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BACKGROUND: This study was designed to unravel the genomic landscape and evolution of early-stage subsolid lung
adenocarcinomas (SSN-LUADs) manifesting as pure ground-glass nodules (pGGNs), heterogeneous ground-glass nodules (HGGNs)
and part-solid nodules (PSNs).
METHODS: Samples subjected to either broad-panel next-generation sequencing (NGS) or whole-exome sequencing (WES) were
included. Clinicopathologic and genomic features were compared among pGGN, HGGN and PSN, while tumour evolutionary
trajectories and mutational signatures were evaluated in the entire cohort.
RESULTS: In total, 247 SSN-LUAD samples subjected to broad-panel NGS and 125 to WES were identified. Compared with PSNs,
HGGNs had significantly lower tumour mutation count (P < 0.001), genomic alteration count (P < 0.001), and intra-tumour
heterogeneity (P= 0.005). Statistically significant upward trends were observed in alterations involving driver mutations and
oncogenic pathways from pGGNs to HGGNs to PSNs. EGFR mutation was proved to be a key early event in the progression of SSN-
LUADs, with subsequently two evolutionary trajectories involving either RBM10 or TP53 mutation in the cancer-evolution models.
CONCLUSIONS: This study provided evidence for unravelling the previously unknown genomic underpinnings associated with
SSN-LUAD evolution from pGGN to HGGN to PSN, proving that HGGN was an intermediate SSN form between pGGN and PSN
genetically.
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BACKGROUND
The prevalence of early-stage lung adenocarcinoma (LUAD)
manifesting as a subsolid nodule (SSN)/ ground-glass nodule
(GGN) radiologically keeps increasing with the widespread
application of chest CT for lung cancer screening [1, 2]. Different
guidelines for the management of SSNs emphasise the impor-
tance of solid components accordantly. The solid component
substantially affects the prognosis, clinical T stage, follow-up
interval and resection extension of LUAD manifesting as SSN (SSN-
LUAD) [3–6].
However, the criteria to define a solid component remains

controversial [7]. One major disagreement is whether solid
components should be measured in the lung or mediastinal
window. In 2016, Kakinuma et al. classified SSN into pure ground-
glass nodule (pGGN: without solid component), heterogeneous
ground-glass nodule (HGGN: solid component detected only in
lung window) and part-solid nodule (PSN: solid component
detected both in lung and mediastinal windows) in a prospective
study [8]. The results of long-term follow-up showed significantly

higher proportion and shorter duration of HGGNs progressing to
PSNs than those of pGGNs, and that invasive LUADs could only
been detected in PSNs [8]. Thus, they proposed HGGN as an
intermediate existing form between pGGN and PSN from
radiological perspective. Recently, Yin et al. reported that LUADs
manifesting as PSNs possessed a much higher proportion of
micropapillary or solid (MIP/SOL) predominant pathologic sub-
types and a significantly worse recurrence-free survival than
HGGNs [9]. Thus, it could be speculated that the radiological solid
components detected in the lung or mediastinal window differed
significantly in tumour behaviour, pathological features and
prognosis.
To date, there is no study on the genomic differences between

pGGN, HGGN and PSN, while further studies of the molecular
heterogeneity could help in understanding the evolution of SSN-
LUADs. In 2020, our group completed the whole-exome sequen-
cing (WES) of 154 SSNs and provided the first comprehensive
description of the mutational landscape of SSNs. The results
revealed that mixed GGNs (mGGNs) harboured higher tumour
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mutation burden (TMB) and higher frequency of EGFR and TP53
mutation than pGGNs [10]. However, mGGNs were not further
subdivided into HGGNs and PSNs in that study.
To address this knowledge gap, we compared the results of

broad-panel next-generation sequencing (NGS) in 247 early-stage
SSN-LUADs (including 77 pGGNs, 48 HGGNs and 122 PSNs), and
further validated the results in a whole-exome sequencing (WES)
cohort. By interpreting their general genomic features, driver
genes and oncogenic pathways, we unravelled the distinction
between pGGNs, HGGNs and PSNs at the genomic level and
further shed light on the evolution of SSN-LUADs.

