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Liver hepatocellular carcinoma (LIHC) is a malignant cancer with widespread prevalence. The suppressive immune environment
causes largely refractory to current treatment. The protein regulator of cytokinesis 1 (PRC1) is an essential gene for cytokinesis
and is involved in cancer pathogenesis. However, the functions of PRC1 have been barely clarified, especially in LIHC. Here,
we investigated the expression, prognostic value, and functions of PRC1 in LIHC. Pan-cancer analysis revealed the
overexpression of PRC1 in the Cancer Genome Atlas (TCGA) database. Four LIHC datasets from the Gene Expression
Omnibus (GEO) database confirmed the PRC1 overexpression in LIHC. The mRNA and protein levels of PRC1 in LIHC cells
were higher than in normal liver cells. The overexpression of PRC1 predicted progressed clinical stage and poor prognosis of
LIHC. We further investigated the functions of PRC1 by performing the Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses, and Gene Set Enrichment Analysis (GSEA) of its coexpressing genes. High PRC1 expression
was associated with increased genome instability of LIHC. Moreover, PRC1 was positively correlated with the infiltration of
suppressive immune cells like T regulatory cells (Tregs) and polymorphonuclear myeloid-derived suppressor cells (PMN-
MDSCs) and was negatively correlated with the effector immune cells’ infiltration, including B cells and CD8+ T cells. In
addition, PRC1 was positively correlated with the expression of tumor immune checkpoint molecules. Taken together, PRC1
overexpression contributes to the genome instability and the suppressive immune microenvironment of LIHC. Thus, PRC1 has
the potential to be a prognostic marker and therapeutic target of LIHC.

1. Introduction

Liver hepatocellular carcinoma (LIHC) accounts for 90% of
primary liver cancer with an incidence of 850,000 newly
diagnosed cases every year. Quick and internal development
often causes the delay of diagnosis, making LIHC the leading
cause of cancer-related deaths. LIHC is resistant to most cur-
rent chemotherapies, which have shown no survival benefits

to advanced LIHC patients [1]. Immune checkpoint inhibi-
tors (ICIs) have improved the survival of LIHC patients,
even though its introduction to LIHC was behind other
tumors. Inhibitors of programmed cell death/-ligand 1
(PD-1/PD-L1) have shown revolutionary antitumor activity
in a subset of advanced patients [2]. However, problems still
exist with ICIs in their antitumor efficacy and adverse
events. Single agent is limited in efficacy: the ORR and
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median OS of anti-PD-1 ICI were 15% and 1 year, respec-
tively, in patients previously treated with sorafenib [3, 4];
monotherapy of anti-PD-1 ICI showed no benefit for OS as
first-line (nivolumab vs sorafenib) and second-line (pembroli-
zumab vs placebo) treatment [5, 6]. The combination of ICIs
increases the response rate and leads to a promising OS, but
at the cost of increased toxicity [7, 8]. The hepatic events inci-
dence of ICIs is slightly higher in LIHC than in other cancers.
Moreover, no reliable markers are available for immunother-
apy guidance currently. The immune-evading mechanism of
LIHC needs to be further investigated, and new treatment tar-
gets and reliable markers are under exploring.

To evade the antitumor immunity, LIHC cells evolve to
less immunogenic phenotypes with reduced expression of
cancer antigens and MHC molecules and increased expres-
sion of immune checkpoint ligands. Altered tumor microen-
vironment (TME) also enables LIHC progression [9]. TME
is a complex of tumor cells, immune cells, hepatic cells,
and fibroblasts, along with soluble factors like cytokines.
The complicated interaction in TME of LIHC results to
immune evasion. Both of the adaptive and innate immune
systems are damaged in TME of LIHC, due to the expression
of inhibitory receptors, and the infiltration of immune-
suppressive cells like myeloid-derived suppressor cells
(MDSCs), tumor-associated macrophages (TAMs), and T
regulatory cells (Tregs) [10]. These suppressive immune cells
are abundant in TME of LIHC and cooperating to generate
an immunosuppressive environment. Tregs are a subset of
immunosuppressive T cells identified as CD4+ CD25+ (the
α-chain of IL-2 receptor) and characterized by Forkhead
box protein P3 (FoxP3) expression [11, 12]. Treg cells con-
tribute to cancer development and progression by suppress-
ing T effector cell (Teff) functions and inducing the
overexpression of immunosuppressive molecules [13]. Tregs
highly express PD-1, which leads to the tumor resistance to
PD-1/PD-L1 blockade treatment [14]. Increased intratu-
moral Tregs inhibit the proliferation and activation of CD8
+ and CD4+ T cells and result in the production of trans-
forming growth factor-β (TGF-β) and interleukin-10 (IL-
10), which in turn favor the survival and expansion of Tregs
[15]. The high density of Treg cells in TME of LIHC corre-
lates with poor prognosis [16]. A specific subset of MDSCs
can induce CD4+ T cells to differentiate into Tregs [17].
Moreover, MDSCs support tumor progression by producing
vascular endothelial growth factor (VEGF), which promotes
vascularization and angiogenesis of the malignant tissue
[18]. Beside cells, the soluble molecules should not be under-
estimated. They also contribute to the poor prognosis of
LIHC and determine the patients’ response to sorafenib
and pembrolizumab, which are currently the first-line thera-
pies for LIHC [19, 20]. TGF-β, IL-10, and VEGF impair the
functions of T cells and NK cells, induce the generation of
Tregs, and downregulate the T cell stimulatory capacity of
antigen presenting cells (APCs) [21–25].

