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Research and application advances in rehabilitation assessment of stroke
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Abstract: Stroke has a high incidence and disability rate, and rehabilitation is an effective means to reduce the disability rate of
patients. To systematize rehabilitation assessment, which is the foundation for rehabilitation therapy, we summarize the
assessment methods commonly used in research and clinical applications, including the various types of stroke rehabilitation
scales and their applicability, and related biomedical detection technologies, including surface electromyography (sEMG),
motion analysis systems, transcranial magnetic stimulation (TMS), magnetic resonance imaging (MRI), and combinations of
different techniques. We also introduce some assessment techniques that are still in the experimental phase, such as the
prospective application of artificial intelligence (AI) with optical correlation tomography (OCT) in stroke rehabilitation. This
review provides a useful bibliography for the assessment of not only the severity of stroke injury, but also the therapeutic effects
of stroke rehabilitation, and establishes a solid base for the future development of stroke rehabilitation skills.
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1 Introduction

Stroke refers to a series of diseases caused by
cerebral vascular obstruction or rupture. It has a high
incidence and disability rate (Liu et al., 2021), and its
severity is related to patient age (Lorenzi et al., 2018),
gender, race (Tsao et al., 2022), location, and genetics
(Biscetti et al., 2016). Stroke rehabilitation is cur‐
rently an effective means of reducing the disability rate
(Stinear et al., 2020). Rehabilitation is complex and
some important aspects need to be considered. Re-
habilitation assessments based on the functional level,
degree of impairment, and recovery of patients after a
stroke form an important scientific basis for determin‐
ing rehabilitation goals and formulating rehabilitation
treatment programs. Stroke-related assessment focuses
on the structure of the brain injury and recovery (Boyd
et al., 2017), and on neurological function rather than
simple examination of structural abnormalities of the
nervous system. This is because the complexity of the
human nervous system determines that patients with

similar clinical manifestations often have different
neurological performance at a functional level. Struc‐
tural abnormalities of the nervous system due to stroke
can be used as a basis for disease diagnosis, but are
difficult to use for the evaluation of functional impair‐
ment and rehabilitation, according to the International
Classification of Functioning, Disability and Health
(ICF) issued by the World Health Organization (WHO,
2001). This classification is an essential tool to identify
and measure efficiency and effectiveness of rehabilita‐
tion (Marotta et al., 2020).

Considering the importance and complexity of
the brain, the difficulty of detection, and the operability
of practice, assessment scales based on behavioral per‐
formance assessment are currently used clinically to
assess the degree of neurological impairment and the
level of rehabilitation of patients (Kasner, 2006). In
addition, the rapid development of science and tech‐
nology has introduced a large number of efficient and
convenient biomedical detection methods to the med‑
ical field. Therefore, to obtain reliable and valid bio‐
markers for stroke rehabilitation, several tests includ‐
ing surface electromyography (sEMG) (Goen and
Tiwari, 2013), motion analysis systems (Schwarz et al.,
2019), transcranial magnetic stimulation (TMS) (El‐
daief et al., 2022), and magnetic resonance imaging
(MRI) (Imura et al., 2021) have been used in recent
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years for research and clinical applications in stroke re‐
habilitation assessment. Stroke rehabilitation biomarkers
refer to disease state indicators that can be used to
reflect potential molecular or cellular processes in the
body that are difficult to measure directly in clinical
practice, and can be used to predict a patient’s recovery
status and response to treatment (Bernhardt et al., 2016).

Artificial intelligence (AI) has developed rapidly
in recent years and led to many breakthroughs in the
field of medicine (Topol, 2019; Feng et al., 2021). A
growing number of research teams are now attempting
to integrate machine learning and deep learning into
the rehabilitation assessment and treatment decision-
making process of stroke diseases (Mouridsen et al.,
2020). The related work is in its infancy and there are
still many issues to be addressed before it can be rou‐
tinely applied in the clinic. Previous techniques relied
on indirect assessments of a patient’s injury and re‐
covery status. In contrast, optical coherence tomog‑
raphy (OCT) allows visualization of changes in blood
flow, reperfusion or regeneration of diseased vessels
(Ma et al., 2018), as well as damage and recovery of
neural tissue (Baran et al., 2015). By combining the
image information obtained by OCT with AI, specific
aspects of recovery during stroke rehabilitation can be
monitored in real time, providing guidance for the re‐
habilitation process. However, research on OCT in
cerebrovascular disease is still in the early experimen‐
tal stages.

Previous relevant literature reviews have covered
a relatively narrow technical approach, making it diffi‐
cult to provide a more comprehensive introduction to
the field. In this review, various testing techniques
and methods that can be used for the assessment of
neurological impairment and rehabilitation of stroke
patients will be reviewed, and the advantages, disad‐
vantages, and development prospects of the different
techniques will be elaborated.

2 Assessment scales for stroke

Different rehabilitation centers use various types
of stroke assessment scales to assess the neurological
status and degree of impairment of patients according
to the actual assessable conditions in the immediate
state, to obtain a comprehensive understanding of the
functional status of patients before and after treatment,

and to analyze and evaluate the effectiveness of re‑
habilitation treatment. There are many different types
of scales, including motor function, sensory function,
cognitive function, daily performance, and life skill
scales. Based on the ICF, some clinical experts have
summarized the common scales into three levels:
body structure and function, activity function, and par‐
ticipate function.

