bracketed to U∗m as follows:

U
∗′
m � U

∗
m + PE Tm, d( 􏼁, (3)

where PE(Tm, d) ∈ RTm×d, the purpose is to compute
the embedding for each position index. PE(•) repre-
sents the position embedding function, m ∈ a, v{ }.
Cross-Attention Transformers. We then perform cross-
modal cross-attention on the resulting sequences,
which induces potential representational informa-
tion for both acoustic and visual modalities that are
synergistic to the overall practical orientation. It is
worth noting that our cross-modal attention occurs
only between text and acoustic modalities and be-
tween text and visual modalities, which allows the
text modality that contributes most to the task to be
weighted higher than the other modalities and en-
sures the relative independence of the visual and
acoustic channels. We justify this approach in Section
5.2.1.

C Attentiona−t(Q, K, V) � softmax
QtK

T
a��

dh

􏽰􏼠 􏼡Va,

C Attentionv−t(Q, K, V) � softmax
QtK

T
v��

dh

􏽰􏼠 􏼡Vv,

(4)

where Qt represents the query vector for the text
modality and Ka, Va, Kv, and Vv denote the key vectors
and value vectors of the acoustic and visual modalities.
softmax(•) represents the softmax function, dh rep-
resents the dimensionality of the modality, and T

represents transpose.

Transformer computes multiple parallel attentions, and
the output of each attention is called a head. *e ith head is
computed as
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headi
m �� Attentionm QtW

Qt

i , KmW
Km

i , VmW
Vm

i􏼐 􏼑, (5)

where W
Qt

i ∈ Rdt×dq is the weight matrix of Qt when com-
puting the head of the ith text modality; W

Km

i ∈ Rdm×dk is the
weight matrix of Km when computing the head of the ithm

modality; and W
Vm

i ∈ Rdm×dv is the weight matrix of Vm

when computing the head of the ithm modality, where
m ∈ \ a, v\{ }.

After that, we connect all heads of m modalities, which is
denoted as Y∗m as follows:

Y
∗
m � MultiHead Qt, Km, Vm( 􏼁

� Concat head1m, head2m, . . . , headn
m􏼐 􏼑W

o
m,

(6)

where WO
m is the weight matrix multiplied after the splicing

the head of m modalities and n denotes the number of self-
attention heads we use. Here, we have n� 10, Concat(•) is
the splicing operation, m ∈ \ a, v\{ }.

*us, the text-based acoustic representation fat
and the

text-based visual representation fvt
can be obtained.

fat
� MultiHead Y

∗
a ; θc−att

a􏼐 􏼑,

fvt
� MultiHead Y

∗
v , θc−att

v􏼐 􏼑,
(7)

where θatt
a � WQ

a , WK
a , WV

a , WO
a􏼈 􏼉 and θatt

v � WQ
v , WK

v ,􏼈

WV
v , WO

v } represent the main hyperparameters required for
the cross-attention module.

3.4. Gated Cyclic Hierarchical Fusion Networks. In previous
studies [10, 11], after obtaining valid representations, most
of the modal representations are simply spliced directly for
final prediction. *is can inadvertently add redundant in-
formation to them. To allow the redundant information in

the representations to be effectively removed, we designed a
gated recurrent fusion network (see Figure 3).*is module is
flexible and can be paired with other benchmarks to enhance
the effect. Of course, we also verified the effectiveness of the
hierarchical fusion network.

We used the text-based acoustic representation fat
and

text-based visual representation fvt
as well as text repre-

sentation f t as inputs to the gated recurrent hierarchical
network. Previous experience [9, 12] has shown that the text
modality contributes much more to the task than the other
modalities. Given this, we combined the text-based visual
representation, the text-based acoustic representation, and
the text representation in two combinations to ensure that
the text modality accounts for a high weight, which would
result in three combinations of representations.

fat⊕t � Concat ft, fat
􏼐 􏼑,

fvt⊕t � Concat ft, fvt
􏼐 􏼑,

fat⊕vt
� Concat fat

, fvt
􏼐 􏼑.

(8)

where Concat(•) denotes the combination operation, fat⊕t
denotes the combination of text-based acoustic represen-
tation with text, fvt⊕t denotes the combination of text-based
visual representation with text, and fat⊕vt

denotes the
combination of text-based acoustic representation with text-
based visual representation.