Effector lymphocytes express immune checkpoints mol-
ecules to prevent immune overactivation. LIHC utilizes this
mechanism to evade immune responses by expressing the
inhibitory checkpoint ligands [26]. Inhibitory ligands and
receptors include PD-1/PDL-1, and cytotoxic T

lymphocyte-associated antigen 4 (CTLA4), T cell immuno-
globulin and mucin domain containing-3 (TIM3), and
lymphocyte-activation gene 3 (LAG3) [27]. ICIs are mono-
clonal antibodies that block the interaction of checkpoint
proteins with their ligands, thereby preventing the inactiva-
tion of T cells. However, the blockade of checkpoint mole-
cules can lead to frequent incidence of immune-mediated
adverse events (IMAEs), since they are essential for immune
homeostasis [28]. Furthermore, suitable biomarkers to guide
the development and monitor the management of ICIs are
lacking in LIHC. For example, LIHC patients showed a sim-
ilar response to ipilimumab and nivolumab treatment, irre-
spective of expression of PD-L1 [29]. This indicates that
the current biomarkers may be incapable to inform clinical
decisions. Thus, massive data analyses are needed to identify
better prognosis biomarkers and immunotherapy targets.

The protein regulator of cytokinesis 1 (PRC1) regulates
parallel microtubule polarizing and contractile ring assem-
bly. It is an essential factor for cytokinesis and cell cleavage.
Recent studies found that PRC1 might play an important
role in tumorigenesis [30]. The deregulation of PRC1 pro-
moted chromosomal instability (CIN) [31]. By far, PRC1
has been fond upregulated and correlated with poor progno-
sis in colon, breast, liver, and prostate cancers and oral squa-
mous cell carcinoma [32–35]. However, the underlying
molecular mechanisms concerning cancer development
and fate remain poorly understood. Previous studies
reported PRC1 as a substrate of cyclin-dependent kinases
(CDKs) and polo-like kinase 1 (PLK1), which are essential
cell cycle regulators [36]. In LIHC cells, PRC1 can be acti-
vated by Wnt signaling pathway and vice versa [30]. The
function of PRC1 in LIHC may also be reliant on p53 [37].
Given the essential role of PRC1 in LIHC growth, we seek
to understand the comprehensive function of PRC1. Here,
we utilize the bioinformatics methods to investigate the pos-
sible molecules, signaling pathways regulated by PRC1, and
the biological process PRC1 might involve, seeking to iden-
tify new biomarkers for LIHC prognosis and targets for clin-
ical treatment.

2. Materials and Methods

2.1. PRC1 Expression Profiling. The RNA sequencing data of
LIHC patients and healthy liver tissues were acquired from
the GEO database (GSE60502, GSE84402, GSE84598, and
GSE112790) [38–41]. The differentially expressed genes
(DEGs) of each dataset were analyzed by R Limma package.
The pan-cancer analyses of PRC1 expression were also con-
ducted by R software, using data acquired from the TCGA
database through the Genomic Data Commons data portal
(GDC, https://portal.gdc.cancer.gov/) containing 33 kinds
of cancers, including 374 LIHC cases, while the normal sam-
ples were from both the TCGA and GTEx database[42].
Immunohistochemistry (IHC) staining images of 16 LIHC
and 13 normal liver tissues were extracted from the Human
Protein Atlas (HPA, http://www.proteinatlas.org) [43].
UALCAN (http://ualcan.path.uab.edu/) database showed
the PRC1 expression of LIHC in different clinical stages or
in different TP53 mutation status [44].
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2.2. Cell Culture, RNA Isolation, and Quantitative Real-Time
PCR (qRT-PCR). The human LIHC cell line SNU449 and
normal liver cell line QSG-7701 were cultured in Dulbecco’s
modified Eagle’s medium (DMEM, Gibco, USA) containing
10% fetal bovine serum (FBS, BI, USA) and in an incubator
with 5% CO2 at 37°C. RNA isolation was conducted using
TRIZOL (Life Technology) agent according to the manufac-
ture’s protocol. The complementary DNA (cDNA) was
reversely transcribed using the ReverTra Ace qPCR RT Mas-
ter Mix (TOYOBO, Japan). qRT-PCR was performed in
triplicate using SYBR green real-time PCR master mix
(TOYOBO, Japan). Primers of PRC1 (forward, 5′-ACAG
ACAGAGACAGAGATG-3′; reverse, 5′- GCCGAATGCTA
CTATTGG-3′) and β-actin (forward 5′-GAAGATCAAGA
TCATTGCTCCT-3′; reverse, 5′-TACTCCTGCTTGCTGA
TCCA-3′) were used.

2.3. Cell Lysis and Western Blot. QSG7701 and SNU449 cells
were collected and lysed in RIPA buffer (Beyotime, China)
supplemented with PhosSTOP (Roche, USA) and 1mM
PMSF (Beyotime, China). Proteins were mixed with SDS
loading buffer (Beyotime, China) and boiled for 5min. Then,

the proteins were loaded into 4-12% SDS PAGE gels (Gene-
script, China) and subjected to electrophoresis, after which
the proteins were transferred to PVDF membranes and went
through antibody incubation. Primary antibodies used were
as follows: PRC1 (#6290001, Biolegend, USA) and GAPDH
(#2118, CST, USA). GAPDH was used as a loading control.