2.1 Assessment of body structure and function

The assessment of the body structure and func‐
tion of a stroke patient focuses mainly on the neuro‐
logical damage to structure and function, and can be
broadly divided into two categories: comprehensive
assessment and specialized assessment.

2.1.1 Comprehensive assessment

A comprehensive scale is used clinically to pro‐
vide an initial assessment of overall neurological def‑
icits and to assess the patient’s recovery by monitoring
changes in these deficits (Table 1). Different scales
have different focuses and efficacy. For example,
Stroke Impairment Assessment Set (SIAS) is con‑
sidered suitable for stroke patients during the recovery
period, European Stroke Scale (ESS) is used mainly
for stroke patients with a damaged middle cerebral
artery, National Institute of Health Stroke Scale
(NIHSS) is designed for patients with cerebral infarc‐
tion, and Canadian Neurological Scale (CNS) is used
to assess stroke patients with clear consciousness or
somnolence. The examination focuses on the clinical
behavioral performance of stroke patients, and includes
the assessment of a number of important functions of
neural control such as consciousness, facial move‐
ment (whether facial palsy is present), speech, vision,
upper and lower limb, hand or foot movements, and
walking gait.

2.1.2 Specialized assessments

Specialized assessments provide a more detailed
and comprehensive assessment of specific neurologic‑
al functions, of which sensory, motor, and cognitive
functions are the most important.

Depending on the source of the stimulus, sensory
functions can be divided into two categories: external
and internal. External sensory function involves mainly
the perception of stimuli, and includes the familiar
visual, auditory, olfactory, taste, and skin senses. The

626



J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2022 23(8):625-641 |

Table 1 Overview of assessment scales for stroke

Body structure
and function

Overall neurological
impairment

Sensory function

External sensory

Internal sensory

Motor function

Muscle tone and spasticity

Joint mobility

Balanced walking

Arthroscopic organ

Injury of general motor
function

Cognitive function

Overall cognitive
impairment

Memory

Attention

Executive force

Language features

Spatial visual function

National Institute of Health Stroke Scale (NIHSS)

Canadian Neurological Scale (CNS)

European Stroke Scale (ESS)

Scandinavian Stroke Scale (SSS)

Stroke Impairment Assessment Set (SIAS)

Chinese Stroke Scale (CSS)

Semmes-Weinstein monofilament method

Two-point discrimination test

Weinstein enhanced sensory test

Threshold to Detection of Passive Motion (TTDPM)

Joint Position Reproduction (JPR)

Active Movement Extent Discrimination
Assessment (AMEDA)

Ashworth spasticity scale

Beighton

Contompasis

Hospital del Mar criteria (HdM)

Berg Balance Scale

Frenchay Dysarthria Assessment (FDA)

Brunnstrom Hemiplegia Scale

Fugl-Meyer Scale

(Simplified) Fugl-Meyer Motor Function Scale

Stroke Rehabilitation Assessment of Movement
(STREAM)

Chedoke-McMaster Stroke Assessment

Lindmark Motor Function Assessment

Rivermead Mobility Index

Mini-Mental State Examination (MMSE)

Stroke Unit Mental Status Examination (SUMSE)

Neurobehavioral Cognitive Status Examination
(NCSE)

Montreal Cognitive Assessment Scale (MoCA)

Halstead-Reitan Neuropsychological Test Battery
(HRNB)

Loewenstein Occupational Therapy Cognitive
Assessment (LOTCA)

Auditory Verbal Learning Test (AVLT)

Digit Span Test (DST)

Shape Trail Test (STT)

Stroop Color and Word Test (SCWT)

Verbal Fluency Test (VF)

Boston Naming Test (BNT)

Clock Drawing Test (CDT)

Goldstein et al., 1989

Côté et al., 1989

Hantson et al., 1994

Lindenstrøm et al., 1991

Zhou, 2002

Qi, 2005

Weinstein, 1993

Takara, 1971

Weinstein, 1993

Han et al., 2016

Steinberg et al., 2019

Waddington et al., 2014

Platz et al., 2005

Schlager et al., 2018

Schlager et al., 2018

Bevilacqua et al., 2019

Blum and
Korner-Bitensky, 2008

Enderby, 1980

Shah, 1984

Fugl-Meyer et al., 1975

Gladstone et al., 2002

Ahmed et al., 2003

Gowland et al., 1993

Lindmark and Hamrin,
1988

Ekinci et al., 2021

Folstein et al., 1983

Hajek et al., 1989

Osmon et al., 1992

Nasreddine et al., 2005

Reitan, 1955

Katz et al., 1989

Guo et al., 2007

Ostrosky-Solís and
Lozano, 2006

Zhao et al., 2013

Scarpina and Tagini, 2017

Diesfeldt, 1983

Wang et al., 2019

Royall et al., 1998

Classification
based on ICF

Content of evaluation Commonly used scales References

To be continued
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Activity function

Participation
function

Basic activities of daily
living (ADL)