After obtaining the specified three combinations, we fed
them into a bi-directional gated recurrent network (Bi-
GRU). *e purpose of doing so is to allow the information
between different modalities to be fully perceived and to
effectively remove redundant and irrelevant information
from the representations through the gating mechanism.
We also employ a bi-directional long and short memory
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Figure 2: MGHF: cross-modal attention with hierarchical recurrent fusion network.
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(Bi-LSTM) network. By comparison, we found that the
former has more straightforward parameters and faster
training speed, and its results are comparable.

ft−a � Bi−GRU fat⊕t, θ
gru

􏼐 􏼑,

ft−v � Bi−GRU fvt⊕t, θ
gru

􏼐 􏼑,

fa−v � Bi−GRU fat⊕vt
, θgru

􏼐 􏼑,

(9)

where Bi−GRU(•) represents the bi-directional gated re-
current cell network and θgru represents the hyper-
parameters of the gated recurrent cell network.

After that, we combine the outputs of the gated cyclic
hierarchical fusion networks and feed them into the fully
connected layer for the final prediction.

fs � concat ft−a, ft−v, fa−v( 􏼁,

f
∗
s � ReLU W

sT
l1 ⊗fs + b

s
l1􏼐 􏼑,

(10)

where Ws
l1 ∈ R(dt+da+dv)×ds and ReLU are the relu activation

functions and ⊗ represents the elemental product.
Finally,f∗s is used as the final representation and for the

prediction task.

y′ � ReLU W
sT
l2 ⊗f

∗
s + b

s
l2􏼐 􏼑, (11)

where Ws
l2 ∈ Rds×1.

4. Experiment

In this section, we will detail the specifics of our experiments.

4.1. Datasets. CMU-MOSI [14]. *e Multimodal Sentiment
Intensity Corpus dataset is a collection of 2199 viewpoint
video clips. *is dataset is a popular benchmark for

multimodal sentiment analysis. Each opinion video is an-
notated with sentiment in the range of [−3, 3]. *e dataset is
strictly labelled using tags for subjectivity, emotional in-
tensity, per-frame, per-viewpoint annotated visual features,
and per-millisecond annotated audio features.

CMU-MOSEI [15]. *e multimodal Opinion Sentiment
and Sentiment Intensity dataset is the largest multimodal
sentiment analysis and recognition dataset. *e dataset is an
improved version of the CMU-MOSEI dataset. MOSEI
contains more than 23,500 sentence expression videos from
more than 1,000 online YouTube speakers. *e dataset is
gender-balanced. All sentences were randomly selected from
different videos of topics and monologues. Videos were
transcribed and correctly punctuated. We give the detailed
dataset settings in the experiments (see Table 1).

4.2. Modality Processing. To ensure fair competition with
other baselines, we follow previous work [11] and treat the
three modalities as a typical tensor described as follows:

Text Modality. Most previous studies have used glove
[32] as a source of word embedding and achieved good
results. Considering the strong performance of pre-
trained models, we prefer to use the pretrained lan-
guage model BERT [29]. For a fair and objective
comparison, we adopted the latter as the processing
tool for our text modality.
Audio Modality. For audio data, the acoustic analysis
framework COVAREP [33] was used to extract up to 12
Mel-frequency cepstral coefficients, pitch, turbid/ap-
parent segmentation features, and so on. All features
are related to mood and intonation. It is worth noting
that acoustic features are processed to align with the
text features.
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Figure 3: Gated cyclic hierarchical fusion network.
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Video Modality. Video modality raw features are used
to extract facial expression features using Facet (https://
imotions.com/platform/), which includes facial action
units and facial poses based on the Facial Action
Coding System (FACS) [34].*e process is repeated for
each sampled frame within the vocalized video
sequence.

Eventually, we align the initial modalities with the text
for the alignment operation. *is will allow our experiments
to proceed appropriately and ensure fair experimental
comparison results.

4.3. Evaluation Metrics. Again, to be fair, we split the MSA
task into a regression task and a classification task. *is
paper will have five valuation metrics, which are: secondary
precision (ACC-2) and F1-score. Mean Absolute Error
(MAE): it directly calculates the error between the prediction
and the authentic number labels. Level 7 Precision (ACC-7)
and Pearson Correlation (Corr) measure the standard de-
viation from the human-annotated actual value. It is worth
noting that the secondary precision and F1 scores were
divided into two groups: negative and non-negative feelings
(including neutral feelings), and negative and positive
feelings, respectively. In addition to the value of MAE,
higher scores imply better results.