2.4. Survival Analysis. The overall survival (OS),
progression-free interval (PFI), and disease-specific survival
(DSS) analyses of LIHC patients with high or low PRC1
expression in the TCGA database were conducted by sur-
vival package and survminer package in R software. Also,
we used KM Plotter (http://kmplot.com) website tool to ana-
lyze whether the prognostic value of PRC1 was associated
with Treg, macrophage, or B cells’ infiltration in LIHC
[45]. A total of 374 LIHC samples from TCGA database
were stratified into two groups, Treg enriched or decreased.
Then, we analyzed the OS and recurrence-free survival
(RFS) of high and low PRC1 cases separated by the median
expression in each group. We acquired the survival curve
according to PRC1 expression of HCCDB 18 dataset con-
taining 212 LIHC tumor tissues and 177 adjacent tissues
from the HCCDB (http://lifeome.net/database/hccdb/home
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Figure 1: Study design and method implementation in this work.
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Figure 2: Continued.
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.html) database to validate the prognostic values of PRC1 in
LIHC. To estimate the diagnostic value of PRC1, we created
a nomogram using rms package in R software and per-
formed the ROC analysis using the pROC package in R soft-
ware [46].

2.5. Gene Ontology (GO) Term and Kyoto Encyclopedia of
Genes and Genomes (KEGG) Pathway Enrichment Analysis
and Gene Set Enrichment Analysis (GSEA). We performed
the Pearson’s correlation analysis to acquire the coexpres-
sion genes of PRC1 using RNA sequencing data of LIHC
in the TCGA database [47]. The top 300 genes were
extracted and underwent GO analyses including molecular
function (MF), cellular components (CC), biological pro-
cesses (BP), and KEGG pathway analysis. GSEA analysis of
the top 300 coexpression genes of PRC1 was conducted with
GSEA software (V4.1.0).

2.6. Association of PRC1 with Somatic Mutations and
Genome Instability in LIHC. The information of somatic
mutations of LIHC cases were downloaded from TCGA
database and analyzed by comparing cohorts separated by
median PRC1 expression. A total of 369 samples with muta-
tions were detected, of which the mapping samples con-
tained 242 (65.6%). We used chi-square test to evaluate the
difference of gene mutation frequency in each group of sam-
ples. The simple nucleotide variation dataset of all TCGA
samples processed by MuTect2 software was downloaded
from GDC [48]. We calculated the tumor mutation burden
(TMB) of each tumor using the TMB function of the maf-
tools package in R software. The microsatellite instability
(MSI) score of each tumor was acquired from the previous
study [49]. The homologous recombination deficiency
(HRD) data and the loss of heterozygosity (LOH) data were
obtained from the previous studies [50]. Spearman correla-
tion analysis was conducted to investigate the correlation
of PRC1 expression with the above factors.

2.7. Immune Cells’ Infiltration and Gene Correlation
Analyses. We analyzed the correlation between PRC1
expression sequenced in bulk LIHC tumor tissues and their

infiltration abundance of Treg and MDSC cells in the TCGA
database by CIBERSORT [51], CIBERSORT-ABS [52],
QUANTISEQ [53], and TIDE [54] algorithms using the
website tool of Tumor Immune Estimation Resource
(TIMER, https://cistrome.shinyapps.io/timer/) [55].The
relationship between PRC1 expression and the gene markers
of Treg and MDSC was plotted by TIMER. The association
between PRC1 expression and the infiltration of Teff cells
in LIHC of TCGA database was analyzed by EPIC algorithm
[56]. The correlation between expression of PRC1 and eight
immune checkpoint genes was plotted by R ggstatsplot
package.

2.8. Prognostic Value of the Immune-Related Gene Set
Signature. According to the GSEA analysis results, the
immune-related gene subset was extracted from the PRC1
coexpressing genes. The prognostic value of these genes
was tested as signatures. Time ROC analysis was conducted
by R timeROC package to investigate the predictive accuracy
of the genes and risk score. The least absolute shrinkage and
selection operator (LASSO) regression algorithm was per-
formed using 10-fold cross-validation [57]. The OS and
progression-free survival (PFS) data were acquired from
the TCGA database [58] and were analyzed to compare the
survival difference between groups, with the p values and
hazard ratio with 95% confidence interval (CI) generated
by the log-rank tests and univariate Cox proportional haz-
ards regression.

2.9. Statistical Analysis. Data were expressed as mean ± SD.
Analyses were performed in GraphPad Prism (version 8.0)
or R software (v3.4.4). Comparisons of the PRC1 expression
between LIHC and normal controls were performed using
Student’s t-test or chi-square test. Gene expression correla-
tions were evaluated by Spearman’s correlation. p < 0:05
was considered statistically significant.

3. Results

3.1. The Pan-Cancer Upregulation of PRC1. A schematic
workflow diagram of our study is shown in Figure 1.
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Figure 2: The expression of PRC1 was elevated in LIHC. (a) The pan-cancer analysis of PRC1 expression. (b) The volcano map of differentially
expressed genes (DEGs) between LIHC and normal liver, obtained from four GEO datasets: GSE60502, GSE84402, GSE84598, and GSE112790.
PRC1was noted. (c) The intersection of the DEGs from four GEO datasets. (d) ThemRNA level of PRC1 in QSG7701 and SNU449 cells. (e) The
protein level of PRC1 in QSG7701 and SNU449 cells. (f) The IHC results of PRC1 in LIHC and normal liver tissues from the HPA database. The
scored results were as shown in the right panel. ns, p ≥ 0:05; ∗p < 0:05; ∗∗p < 0:01; ∗∗∗ p < 0:001.
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We first accessed the pan-cancer expression of PRC1 in
TCGA database. Pan-cancer analysis revealed the upregu-
lation of PRC1 in adrenocortical carcinoma (ACC), blad-
der urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC), cholangiocarci-
noma (CHOL), colon adenocarcinoma (COAD), lymphoid
neoplasm diffuse large B cell lymphoma (DLBC), stomach

and esophageal carcinoma (STES), glioblastoma multi-
forme (GBM), head and neck squamous cell carcinoma
(HNSC), kidney chromophobe (KICH), kidney renal clear
cell carcinoma (KIRC), kidney renal papillary cell carci-
noma (KIRP), brain lower-grade glioma (LGG), LIHC,
lung adenocarcinoma (LUAD), lung squamous cell carci-
noma (LUSC), ovarian serous cystadenocarcinoma (OV),
pancreatic adenocarcinoma (PADD, or PAAD),

Table 1: The baseline characteristics of the LIHC patients from the TCGA database.