Simple and practicable

Athletic activities

Cognition and speech

Instrumental ability in ADL

Quality of life

Psychological
assessment

Observation and
questionnaire

Katz index of independence in ADL (Katz ADL Index)

Modified Rankin Scale (MRS)

Modified Barthel Index (MBI)

Physical Self-Maintenance Scale (PSMS)

Functional Independence Measure (FIM)

Katz index of instrumental ADL based on ADL
index (Katz IADL Index)

Functional Autonomy Measurement System (SMAF)

Assessment of Motor and Process Skills (AMPS)

Frenchay Activity Index (FAI)

Functional Activity Questionnaire (FAQ)

Ferrans & Powers Quality of Life Index (QLI-Generic
Version)

36-Item Short-Form Survey (SF-36)

Ferrans & Powers Quality of Life Index
(QLI-Stroke Version)

Stroke-Specific Quality of Life Scale (SS-QOL)

Katz et al., 1970

Sulter et al., 1999

Shah et al., 1989

Lawton and Brody, 1969

Linacre et al., 1994

Katz, 1983

Hebert et al., 1988

Park et al., 1994

Holbrook and Skilbeck,
1983

Pfeffer et al., 1982

Ferrans and Powers, 1985

Ware and Sherbourne,
1992

Jaracz and Kozubski, 2003

Williams et al., 1999

Table 1 (continued)

Classification
based on ICF

Content of evaluation Commonly used scales References

ICF: International Classification of Functioning, Disability and Health.

skin sensation, also called shallow sensation, is often
assessed using the Semmes-Weinstein monofilament
method (Table 1). Internal sensory function refers to
the contraction of the body’s muscles or internal
organ changes perceived by the deep receptors of the
body, including kinesthesia, balance, position, and
body sensation, and so is also called deep sensation.
The methods for assessing deep sensation include the
Threshold to Detection of Passive Motion (TTDPM)
(Table 1).

Conventional motor function assessment items
include muscle strength, muscle tone, spasticity, and
joint mobility, and different sub-items have their own
corresponding assessment scales. However, sensation
is a prerequisite for movement, and even if there is no
significant decrease in muscle strength, sensory dys‐
function can have a significant impact on the patient’s
motor function. Motor function has a significant im‐
pact on the patient’s quality of life later in life and is
often used as an important indicator to assess whether
the patient benefits from the intervention (Kim and
Winstein, 2017). These functions also have their own
assessment scales (Table 1).

Cognitive function is another important specific
assessment module, and deficits are assessed mostly
using neuropsychological scales used in the assess‐
ment of cognitive impairment. The overall cognitive
status of the patient can be assessed on the basis of
scales such as the Mini-Mental State Examination
(MMSE) (Folstein et al., 1983). Similarly, there are
corresponding scales for the assessment of specific
cognitive functions such as memory, attention, execu‐
tion, language, and spatial vision (Table 1).

2.2 Assessment of activity function

From an individual perspective, activity refers to
the integrated mobilization of the body’s functions to
accomplish an action or task, and the types, forms,
and content of activities vary significantly. However,
activities of daily living (ADL) are basic activities
that are necessary for people to maintain their daily
lives. They are common across ethnic and cultural
groups, and can be used for quantitative assessment.
The ability to accomplish ADL better reflects the
overall activity level of the individual, and is con‐
sidered the core basis for the evaluation of rehabilitation
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outcomes (Veerbeek et al., 2011). According to the
content of activities, ADL can be roughly divided into
basic ADL (BADL) and instrumental ADL (IADL).
BADL includes self-care and movement. Specific ac‐
tivities include eating, dressing, using the toilet, get‐
ting in and out of bed, taking a bath, and using trans‐
portation. The IADL includes faculty work, communi‐
cation, and social cognitive aspects, with major activ‑
ities such as cooking, cleaning, shopping, watching
TV, making phone calls, financial management, and
socializing.

The assessment of active function is based on
body structure and function, and the main assessment
is the ADL ability of patients. Currently, BADL-related
rating scales commonly used clinically include the
Modified Barthel Index (MBI) (Table 1), the Katz
ADL Index, and Modified Rankin Scale (MRS). These
are simple and easy to implement and widely used,
but lack items to detect subtle changes in function
(Hartigan, 2007). MBI and Physical Self-Maintenance
Scale (PSMS) are more specific, but examine mainly
the motor aspects of activity content without address‐
ing the level of cognitive function. Functional Inde‐
pendence Measure (FIM) is more sensitive than MBI
because it adds cognitive and verbal content based on
sports. IADL is more advanced than BADL, the tasks
required to complete are more complex, and the de‐
gree of social participation is stronger, so it is usually
used to evaluate the next level-participation function.

2.3 Assessment of participation function

Participation function is the highest level, reflect‐
ing the patient’s “participation and participation limi‐
tations” in family life, interpersonal communication,
study, work, and social life. The assessment of partici‐
pation functions includes mainly two aspects: IADL
ability and quality of life. The assessment period is
usually during the follow-up period after rehabilita‐
tion treatment, so the assessment involves many non-
medical factors, making it difficult and limited in
accuracy.