4.4.Baseline. We compared the performance of MGHF with
several multimodal fusion frameworks, including state-of-
the-art models, as follows.

4.4.1. Previous Models

(i) TFN. Tensor fusion network [8] is based on Car-
tesian product to calculate the tensor of each
modality for capturing the interaction information
of unimodal, bimodal, and three modalities.

(ii) LMF. Low-order multimodal fusion [20] is an
improvement of the tensor fusion network (TFN)
to reduce the computational complexity and im-
prove the efficiency by using low-order tensor
fusion.

(iii) MFM. Multimodal Factorization Model [35]
demonstrates flexible generation capability by
adjusting independent factors and reconstructs
missing modes.

(iv) MULT. Multimodal Transformer (MULT) [9] ex-
tends the multimodal converter architecture using
directed pairwise cross-attention, which converts

one modality to another using directed pairwise
cross-attention.

(v) ICCN. Interaction Canonical Correlation Network
(ICCN) [13] learns correlations between text, au-
dio, and video through Deep Typical Correlation
Analysis (DCCA).

(vi) MISA. Learning Modality-Invariant and Modality-
Specific Representations (MISA) [10] combines a
combination of distribution similarity, orthogonal
loss, reconstruction loss, and task prediction loss
for learning the representation of different mo-
dalities and the representation of fused modalities.

(vii) MAG-BERT [36]. A multimodal adaptation gate
was designed for the BERT alignment gate and
inserted into the general BERT model to optimize
the fusion process.

4.4.2. State-of-the-Art. For sentiment analysis tasks, the
results of Self-MM [11], a self-supervised multitask learning
framework, on both MOSI and MOSEI datasets represent
state-of-the-art (SOTA) models. Self-MM assigns a single-
peaked training task with automatically generated labels to
each modality, allowing multimodal sentiment analysis tasks
to be performed in a multitask context.

5. Results and Discussion

In this section, the experimental results of the model are
analysed and discussed in detail.

5.1. Quantitative Results. We compared the MGHF with
currently popular benchmarks, including the state-of-the-
art (SOTA) model (see Tables 2 and 3). For a fair com-
parison, we divided the models into two categories
depending on the data setup, aligned and unaligned. In our
experiments, first, compared with the aligned advanced
models, our models all achieved similar or even surpassed
results. In addition, our models achieve significant gains on
all indicators of the regression as well as on some of the
categorical indicators compared to the unaligned models. In
addition, we reproduce two strong baselines, MISA and self-
mm, under the same conditions. We find that MGHF
outperforms them onmost indicators. On the MOSI dataset,
MGHF achieves competitive scores on both classification
tasks. On the regression task, MGHF also improves the
SOTA model by various degrees. Our model also outper-
forms some complex fusion mechanisms, such as TFN and
LFN. *e above results show that our model can be applied
to different data scenarios and achieve significant im-
provements. We visualized some of the metrics, which can
help us visualize how the model is performing (see Figure 4).

5.2.AblationStudy. We set up ablation experiments to verify
the performance of our model, which is divided into the
following main parts.

Table 1: MOSI and MOSEI dataset size settings.

Dataset MOSI MOSEI
Train 1284 16326
Valid 229 4659
Test 686 1871
All 2199 22856
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5.2.1. Representational Interaction. First, for cross-modal
attention interactions, we conducted the following experi-
ments. *e first group was performed for the interaction

between two modalities, and we did not consider acoustic-
based text features and visual-based text features because
this would make the text modality so heavily dominated that

Table 2: Results onMOSI. Note: (B) Means the language features are based on BERT; model with ∗ represents the best results for recurrence
under the same conditions. ○ is from[10], and◇ is from [11]. In indicators Acc-2 and F1-score, the left side of “/” is calculated for negative
and non-negative sentiment, while the right side of “/” is calculated for negative and positive sentiment.