Characteristic Low expression of PRC1 High expression of PRC1 p

n 187 187

Age, n (%) 0.006

≤60 75 (20.1%) 102 (27.3%)

>60 112 (30%) 84 (22.5%)

Gender, n (%) 0.377

Female 56 (15%) 65 (17.4%)

Male 131 (35%) 122 (32.6%)

Race, n (%) 0.044

Asian 66 (18.2%) 94 (26%)

Black or African American 9 (2.5%) 8 (2.2%)

White 101 (27.9%) 84 (23.2%)

Tumor status, n (%) 0.005

Tumor free 115 (32.4%) 87 (24.5%)

With tumor 63 (17.7%) 90 (25.4%)

T stage, n (%) 0.017

T1 106 (28.6%) 77 (20.8%)

T2 41 (11.1%) 54 (14.6%)

T3 32 (8.6%) 48 (12.9%)

T4 5 (1.3%) 8 (2.2%)

N stage, n (%) 0.624

N0 122 (47.3%) 132 (51.2%)

N1 1 (0.4%) 3 (1.2%)

M stage, n (%) 0.361

M0 130 (47.8%) 138 (50.7%)

M1 3 (1.1%) 1 (0.4%)

Pathologic stage, n (%) 0.009

Stage I 99 (28.3%) 74 (21.1%)

Stage II 40 (11.4%) 47 (13.4%)

Stage III 32 (9.1%) 53 (15.1%)

Stage IV 4 (1.1%) 1 (0.3%)

BMI, n (%) 0.207

≤25 83 (24.6%) 94 (27.9%)

>25 87 (25.8%) 73 (21.7%)

AFP(ng/ml), n (%) < 0.001

≤400 126 (45%) 89 (31.8%)

>400 19 (6.8%) 46 (16.4%)

Child-Pugh grade, n (%) 1.000

A 122 (50.6%) 97 (40.2%)

B 12 (5%) 9 (3.7%)

C 1 (0.4%) 0 (0%)

Age, median (IQR) 64 (54.5, 69.5) 59 (50.25, 67.75) 0.005
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pheochromocytoma and paraganglioma (PCPG), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma
(READ), sarcoma (SARC), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), thyroid carci-
noma (THCA), thymoma (THYM), uterine corpus endo-
metrial carcinoma (UCEC), and uterine carcinosarcoma
(UCS) (Figure 2(a)).Also, PRC1 was found overexpressed
in four LIHC datasets in the GEO database (GSE60502,
GSE84402, GSE84598, and GSE112790) compared with
normal liver tissues (Figure 2(b)). The intersection of the
four DEG sets consists of 24 genes, including PRC1
(Figure 2(c)). Subsequently, we conducted the qRT-PCR
and Western Blot assays to detect the mRNA and protein
levels of PRC1 in a LIHC cell line SNU-449 and a normal
liver cell line QSG-7701. The mRNA and protein levels of
PRC1 in SNU449 cells were significantly higher than in
QSG-7701 cells (Figures 2(d) and 2(e)). Consistently, the
protein level of PRC1 in LIHC patients’ tissues was signif-
icantly increased compared with which in normal liver tis-

sues (Figure 2(f)). These findings illustrated that PRC1
expression was upregulated in LIHC, indicating that
PRC1 might play an important role in tumorigenesis.

3.2. High PRC1 Expression Is Associated with More Advanced
LIHC Clinical Stages. The baseline characteristics of the LIHC
patients from the TCGA database dichotomized by median
PRC1 expression were described (Table 1). The baseline char-
acteristics of the GEO dataset were listed in Supplementary
Table 1. To better understand the correlation between PRC1
and LIHC progression, we investigated the PRC1 expression
in LIHC patients grouped by different clinical parameters.
According to the tumor T stage, upregulation of PRC1 was
observed in T1, T2, T3, and T4 stage compared with normal
tissue. The expression of PRC1 in stages T2 and T3 was
significantly higher than in T1 (Figure 3(a)). Based on the
histologic stage, PRC1 expression was higher in G1, G2, G3,
and G4 stages than in normal group, while G3 stage was
significantly higher than in G2 and G1 stage (Figure 3(b)).
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Figure 3: PRC1 expression among different groups of patients based on clinical parameters. Analyses are shown for T stage (a), histologic
grade (b), pathologic stage (c), and TP53 mutant status (d). ∗p < 0:05; ∗∗p < 0:01; ∗∗∗ p < 0:001.
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Figure 4: PRC1 upregulation was associated with worse prognosis. (a) The OS, PFI, and DSS survival curves of LIHC from the TCGA
database. (b) OS survival curves of LIHC from HCCB18 in the HCCDB database. (c) Nomograms based on clinical factors and PRC1
expression. (d) ROC curve of PRC1. AUC was calculated and noted.
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In terms of pathologic stage, the PRC1 level was significantly
elevated in stages I, II, and III of LIHC tissues compared
with normal tissues, and PRC1 expression in stage III was
higher than in stage I (Figure 3(c)). TP53 mutation is a
marker of tumor mutation burden (TMB). Upregulation of
PRC1 expression was also observed in both TP53-mutant
and TP53 wild-type LIHC patients compared with normal
controls, with the TP53-mutant LIHC patients bearing
higher PRC1 expression (Figure 3(d)). These results suggest
that PRC1 is associated with the progression of LIHC.