The common IADL scales are based mainly on
the BADL scale and are more comprehensive and
three-dimensional. For example, Katz (1983) has
developed the Katz index of instrumental ADL based
on the ADL index (Table 1). Quality of life is an im‐
portant aspect of this level of assessment, defined as
satisfaction with personally important areas of life

(Ferrans and Powers, 1992). Therefore, assessment re‐
sults are strongly influenced by patients’ subjectivity.

2.4 Assessment scales: summary and prospects

After decades of development and revision, stroke-
related rehabilitation assessment scales have been
greatly enhanced, covering a wide range of neurologic‑
al domains and various stages of rehabilitation treat‐
ment. However, the shortcomings of scale-based stroke
rehabilitation assessments are obvious. Firstly, the
scales are mostly manually determined and completed,
and therefore easily influenced by subjective factors
of subjects and examiners. The assessments of activity
and participation levels are also influenced by non-
medical factors, which make it difficult to ensure the
consistency, stability, and objectivity of the results. Sec‐
ondly, a single scale or a single set of scales cannot
meet all clinical needs, while the combined use of mul‐
tiple scales has not resulted in a recognized and per‐
fect system. The operation process requires high pro‐
fessionalism and tests the experience level of the
examiners. The assessment items inevitably cross and
repeat, the assessment process is time-consuming and
laborious, and the assessment results are difficult to
quantify, unify, and standardize.

With the development of computer and Internet
technology, rehabilitation assessment scales are increas‐
ingly becoming electronic. Computer-based or mobile
scale software can greatly reduce the time, material,
and labor costs of assessment, expand the use of as‐
sessment scenarios and time space, and to some ex‐
tent standardize the assessment process. However, the
use of software programs optimizes only the material
carrier of the scale and does not change the disadvan‐
tages of excessive human involvement, so objectivity
or accuracy cannot be effectively improved.

More importantly, the data of quantitative scales,
whether in paper or electronic form, originate mainly
from observations of patients or simple task activities,
so the information obtained is relatively macroscopic
and extrinsic. With the development of biotechnology
and medical instruments, current biomedical testing
technology obtains physiological information from
more dimensions and more objectively from the patient’s
body or specific body parts. Stroke rehabilitation as‐
sessment studies based on related technologies have
emerged with the aim of obtaining more accurate and
efficient neurobiological markers.
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3 Biomedical detection technologies

The main biomedical testing techniques used for
rehabilitation assessment of stroke patients are sEMG,
motion analysis systems, TMS, and MRI. This section
focuses on these four main tools and mentions other
techniques that have been used (Table 2).

3.1 Surface electromyography

sEMG is a non-invasive technique for assessing
neuromuscular functional status during exercise. Electro‑
physiological time series of signals generated dur‐
ing contraction of the muscle under test are acquired
from the skin surface through the receiving electrodes
of the sEMG. It has the advantages of being non-
invasive, safe, convenient, and objective (Zheng et al.,
2007). The assessment of neuromuscular function
impairment and its rehabilitation efficacy in stroke
patients is currently an important issue in basic re‐
search and clinical application of rehabilitation medi‐
cine. The sEMG has gradually gained attention in
this field in recent years because of these technical
advantages.

The sEMG detects superficial muscle groups in
patients. It is often integrated into a motion analysis
system to evaluate the muscle activity of the upper
and lower limbs during movement (Li et al., 2015).
The small and flexible signal receiver end of the
sEMG device has shown unique value in some specific
body sites. For example, neuromuscular dysfunction
of the external anal sphincter will lead to fecal incontin‑
ence, which is difficult to identify by conventional
detection means due to the specific site of onset. The
sEMG signals of the external anal sphincter were ac‐
quired using a specially designed high-density sEMG
collector to clarify the area of onset in patients (Dias
et al., 2018) to improve the accuracy of drug injection,
and for the study of the pathogenesis and causative
factors of this disease (Dias et al., 2019).

However, the limitations of this technique are that
the signal acquisition is susceptible to interference,
the acquisition area is limited to large muscle groups
on the surface of the body, and the signal of deeper
muscles or specific muscles cannot be obtained. A
needle electrode EMG inserted directly into the muscle
through the skin can alleviate these problems to some
extent, but as an invasive detection method, its clinical
use requires more caution.

3.2 Motion analysis systems

Traditional motion analysis systems consist of
high-definition video cameras and positioning markers
used to record somatic movements and calculate mo‐
tion trajectories to obtain relevant kinematic param‑
eters for quantitative assessment of a subject’s motor
functions and movement characteristics. Such par‑
ameters are often used in the field of rehabilitation
medicine and sports medicine, where the analysis of
lower limb walking or running movements is called
gait analysis.

With the introduction of different sensors and
signal acquisition devices, the functions of motion analy‑
sis systems are continuously expanded, optimized,
and improved. Taking the gait analysis system as an
example, the relevant system now contains a three-
dimensional (3D) dynamic capture system, 3D force
measurement platform and plantar pressure measure‐
ment instrument, sEMG, accelerometer, gyroscope,
and goniometer. The whole system can accurately cap‐
ture the 3D dynamic coordinates of the human body’s
marker points during the travel process. Supporting
analysis software is used to reconstruct and analyze
the 3D model based on the collected multiple data to
obtain the relevant gait parameters. Gait parameters
include mainly kinematic, kinetic, electromyographic
activity, and energy metabolism parameters (Tao et al.,
2012). An upper limb motion analysis system has simi‑
lar sensors and acquisition capabilities (Carnevale
et al., 2019).