Models
MOSI

Data setting
MAE (↓) Corr (↑) Acc-7 (↑) Acc-2 (↑) F1-score (↑)

TFN (B)○ 0.901 0.698 34.9 −/80.8 −/80.7 Unaligned
LMF (B)○ 0.917 0.695 33.2 −/82.5 −/82.4 Unaligned
MFM (B)○ 0.877 0.706 35.4 −/81.7 −/81.6 Aligned
MULT∗ 0.918 0.680 36.47 77.93/79.3 77.91/79.34 Aligned
ICCN (B)◇ 0.860 0.710 39.0 −/83.0 −/83.0 Unaligned
MISA (B)◇ 0.783 0.761 42.3 81.8/83.4 81.7/83.6 Aligned
MAG-BERT (B)◇ 0.731 0.789 — 82.54/84.3 82.59/84.3 Aligned
Self-MM (B)◇ 0.713 0.798 — 84.42/85.95 84.42/85.95 Unaligned
MISA (B)∗ 0.759 0.787 42.57 81.05/82.93 81.03/82.97 Aligned
Self-MM (B)∗ 0.718 0.796 45.77 83.09/84.09 83.10/84.96 Aligned
MGHF (B) 0.709 0.802 45.19 83.38/85.21 83.32/85.21 Aligned

Table 3: Results on MOSEI. Note: (B) Means the language features are based on BERT; model with ∗ represents the best results for
recurrence under the same conditions. ○ is from [10], and◇ is from [11]. In indicators Acc-2 and F1-score, the left side of “/” is calculated
for negative and non-negative sentiment, while the right side of “/” is calculated for negative and positive sentiment.

Models
MOSEI

Data setting
MAE (↓) Corr (↑) Acc-7 (↑) Acc-2 (↑) F1-score (↑)

TFN (B)○ 0.593 0.700 50.2 −/82.5 −/82.1 Unaligned
LMF (B)○ 0.623 0.677 48.0 −/82.0 −/82.1 Unaligned
MFM (B)○ 0.568 0.717 51.3 −/84.4 −/84.3 Aligned
MULT○ 0.580 0.703 51.8 −/82.5 −/82.3 Aligned
ICCN (B)○ 0.565 0.713 51.6 −/84.2 −/84.2 Unaligned
MISA (B)◇ 0.555 0.756 52.2 83.6/85.5 83.8/85.3 Aligned
MAG-BERT (B)◇ 0.539 0.753 — 83.79/85.23 83.74/85.08 Aligned
Self-MM (B)◇ 0.530 0.765 — 82.81/85.17 82.53/85.30 Unaligned
MISA (B)∗ 0.558 0.748 51.45 82.14/85.09 82.44/84.94 Aligned
Self-MM (B)∗ 0.534 0.764 53.32 84.37/85.28 84.42/85.06 Aligned
MGHF (B) 0.528 0.767 53.70 85.25/85.30 85.09/84.86 Aligned
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Figure 4: Comparison of the performance of each baseline model. (a) F1-score. (b) Acc-2.
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Table 4: Performance tables for different cross-modal notes on MOSI and MOSEI datasets.

Task
MOSI MOSEI

MAE (↓) Corr (↑) Acc-2 (↑) F1-score (↑) MAE (↓) Corr (↑) Acc-2 (↑) F1-score (↑)
fav

1.442 0.210 53.81 46.48/ 1.315 0.197 60.13/61.25 60.48/59.38
fva

1.321 0.233 62.33 57.85/58.94 1.244 0.182 58.48/59.47 61.63/61.48
fat

0.896 0.393 68.52 64.44/65.38 0.815 0.213 64.15/63.18 64.85/64.25
fvt

0.901 0.384 71.49 69.12/67.20 0.843 0.241 63.48/63.14 63.54/63.89
fvt

+ fav
0.976 0.223 73.62/71.40 71.04/64.31 0.821 0.213 61.84/62.37 61.23/61.66

fat
+ fva

0.957 0.381 74.22/72.67 71.04/65.86 0.784 0.230 63.24/62.56 61.05/60.72
fat

+ fvt
0.819 0.486 76.80/76.01 75.72/74.84 0.763 0.361 72.18/72.56 74.37/74.03

Corr MAE (�e lower the better)