3.3. Increased PRC1 Expression Predicts a Worse Prognosis.
Given that PRC1 was associated with the development of
LIHC, we examined the prognostic value of PRC1.By analyz-
ing data in the TCGA database, we found that LIHC patients
with higher expression of PRC1 exhibited worse outcomes of
OS, PFI, and DSS (Figure 4(a)). For validation, survival
curves of a LIHC dataset, HCCB18, were obtained from

the HCCDB database. High PRC1 expression in LIHC tis-
sues predicted worse OS, while in adjacent tissues did not
(Figure 4(b)). A nomogram based on the Cox regression
analysis was developed for prognostic prediction of PRC1
using the LIHC data from the TCGA database (Figure 4(c)).
The nomogram showed the correlation of PRC1 expression
with 1-, 3-, and 6-year survival probability, whereas higher
expression of PRC1 predicted lower survival probabilities
(Figure 4(c)). The ROC curve was plotted to measure the pre-
dictive performance of PRC1 prognostic risk model using the
TCGA data (Figure 4(d)). The area under the curve (AUC)
achieved 0.979 (Figure 4(d)). Other than LIHC, the pan-
cancer prognostic value analyses of PRC1 showed that high
PRC1 expression also predicted worse OS of glioma
(GBMLGG), pan-kidney cohort (KICH+KIRC+KIRP,
KIPAN), LGG, KIRP, mesothelioma (MESO), KIRC, ACC,
KICH, LUAD, PAAD, acute myeloid leukemia (LAML),
PRAD, SKCM, and CHOL, and also predicted worse PFI of
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Figure 5: GO and KEGG enrichment analyses for genes co-expressed with PRC1. (a) Co-expression heat map of the TOP 50 genes related
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Figure 6: Continued.
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GBMLGG, LGG, BRCA, LUAD, SARC, KIRP, KIPAN,
PRAD, KIRC, BLCA, THCA, MESO, UVM, PAAD, PCPG,
ACC, KICH, and CHOL (Supplementary Figure 1).

3.4. Identification of PRC1 Coexpressed Genes and Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) Pathway Analyses. To understand the func-
tion of PRC1 comprehensively, we identified the genes coex-
pressed with PRC1 via LIHC dataset from the TCGA
database. We extracted the top 300 genes related to PRC1 to
explore its biological functions (Supplementary Table 2). The
top 50 related genes were all positively correlated with PRC1
in LIHC and were shown by plot (Figure 5(a)). The top 300
related genes were used for KEGG and GO enrichment
analyses. The representative BP, CC, MF, and KEGG
pathways were presented (Figures 5(b)–5(e)). In terms of BP,
PRC1 was related to cytokinesis, DNA replication,
homologous recombination (HR), regulation of DNA repair,
and cell cycle checkpoint and G2/M phase transition
(Figure 5(b)). The CC that PRC1 involved included site of
double-strand break, chromosomal region, and kinetochore
(Figure 5(c)). The MF terms included ATPase activity,
damaged DNA binding, polymerase activity, metal cluster
binding, and protein kinase regulation (Figure 5(d)). KEGG
analysis revealed the relationship between PRC1 and cell
cycle, DNA replication, HR, Fanconi anemia (FA) pathway,

cellular senescence, p53 pathway, and microRNAs
(Figure 5(e)).

3.5. The Relationship between PRC1 and LIHC Genomic
Instability. Since PRC1 is correlated with HR and DNA
damage repair (DDR) as revealed by GO and KEGG analy-
ses, we further analyzed the relationship between PRC1
and the genomic instability of LIHC. We divided the LIHC
patients in the TCGA database into two groups based on
the median expression level of PRC1 and analyzed the muta-
tion genes (Figure 6(a)). However, the genes with the top 15
mutation frequencies were the same in the high and low
PRC1 subgroups, including TP53, CTNNB1, ALB, LRP1B,
CACNA1E, RB1, NBEA, SPEG, TDRD5, IL6ST, FLG2,
RBL2, ERICH3, KIAA1551, and ITGAD (Figure 6(a)).