Motion analysis systems are widely used in the
field of stroke rehabilitation assessment. The idea of
most studies is mainly to assign rehabilitation patients
to complete targeted tasks, obtain motor parameters
by analyzing data recorded during exercise, analyze
correlations between candidate parameters and motor
function scale scores, and select significant character‐
istic parameters for rehabilitation prediction of motor
function. The correlation test task is also a means of
motor function rehabilitation. The real-time objective
result feedback from the test system can improve the
training effect during the rehabilitation training of pa‐
tients (Caliandro et al., 2020). For some patients who
have lost independent limb motor function due to a
stroke, the system can transmit the acquired patient
motor parameters to an assistive robot for adaptive
training and correction of the patient’s limbs (Andro‑
wis et al., 2018).
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Table 2 Overview of biomedical technologies for rehabilitation assessments of stroke

sEMG

Motion analysis
systems

TMS

MRI

Diffusion MRI

fMRI

Non-invasive, safe,
convenient, and
objective; detects the
surface muscle activity
of various parts of the
body

Non-invasive, safe, and
objective; a variety of
sensors to obtain upper
and lower limb motion
parameters; be used for
real-time rehabilitation
training

Painless and non-invasive;
independent control of
neural activity in
specific brain regions;
neuroelectrophysiological
examination in central

nervous system

Non-invasive, safe, and
objective; reflects the
integrity of subcortical
white matter fiber
bundles

Non-invasive, safe, and
objective; obtains the
functional activity of
the whole brain

Susceptible to external and
nearby muscle
interference; limited to
the superficial major
muscle group; unable to
get signals from deep
muscles

High requirements on-site
and for equipment; multi-
parameter fusion analysis
is complicated to practice

The interpretability of the
results is poor; the effect
of functional
recombination of brain
regions cannot be
eliminated

No neurological function
assessment is performed;
part of the mode scanning
time is too long; in the
field of rehabilitation, it is
mainly used for outcome
prediction, but cannot be
accurately assessed

Image accuracy is limited;
long scan and task time;
the results are often
unconvincing

Upper limb

Hand

Lower limb
Back
Abdomen
Swallowing
External anal sphincter
Upper limb movement

Lower limb movement

Feedback of rehabilitation
training effect

Assisted robot adaptive
correction

Motor

Somatosensory
Swallowing

Sensory function
represented by vision

DWI: prediction of
ischemic outcome

DTI: significant
correlation between
related parameters and
motor function scores

DTT: 3D visualization of
cortical fiber bundle
injury

DKI QSI: reflects the
change in microstructure
of tissue

rs-MRI: motor and
cognitive functional
brain area assessment;
longitudinal analysis
reflects dynamic changes
in patients’ motor function

ts-MRI: motor, sensory,
and cognitive function
assessment, and
neurofeedback for
efficacy assessment

Kallenberg and
Hermens, 2009

Hu et al., 2015;
Vinstrup et al., 2018

Rozanski et al., 2020
Li et al., 2014
Yoon and You, 2017
Park et al., 2019
Dias et al., 2018, 2019
Bosecker et al., 2010;

van Dokkum et al.,
2014; Schwarz et al.,
2019

Kawamura et al., 2007;
Rosa et al., 2014

Caliandro et al., 2020

Androwis et al., 2018

McDonnell and Stinear,
2017

Hwang et al., 2016
Gallas et al., 2007; Barritt

and Smithard, 2009
Sack and Linden, 2003

Yoo et al., 2010

Parsons et al., 2010

Lindenberg et al., 2010

Yamada et al., 2013;
Rudrapatna et al.,
2014

Park et al., 2011;
Golestani et al.,
2013; Dacosta-
Aguayo et al., 2014;
Chen et al., 2019

Calvert et al., 2000;
Mintzopoulos et al.,
2009; Kim and
Winstein, 2017;
Wang et al., 2018

Measurement
technique

Advantages Disadvantages Application fields References

To be continued
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Combination
TMS+fMRI,

TMS+EEG,
TMS+MEG,
TMS+MRS,
TMS+NIRS,
TMS+PET

fMRI+EEG

TMS+
structural
imaging

EMG+NIRS

Narrows the area of the
brain to be examined to
make it more accurate;
reduces the impact of
functional restructuring;
improves the accuracy
of functional
assessment

Not only the activity and
functional connection
of brain regions, but
also the activation
sequence and the
subordinate
relationship between
brain regions can be
understood

Neurological function and
structure tests can
predict the level of
motor recovery in
stroke patients

The anterior nerve
activity and terminal
muscle activity of the
nerve conduction
pathway are detected at
the same time

EEG and NIRS have low
resolution and accuracy;
MEG and PET
equipments have low
penetration rates and are
expensive; the
interpretability of the
results needs to be improved