fat
 + fvt

fat
 + fva

fvt
 + fav

fvt

fat
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fva
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Figure 5: Visualization of different cross-modal interactions and their combined performance. (a) Corr. (b) MAE (the lower the better).
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Figure 6: Gated cyclic hierarchical fusion network performance visualization.
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modal independence would be reduced or even disappear.
*e cross-modal attention between nonverbal sequences is
hardly satisfactory, probably due to the characteristics of
nonverbal sequence data. Acoustic, visual, and textual cross-
modal attention seems to play an important role, which is
consistent with previous studies [9, 12]. *e second set of
experiments was conducted after combining the cross-
modal interaction representations obtained in the first set,
which could help us elucidate whose combination of cross-
modal interactions is more beneficial for the MSA task. In
Table 4, it seems apparent that the combination of text-based
acoustic and text-based visual representations performs the
best. We believe this is partly because the text modality
enhances the complementary acoustic and visual informa-
tion, providing additional cues for semantic and affective
disambiguation [37], and partly because it preserves the
independence of the acoustic and visual modalities. We
visualized this part of the experimental index scores for ten

randomly selected samples from the MOSI test set (see
Figure 5), and similar results were observed on MOSEI.

5.2.2. Gated Recurrent Hierarchical Fusion Network
Effectiveness. To verify the reliability of our proposed gated
cyclic hierarchical fusion network, we will perform the
multimodal sentiment analysis task under the same con-
ditions without this fusion strategy. For visual comparison,
two representative metrics from the classification and re-
gression tasks are selected for evaluation, while the evalu-
ation results are visualized. It is worth noting that among
these metrics, higher scores imply better performance, ex-
cept for theMAEmetric.*e results are shown in (Figure 6).
Specifically, the gating mechanism effectively removes the
redundant information contained in the previous stage. *is
not only implies that the representations obtained by the
model in the prediction stage are inclusive of the potential

Table 5: Ablation study results of fusion strategies on MOSI and MOSEI datasets.

Task
MOSI MOSEI

MAE (↓) Corr (↑) Acc-2 (↑) F1-score (↑) MAE (↓) Corr (↑) Acc-2 (↑) F1-score
(↑)

MGHF_w/o(pc) 0.714 0.793 82.88 82.63 0.538 0.758 84.27 84.48
MGHF_LSTM 0.712 0.800 83.27 82.94 0.530 0.767 85.22 84.89
MGHF_original 0.709 0.802 83.38 83.32 0.528 0.767 85.25 85.09

a b MGHF a b MGHF a b MGHF a b MGHF

a b MGHF a b MGHF a b MGHF a b MGHF
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Figure 7: Ablation research in fusion strategies.
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representations of each modality but also helps us clarify the
need for representation interaction learning at a later stage.

In addition, we also conduct ablation experiments of the
fusion strategy (as shown in Table 5). In this experiment, we
do not combine the resulting text-based visual modality,
text-based acoustic modality, and text modality. *e settings
are marked as “a” in Figure 7 andMGHF_w/o(pc) in Table 5.
At the same time, we replace Bi-GRU in the fusion network
with Bi-LSTM neural network. *is setting is marked as “b”
in Figure 7 and MGHF_LSTM in Table 5. As mentioned
before (Section 3.4), only in this experiment does Bi-GRU
achieves comparable or even better performance on some
metrics.

As shown in the previous section (Section5.2.1) the
combined contribution of text-based sound representations
fat

and text-based visual representationsfvt
is the highest.

We used these two representations combined with the initial
representations fa, fv, and ft to evaluate which set per-
forms best for the hierarchical fusion network (see Table 6).
It is easy to see that the combination of fat

and fvt
with the

textual representation ft, which is the input to our gated
recurrent hierarchical fusion network, performs best.

6. Conclusions

In this paper, we propose a complete solution for multi-
modal sentiment analysis, MGHF, which differs in two
main parts: modal representation and modal fusion. By
using distribution matching in the representation learning
phase, the neighbouring modalities are made to contain
potential representations of the companion modalities to
achieve modal information interaction in time series.
Meanwhile, we design a gated recurrent hierarchical fusion
network in the fusion phase through the intermodal rep-
resentation interactions performed in the later fusion
phase. It eliminates redundant modal representations and
retains those valid for prediction in the final stage, making
the prediction results closer to the actual scores. We show
that our model is intensely competitive with previous
complex baselines through extensive experiments on two
publicly available datasets.
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