TMB, MSI, HRD and LOH are biomarkers for predicting
the tumor response to ICI therapy and/or chemotherapy
[59–62]. PRC1 was found not related with TMB of LIHC.
However, significant positive correlation of PRC1 with
TMB was found in 15 kinds of tumors: GBMLGG, LUAD,
COAD, READ, STES, KIPAN, STAD, PRAD, UCEC, KIRC,
READ, PCPG, BLCA, ACC, and KICH (Figure 6(b)).
Besides, PRC1 was positively correlated with the MSI of 12
types of cancers, the HRD of 24 types of cancer, and the
LOH of 23 types of cancers, all including LIHC
(Figures 6(c)–6(e)).
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Figure 6: The relationship between PRC1 and genome instability of LIHC. (a) Landscape of somatic mutation in high and low PRC1
expression LIHC subpopulations. Genes are ranked by mutational frequency. Upper panel displays TMB score of each patient. (b–e) The
relationship of PRC1 expression with TMB (b), MSI (c), HRD (d), and LOH (e).
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Figure 7: GSEA analysis of PRC1 co-expressing genes and the prognostic signature of immune system-related genes. (a) Identification of
enriched gene sets by GSEA analysis: kinesins; immune system; PLK1, FOXM1, and Aurora B pathway; cell cycle; and RHO GTPase. OS
analysis (b) and PFS analysis (c) of the gene signatures which were associated with the immune system according to the GSEA analysis.
The left panel showed the curve of risk score, survival status of the patients, and the heat map of the expression profiles of the
prognostic genes in the low- and high-risk group. The right upper panel showed the Kaplan-Meier survival analysis of the gene
signature. The right lower panel showed the time-dependent ROC analysis of the gene signature.
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3.6. Gene Set Enrichment Analysis (GSEA) of PRC1
Coexpressed Genes. To further explore the functions of
PRC1 in LIHC, GSEA analysis of the top 300 PRC1-related
genes was conducted. GSEA analysis showed that PRC1 reg-
ulated the cell mitosis and kinesins, which were in accor-
dance with previous studies (Figure 7(a)). PRC1 was
predicted to affect the PLK1, FOXM1, and Aurora B path-
ways, which were all essential cell cycle regulating pathways
(Figure 7(a)). Moreover, RHO GTPases, the actin reorgani-
zation controllers affecting cell motility, were also enriched
(Figure 7(a)). It is noteworthy that PRC1 was associated with
the adaptive immune system and MHC II antigen presenta-

tion, which were unreported new functions (Figure 7(a)). To
investigate the importance of these immune-regulating
genes, we build the signatures of PRC1 coexpressing
immune-related genes and tested their prognostic values
using data from TCGA database. The signatures of
immune-related genes showed promising prognostic value
in LIHC. Among the immune-related genes coexpressed
with PRC1, high expressions of KIF20A, KIF2C, and
CDC20 predicted worse OS (median time: 3 VS 6.7 years)
(Figure 7(b)). Likewise, RACGAP1, KIF20A, KIF20A,
KIF18A, KIF4A, CENPE, KIF2C, and UBE2C also formed
a signature, the high expression of which predicted worse
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Figure 8: PRC1 overexpression was positively correlated with suppressive immune cells’ infiltration and negatively related with effector
immune cells’ infiltration. (a) Pan-cancer correlation analysis of the PRC1 expression and the infiltration of Treg and MDSC cells. (b–c)
Correlation of the expression of PRC1 and the marker genes of Treg and MDSC in LIHC. (d) The association between the PRC1
expression and the macrophage, B cell, CD4+ and CD8+ T cell, NK cell, and endothelial cell. ∗p < 0:05; ∗∗∗ p < 0:001.
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PFS (median time: 0.9 VS 3 years) (Figure 7(c)). These
results indicate that the immune-regulating functions of
PRC1 may be important in influencing the prognosis of
LIHC.

3.7. PRC1 Correlates with the Immune-Suppressive
Microenvironment. To learn more about the immune-
regulating functions of PRC1, we analyzed the correlation
between PRC1 expression and immune cells’ infiltration.
The results of CIBERSORT, CIBERSORT-Abs, and QUAN-
TISEQ analyzing strategies all showed that PRC1 expression
had a significant positive correlation with the infiltration of
Treg cells in LIHC and other cancers including KIRC, KIRP,
PCPG, and THCA (Figure 8(a)). TIDE analysis demon-
strated the correlation between PRC1 expression and MDSC
infiltration in pan-cancer fields, especially in LIHC
(Figure 8(a)). To further validate the association of PRC1
with suppressive immune microenvironment, we evaluated
the correlation of PRC1 with the expression of biomarkers
of Tregs. PRC1 was positively related with all 5 markers of
both effector Treg and resting Treg cells (Figure 8(b)). We
also analyzed the expression of the gene markers of poly-
morphonuclear-/monocytic-MDSCs (PMN-/M-MDSCs).
Interestingly, the PRC1 expression was positively related

with the PMN-MDSC cell marker, while negatively related
with the marker of M-MDSC cells, indicating a possible dif-
ferentiation selection function of PRC1 (Figure 8(c)). More-
over, the infiltrations of the effector immune cells including
B cells and CD8+ T cells were negatively related with PRC1
expression, according to the bulk RNA sequencing data of
LIHC cases from TCGA database (Figure 8(d)).

Inflammatory cytokines in TME play important roles in
cancer progression, invasion, and metastasis. The correlation
between PRC1 and cytokines was analyzed and adjusted for
tumor purity. PRC1 are positively associated with the
expression of inflammatory cytokine genes, including the
IL family (IL1B, IL2, IL6, IL10, IL17A, and IL18); CCL1, 5,
17, 18, 20, 22, and 28; CXCL10; CCR4, 5, 8, and 10; VEGFA;
TNFRSF6B; TGFB1; and TNF (Table 2).

3.8. The Ability of PRC1 Predicting LIHC Patients’ Prognosis
Relies on the T-reg Cell Abundance. Given the close connec-
tion of PRC1 and the immune system, we wondered the con-
tribution of suppressive immune cells in PRC1 impacting
LIHC prognosis. Thus, we analyzed the OS and RFS of high
and low PRC1 expression subgroup in Treg-enriched and
decreased LIHC patients in the TCGA database. We found
that in Treg-enriched cases, high PRC1 expression was pro-
foundly related with poor OS and RFS (Figures 9(a) and
9(b)). The median survival time for Treg-enriched LIHC
patients with high PRC1 expression (divided by median
expression) was 46.57 months, while 71.03 months for low
PRC1 expression patients. However, in Treg-decreased
LIHC cases, the OS and RFS showed no difference between
high and low PRC1 expression subgroup (Figures 9(a) and
9(b)). Similarly, the relative absence of total macrophage in
LIHC abolished the association between PRC1 expression
and OS (Figure 9(c)). Nevertheless, the enrichment or
decrease of B cells did not influence the prognostic value of
PRC1 in LIHC (Figure 9(d)). These results indicate that
the prognostic value of PRC1 relies on regulating Treg and
total macrophage infiltration.