Evaluation of motor and
cognitive function and
the mechanism of brain
recovery and
restructuring

Neural connectivity
network analysis and
functional rehabilitation
assessment

Assessment of motor
functions and neural
pathway integrity

Co-detection of muscle
electrophysiological
signals and brain
hemodynamics in
motor function

Sack and Linden, 2003;
Hamzei et al., 2006;
Auriat et al., 2015;
Kim and Winstein,
2017; Pellicciari
et al., 2018

Lioi et al., 2020

Stinear et al., 2012;
Auriat et al., 2015

Scano et al., 2019;
Caliandro et al., 2020

Table 2 (continued)

Measurement
technique

Advantages Disadvantages Application fields References

DWI: diffusion-weighted imaging; DTI: diffusion-tensor imaging; DTT: diffusion tensor tractography; DKI: diffuse kurtosis imaging; QSI:
q-space imaging; rs-MRI: rest-state MRI; ts-MRI: task-state MRI; EEG: electroencephalogram; MEG: magnetoencephalogram; MRI: magnetic
resonance imaging; fMRI: functional MRI; MRS: magnetic resonance spectroscopy; NIRS: near infrared spectroscopy; PET: positron emission
tomography; sEMG: surface electromyography; TMS: transcranial magnetic stimulation.

3.3 Transcranial magnetic stimulation

TMS is based on the principle of Faraday electro‑
magnetic induction, in which pulsed magnetic field
signals are applied to the cerebral cortex through the
scalp and skull without attenuation. Induced currents
are generated in the tissues of the area of action to
stimulate neuronal excitation in the area. This in turn
affects the neuroelectrical activity and intracerebral
metabolism, triggering a series of physiological and
biochemical responses (Eldaief et al., 2022). This
technique has the advantage of being painless and
non-invasive, and is now widely used in the function‐
al assessment and adjunctive treatment of psychiatric
disorders and various neurological disorders including
stroke (Johansson, 2011).

Neurophysiological examinations based on TMS,
such as motor evoked potential (MEP), somatosensory

evoked potential (SEP), and silent period (SP) of cor‑
tical magnetic stimulation, are used in the rehabilitation
assessment of neurological functions. The neurophysio‑
logical examinations can be used to analyze damage
to the central neuromotor and sensory conduction
pathways in patients after a stroke (Wang and Wang,
2016). Compared to technologies that passively receive
neural activity signals, TMS has the advantage of
being able to manipulate neural activity in specific
areas of the brain on its own, thus providing a clearer
picture of the relationship between brain activity and
behavior. However, the biggest problem with this
technique is that the examination is often performed
with the default assumption that specific brain regions
always correspond to the motor-sensory function of
the specified somatic area before, during, and after
the disease and during the recovery phase. However,
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neurons in the damaged and adjacent areas of the brain
will undergo reorganization during the recovery phase
to compensate for the loss of the original function of
the necrotic area. Repeated examination of neural ac‐
tivity in the designated brain area using TMS technol‐
ogy alone may not be able to determine the recovery
of neural function in a timely and effective manner,
and it is not practical to blindly try various candidates
for functional reorganization of brain areas (Sack and
Linden, 2003).

3.4 Magnetic resonance imaging

MRI uses the principle of nuclear magnetic res‑
onance to obtain structural information inside the
human body by applying a gradient magnetic field.
Energy attenuation varies according to the different
structures encountered inside a material. Over the
decades, MRI has evolved into various modalities
such as diffusion MRI and functional MRI (fMRI).
Its application in stroke has also extended from dis‐
ease diagnosis to rehabilitation assessment (Bern‐
hardt et al., 2016). The associated biological markers
have been extended from simple parameters of the
lesion volume area to more complex imaging-based
structural and functional indices (Kim and Winstein,
2017).

Research work on diffusion MRI in stroke re‑
habilitation has been emerging (Jang, 2011; Ma et al.,
2014). Diffusion MRI techniques with different mo‐
dalities have different characteristics, and all have cor‐
responding applications and advances in neurological
rehabilitation studies of stroke. Diffusion-weighted
imaging (DWI) has higher sensitivity and specificity
than other examinations, and is an important method
for diagnosing acute cerebral ischemia in clinical
practice (Kim et al., 2014). High signal area volume
of DWI lesion and quantitative index of apparent dis‐
persion coefficient (ADC) analysis also contribute to
the prediction of ischemic infarct area outcome (Yoo
et al., 2010). Diffusion-tensor imaging (DTI) provides
a more precise interpretation of the anisotropy of voxel
water molecule dispersion. The parameters correlate
significantly with motor function scores after a stroke,
but the scan time is too long (Parsons et al., 2010). Dif‐
fusion tensor tractography (DTT) can reflect the dam‐
age to cortical fiber tracts more visually and accur‑
ately (Lindenberg et al., 2010). Diffuse kurtosis
imaging (DKI) and q-space imaging (QSI) are based

on non-Gaussian diffusion imaging. They take into
account the diffusion phenomenon of the non-Gaussian
distribution of water molecules due to internal hetero‐
geneity of brain tissues, and reflect the microstructural
changes of tissues more realistically.