3.9. PRC1 Associates with the Expression of Immune
Checkpoint Marker Genes. Upregulated immune check-
points or their ligands within the tumor microenvironment
are common inhibitory mechanisms for LIHC to evade anti-
tumor immunity. We investigated the expression of immune
checkpoint gene markers in LIHC groups separated by high
or low PRC1 expression. The expression of CD274 (PD-L1),
CTLA4, HAVCR2, LAG3, PDCD1, TIGHT, and SIGLEC15
was significantly higher in LIHC samples with high PRC1
expression (Figure 10(a)). Consistently, these immune
checkpoint genes were closely correlated with PRC1
(Figure 10(b)).

4. Discussion

PRC1 safeguards cell division process by regulating microtu-
bule binding and central spindle assembly [31]. Recent stud-
ies found that it might also play a role in tumorigenesis.
Knockdown or knockout of PRC1 inhibited the growth,
metastasis, recurrence, and/or drug resistance of various

Table 2: Correlation analysis between PRC1 and cytokines in
LIHC.

Cytokines
None Purity

Cor p Cor p

IL1B 0.318 ∗∗∗ 0.424 ∗∗∗

IL2 0.070 0.192 0.118 ∗

IL6 0.053 0.325 0.162 ∗∗

IL10 0.221 ∗∗∗ 0.359 ∗∗∗

IL17A 0.099 0.066 0.109 ∗

IL18 0.205 ∗∗∗ 0.371 ∗∗∗

TNFRSF6B 0.319 ∗∗∗ 0.354 ∗∗∗

TGFB1 0.265 ∗∗∗ 0.383 ∗∗∗

TNF 0.267 ∗∗∗ 0.395 ∗∗∗

VEGFA 0.581 ∗∗∗ 0.564 ∗∗∗

CXCL10 0.234 ∗∗∗ 0.278 ∗∗∗

CCL1 0.122 ∗ 0.1538 ∗∗

CCL5 0.114 ∗ 0.235 ∗∗∗

CCL17 0.057 0.283 0.131 ∗

CCL18 0.083 ∗ 0.179 ∗∗∗

CCL20 0.258 ∗∗∗ 0.297 ∗∗∗

CCL22 0.106 ∗ 0.249 ∗∗∗

CCL28 0.360 ∗∗∗ 0.347 ∗∗∗

CCR4 0.266 ∗∗∗ 0.383 ∗∗∗

CCR5 0.250 ∗∗∗ 0.423 ∗∗∗

CCR8 0.447 ∗∗∗ 0.547 ∗∗∗

CCR10 0.464 ∗∗∗ 0.495 ∗∗∗

∗p < 0:05, ∗∗p < 0:01, ∗∗∗ p < 0:001.
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Figure 9: Continued.
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cancers [32, 34, 35, 63]. The underlying mechanisms have
not been fully understood. Chen et al. firstly found the
PRC1 overexpression in LIHC by digging their microarray
data [30]. They focused on the transcriptional regulators of
PRC1, by analyzing the binding site on PRC1 promoter
region. And their work well explained the positive feedback
loop between PRC1 and the Wnt/β-catenin pathway in
LIHC. However, the molecule functions of PRC1 need fur-
ther depiction. We conducted bioinformatic function analy-
ses to fully depict the function atlas of the overexpressed

PRC1 in LIHC. Notably, our work firstly identified the
immune suppression function of PRC1 in LIHC. Upregu-
lated PRC1 was associated with more advanced clinical
stages and predicted poor prognosis of LIHC. GO and
KEGG analyses of the coexpressing genes of PRC1 revealed
that PRC1 regulated the process of mitosis, HR, and DDR.
Consistently, PRC1 was positively correlated with the tumor
genomic instability biomarkers, MSI, HRD, and LOH.
Moreover, GSEA analysis revealed that PRC1 might regulate
TME. By further investigation, we found that PRC1 was
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Figure 9: Survival curves according to high and low expression of PRC1 in LIHC grouped by Treg, macrophage, or B cell infiltration.
Correlation of PRC1 expression and OS (a) and RFS (b) in Treg-enriched and decreased LIHC subgroups were estimated by Kaplan-
Meier plotter. OS analyses of PRC1 in LIHC cases grouped by macrophage (c) or B cell (d) infiltration.
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Figure 10: Correlation of PRC1 expression with immune checkpoint molecules. (a) The expressions of immune checkpoint molecules were
significantly higher in the LIHC group with high PRC1 expression. (b) The expressions of immune checkpoint molecules were significantly
associated with PRC1. ∗∗p < 0:01; ∗∗∗ p < 0:001.
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positively correlated with the infiltration of immunosup-
pressive cells, Treg, and MDSC. The control of Treg infiltra-
tion might be the way of PRC1 exerting influence on LIHC
prognosis. High PRC1 expression was also related with the
expression of immune checkpoint molecules in LIHC. These
findings suggest that PRC1 may be a prognostic biomarker
and a target for immunotherapy.

Cancers with higher mutation burden or genomic insta-
bility have more potential neoantigens [64, 65], and are thus
more sensitive to ICI therapy or DDR molecule inhibitors
like poly ADP-ribose polymerase (PARP) inhibitor [66,
67]. Thus, TMB, MSI, and PD-L1 have become important
biomarkers for immunotherapy, the complimentary utiliza-
tion of which has the potential to predict ICIs responsive-
ness better than each alone [60]. Our work found that
PRC1 was positively related with the MSI score and PD-L1
expression of LIHC, indicating their internal interactions.
The relationship between TMB, MSI, and PD-L1 has been
explored broadly, but the overlap in cancers among which
is rare [68]. Moreover, 69.5% of all cancer cases were nega-
tive for all 3 biomarkers [69]. Thus, these 3 biomarkers
may not be sufficient in the utilization of personalized therapy
response prediction. HR is an important part of the DDR pro-
cess, responsible for the reparation of double-strand breaks
(DSBs) [70]. HRD is an emerging biomarker defined by the
mutations of BRCA1/2 genes, along with other Fanconi ane-
mia pathway genes (RAD51D, NBN, and ATM) [71, 72]. Cur-
rently, HRD has not been used in clinical tests, but it has
showed profound ability in predicting patients’ response to
platinum-based chemotherapies and cytotoxic agents that
cause DNA damage [73, 74]. Our work found the high corre-
lation between PRC1 and the HRD of LIHC for the first time.
Consistently, function analysis in our study also revealed the
possible regulation of the Fanconi anemia pathway by PRC1.
LOH is an indicator of homologous repair deficiency and is
commonly associated with the inactivation of tumor suppres-
sor genes [75]. The two major mechanisms inducing LOH are
deletion of chromosomal fragments and mitotic recombina-
tion between homologous alleles [76]. As a mitosis-
regulating protein, PRC1 is essential for the chromosome
dynamic regulation [36]. Our work first demonstrated the
positive correlation between PRC1 and LOH in LIHC. Taken
together, PRC1 has great potential in predicting patients’
responses to ICI therapy and DDR inhibitors.

PRC1 may hold functions far more than we have
noticed. GSEA analysis of the PRC1 coexpressing genes
found it involved in the RHO GTPase signaling. RHOA is
a small GTPase protein in the RHO GTPases family. Previ-
ous studies in gastric cancer found that RHOA Y42 muta-
tion in cancer cells produced excessive fatty acids by
upregulating fatty acid synthase (FASN) [77]. The fatty acids
produced by tumor cells and stromal cells in the TME can be
utilized by Tregs as an energy source for their survival and
immune suppressive function [78]. As a result, the TME rich
in fatty acid recruits Tregs while expelling CD8+ T cells.
This mechanism contributes to the impaired sensitivity to
PD-1 targeting immunotherapy [77]. Since the RHOA
mutation can lead to the fatty acids production in TME by
gastric tumor cells, we speculate that in the TME of LIHC,

maybethe upregulated PRC1 recruits Tregs by regulating
RHOA and its RHO family.

The TME of LIHC is abundant in immunosuppressive
cells and secreted molecules, which contributes to the resis-
tance to immunotherapy [79]. Abnormal gene expression
can promote tumor cells to produce chemokines, which
helps to recruit Tregs to the TME. Tregs have multiple che-
mokine receptors, such as CCR4-CCL17/22, CCR5-CCL5,
CCR8-CCL1, and CCR10-CCL28. We found that PRC1
was positively related to the gene expressions of multiple
chemokines and receptors like CCL1, 5, 17, 18, 20, 22, and
28; CXCL10; and CCR4, 5, 8, and 10. The increased secre-
tion of chemokines and increased expression of correspond-
ing receptors following the PRC1 upregulation may
contribute to the Treg enrichment in TME.

Other than shaping the TME, we found that PRC1 was
associated with the PLK1 pathway, which was in accordance
with previous studies in Ewing sarcoma (EwS) [80]. High
expression of PRC1 in EwS implied a better response to
volasertib, a PLK1 inhibitor [80]. PLK1 activates PRC1,
forming the PRC1-PLK1 protein complex and helping
PRC1 translocate to the central spindle to initiate cytokine-
sis. However, PLK1 can also negatively regulate PRC1 to
prevent premature midzone formation before cytokinesis
[81]. The negative regulation of PRC1 by PLK1 is initiated
by microtubules, creating a potential negative feedback loop
controlling PRC1 activity. PLK1 is found overexpressed in
most cancers and is associated with a poor prognosis. By
now, PLK1 inhibitors are undergoing clinical trials of vari-
ous cancers. PRC1 expression may be a potential marker to
predict the antitumor efficacy of PLK1 inhibitors.

Our study depicted the correlation between PRC1 over-
expression and the immune-suppressive TME in LIHC. To
our knowledge, this is the first study to explore the
immune-regulatory function of PRC1. Nevertheless, the lim-
itation of our study lies in the unexplored precise pathway
through which PRC1 regulates the immune system. In the
subsequent research, we will further investigate the underly-
ing mechanisms of PRC1 regulating the TME of LIHC.
Taken together, we propose PRC1 as a biomarker and a tar-
get for the immunotherapy of LIHC.
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CC: Cellular components

BP: Biological processes
TMB: Tumor mutation burden
MSI: Microsatellite instability
LOH: Loss of heterozygosity
HRD: Homologous recombination deficiency
PFS: Progression-free survival
HR: Homologous recombination
FA: Fanconi anemia
PARP: Poly ADP-ribose polymerase inhibitors
CIN: Chromosomal instability
DSBs: Double-strand breaks
APC: Antigen presenting cell.
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