fMRI is used mainly for analyzing functional ac‐
tivity and functional connectivity of the human brain
nervous system. According to the way it is used, MRI
can be divided into rest-state MRI (rs-MRI) and task-
state MRI (ts-MRI). rs-MRI usually reflects the spon‐
taneous neural activity of the brain while remaining
awake. Studies related to stroke have shown that in
motor (Park et al., 2011; Chen et al., 2019) and cogni‐
tive (Dacosta-Aguayo et al., 2014) functional brain re‐
gions, rs-MRI signals significantly correlate with cor‐
responding clinical representations. Longitudinal func‐
tional connectivity analysis can reflect changes in
patients’ motor function with disease progression,
suggesting the potential of this method for rehabilita‐
tion assessment and condition detection (Golestani
et al., 2013). Compared to other neurological methods,
ts-MRI can assess not only conventional motor and
sensory functions by combining different task modal‑
ities (Kim and Winstein, 2017), but also some cognitive
functions. The relevant signals can be used as neuro‑
feedback to assess the methods and thus optimize
the adjustment of rehabilitation programs (Wang et al.,
2018). However, the image accuracy of fMRI is limited
by the balance between temporal and spatial reso‑
lution at acquisition, and it is difficult to construct a
convincing causal link between activated brain regions
and corresponding neurological functions identified
by fMRI.

3.5 Technology portfolio and other approaches

Each of these techniques has its own unique
strengths and weaknesses, so researchers have skill‐
fully combined the different techniques to maximize
the accuracy of a patient’s neurological assessment.

TMS provides independent and controlled stimu‐
lation of neuronal excitation in specific brain regions,
whereas fMRI provides relatively timely and compre‐
hensive access to whole-brain neural activity in the
brain during external stimulation or when the patient
is performing a specific task. Therefore, both tech‐
niques are often used in combination to improve the
assessment of neurological recovery of the brain and
to provide insight into functional reorganization after
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a stroke (Kim and Winstein, 2017). In addition to
fMRI, other detection techniques to obtain neural
activity in the brain include electroencephalogram
(EEG), magnetoencephalogram (MEG), magnetic
resonance spectroscopy (MRS), near-infrared spec‐
troscopy (NIRS), and positron emission tomography
(PET). All of these techniques have their own advan‐
tages and have been used either alone or in combi‑
nation with TMS for rehabilitation assessment studies
of stroke (Pellicciari et al., 2018).

Two different functional imaging techniques
can also be combined so that not only the activity
and functional connectivity of brain areas in patients
during the rehabilitation phase can be studied, but
also the order of activation and subordination of brain
areas based on EEG in the temporal dimension. This
provides a new perspective for the design and evalu‐
ation of future rehabilitation programs (Lioi et al.,
2020).

TMS can be combined not only with functional
imaging techniques, but also with structural imaging
techniques such as DWI to enhance the prediction of
motor rehabilitation levels in stroke patients (Stinear
et al., 2012; Auriat et al., 2015). Researchers have
also combined electromyography, which detects muscle
activity at the end of nerve conduction pathways, and
NIRS imaging, which detects nerve activity at the
front end. This is used to assess muscle characteristics
from a joint electrical and hemodynamic perspective
in clinical practice. Related studies have also shown
potential for future development (de Carlo et al., 2015;
Caliandro et al., 2020).

3.6 Summary and prospects

The biomedical testing technologies available
for stroke rehabilitation assessment have different
strengths and weaknesses, and although the combin‑
ation of technologies can compensate for their limita‐
tions, little research has been translated into routine
clinical practice. Because of the large number of
neurological functions to be assessed and the avail‐
able technical options, it is a major challenge to use
the appropriate testing technique for a specific func‐
tion (Bernhardt et al., 2016). Also, the lack of in-
depth, large-scale clinical studies makes it difficult to
obtain uniform reference evaluation criteria (Kim and
Winstein, 2017; Schwarz et al., 2019).

4 New technologies

In addition to the rehabilitation scales and testing
techniques already used in clinical research and prac‐
tice, there are many other techniques that are gradually
being applied to the field of stroke rehabilitation as‐
sessment, although they are currently in their experi‐
mental infancy. The following are two important tech‐
nologies that hold great promise.

4.1 Artificial intelligence

In recent years, with the development of AI cen‐
tered on machine learning and deep learning, advances
have been made in various aspects of biomedical sci‐
ences (Topol, 2019). Some research teams are trying
to incorporate AI into the rehabilitation assessment
process of stroke diseases. The current applications of
AI in this field can be broadly classified into two
main categories.

One is the “empowerment” of existing testing
methods by incorporating algorithms into the analysis
process to improve the accuracy of assessment results.
Taking gait analysis as an example, the traditional
analysis process is to extract gait parameters based on
the original data collected, and select the characteris‐
tic parameters with significant differences through stat‑
istical tests to assess the patient’s walking function
(Fig. 1). In contrast, machine learning methods re‐
place the traditional statistical analysis using all can‐
didate gait parameters for feature selection and model
construction, thus enabling prediction to discriminate
different stages of walking, and identify abnormal
gait and severity (Joshi et al., 2013; Wei et al., 2020).
Deep learning goes further to replace the original
link of gait parameter feature extraction by automat‑
ically extracting deep-level features from the raw data
species through deep convolutional networks for sub‐
sequent classification prediction (Nazmi et al., 2019;
Kidziński et al., 2020). In addition, since deep learn‐
ing networks emerged in the field of machine vision,
the main medical application at present is the migra‐
tion of relevant algorithms to medical images. In stroke
rehabilitation assessment, it is possible to predict the
injury and rehabilitation level of patients in the chronic
phase based on MRI in the acute phase (Mouridsen
et al., 2020).

The second new technological approach is to de‐
velop new functions “from scratch” to replace the old
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methods. In the past, human assessment of the facial
muscle and speech function of stroke patients was
based mainly on scales, which inevitably introduced
many subjective factors causing inaccurate and un‑
stable results. The rise of AI inspired our researchers
to analyze facial images and speech information of
stroke patients directly through face recognition
(Adjabi et al., 2020) and speech recognition (Gupta
et al., 2018). These technologies are used to deter‐
mine the status of facial muscle and speech impair‐
ment of patients, and to assess patients’ rehabilitation
based on an intelligent decision-aid system (Lee et al.,
2020). This idea skips the original manual scale as‐
sessment stage and replaces some of the assessment
scale functions, thus effectively reducing the interfer‐
ence of human factors and greatly improving the ob‐
jectivity and accuracy of the assessment results.

These methods require a large amount of patient
data and physician labeling information, as well as
the establishment of an expert knowledge base for the
decision-making system, from initial experimental
studies to clinical applications. The whole process
requires multi-disciplinary cooperation, and the work‐
load is huge.

4.2 Optical coherence tomography

The new optical imaging represented by OCT is
considered another important medical imaging tech‐
nology after MRI, with its powerful non-invasive 3D

imaging modality with high temporal and spatial reso‐
lution (Aumann et al., 2019). One of the OCT tech‐
niques used to extract and visualize information about
the structure and distribution of the microvascular net‐
work is called OCT angiography (OCTA) (de Carlo
et al., 2015). The optical attenuation coefficient (OAC)
map of deep biological tissues can also be obtained
from raw OCT imaging according to the Lambert-
Beer law (Vermeer et al., 2014).

OCT imaging in cerebrovascular disease is cur‐
rently in its initial experimental stage (Ma et al.,
2018; Choi et al., 2019; Yang et al., 2019). Its applica‐
tion in the field of stroke is due mainly to its unique
advantages: it is one of the few techniques capable
of directly observing diseased vessels and their side
branches over time in a living animal model, while
being able to capture blood perfusion (Choi et al.,
2014) and blood flow velocity (Wang and An, 2009),
as well as the optical properties of perfused tissue
(Baran et al., 2015). It also enables clear observation,
for example, of specially stained subcortical nerve
cells (Srinivasan et al., 2012). The image data ob‐
tained by OCT can be analyzed by various algo‐
rithms, such as those allowing segmentation of blood
vessels, to calculate the cerebral vascular perfusion
density (Ma et al., 2018). This can be used as an effect‑
ive indicator to evaluate post-ischemic injury. OCT
images also reveal the relationship between neural
activity and blood flow (Liu et al., 2016).

Fig. 1 Running logic of deep learning in gait analysis. (a) Overall flow chart of deep learning applied to gait analysis;
(b) Schematic diagram of convolutional neural network architecture.
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In the foreseeable future, sophisticated OCT
analysis based on animal models will help not only to
understand the mechanisms of recovery after stroke,
but also to combine the image data obtained with AI
to facilitate a comprehensive assessment of the stroke
rehabilitation process, providing many references and
guidelines for clinicians to evaluate rehabilitation (Oh
et al., 2022). However, this technology has been used
in the field of stroke for only a few years and there
are still many issues that need to be addressed if it is
to be applied in clinical practice. OCT and its derived
images are rich in biological information, but the cur‐
rent analysis of such images is relatively simple and
superficial, unable to identify distinguish blood vessel
types, and requires the addition of more intelligent
algorithms. In addition, many researchers are still im‐
proving OCT image systems from cells, tissues, and
organs to mice, rats, primates, and humans (Wang
et al., 2017).

5 Conclusions

Stroke rehabilitation assessment is an important
topic in the field of rehabilitation medicine. Although
many well-established assessment scales have been
widely used in clinical practice, their consistency, sta‐
bility, and objectivity are difficult to guarantee. Vari‐
ous biomedical testing techniques based on different
principles can collect more objective information on
human neurological functions and activities, but the
lack of large and effective prospective clinical studies
and unified and complete guidelines for their use
makes it difficult to popularize the application of these
techniques in clinical practice. There are two other
trends in the development of assessment methods: one
is to continue to develop more testing technologies to
better understand the recovery mechanism of the
brain after stroke and to conduct more comprehensive
rehabilitation assessment; the other is to gradually
replace the old manual discrimination methods by
algorithms based on AI and other computer technol‑
ogies to make the assessment results more objective,
accurate, and standardized. However, these technol‑
ogies, which are in their infancy, still have a long way
to go before they can be used in clinical research and
therapy.
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