METHODS
SSN cohorts
We identified patients who underwent complete surgical resection for stage
0-I SSN-LUADs and broad-panel NGS performed on the primary tumours
between January 2018 and June 2020 in the Department of Thoracic Surgery
with accessible preoperative chest CT scan images (Supplementary Fig. 1).
Identical inclusion criteria were as previous [10]. Notably, samples patholo-
gically diagnosed as atypical adenomatous hyperplasia (AAH) were excluded
from this WES cohort. Clinicopathologic features of the broad-panel NGS
cohort (n= 247) and the WES cohort (n= 125) were summarised.

Radiological evaluation
Preoperative chest CT scan within 4 weeks prior to the surgery were
reviewed by two radiologists (QQ and PY) with more than 5 years of
experience in thoracic imaging. SSNs were classified into pGGNs, HGGNs
and PSNs based on their radiological textures (Supplementary Fig. 2) [8].
The maximum diameters and solid components of SSNs were measured in
both lung window (window width: 1500 Hounsfield units [HU]; window
level: −500 HU) and mediastinal windows (window width: 350 HU; window
level: 40 HU) under default display settings.

Tumour genomic analyses
Target capture of broad-panel NGS was performed using any one of the
three commercial panels consisting of 363 (HR363, Berry Oncology, Beijing,
China), 457 (HR457, Berry Oncology, Beijing, China), or 520 (RS520, Burning
Rock Biotech, Guangzhou, China) cancer-related genes, spanning 1.18, 1.21
or 1.64 megabases (Mb) of the human genome, respectively (Supplemen-
tary Table 1). Protocols for genomic DNA extraction, targeted/whole-
exome sequencing library preparation, and variant calling were described
in previous publications [10–13].
Tumour mutation count was defined as the amount of nonsynonymous

somatic mutations (single-nucleotide variants [SNVs] and insertions/
deletions [InDels]) per sample, while TMB was calculated only in the WES
cohort by the number of nonsynonymous somatic mutations per Mb of
the coding regions. Genomic alteration count, defined as the sum of
nonsynonymous somatic mutations, copy number variations (CNVs), and
gene fusions, was further assessed in the broad-panel NGS cohort. Mutant-
allele tumour heterogeneity (MATH) score was calculated based on the
dispersion of variant allele frequency (VAF) distribution [14]. Higher MATH
score is associated with higher intratumor heterogeneity (ITH).
To identify driver mutations of SSN-LUADs, dNdScv algorithm [15, 16]

was applied to infer significantly mutated genes (q < 0.100 in any caller
and nonsilent mutations n ≥ 5) in the broad-panel NGS cohort. For
oncogenic pathway analyses, only functional alterations labelled as
oncogenic, likely oncogenic or predicted oncogenic in OncoKB database
were retained, discarding variants of unknown significance [17–19].
Therapeutic actionability information was also annotated using OncoKB
database. Each genomic alteration was stratified into one of four levels
according to its clinical implication [20].
Cancer-evolution models were tested in the broad-panel NGS cohort

and the WES cohort separately using Cancer Progression Inference (CAPRI)
algorithm with 100 non-parametric bootstrap (NPB) iterations [21–23].
Non-negative matrix factorisation (NMF) algorithm was used for de novo
discovery of mutational signatures associated with SSN-LUADs in the WES
cohort [24, 25]. Cosine similarity analyses were conducted to measure the
similarity between de novo mutational profiles and previously reported
signatures [26, 27]. At last, we performed unsupervised consensus
clustering using k-means algorithm with 1000 bootstraps and 80% item
resampling of the genomic features [28].

Statistical analyses
The distribution of clinicopathologic features were summarised as median
(interquartile range [IQR]) or frequency (percentage). Then the features
were compared between three radiological subtypes using Kruskal–Wallis
test for continuous variables and Fisher’s exact test or chi-square test for
categorical variables. Genomic variables were similarly compared across
radiological subtypes using Cochran–Armitage test for trend or Fisher’s
exact test with the application of false discovery rate (FDR) to account for
multiple testing.
Univariate and multivariate negative binomial regression (NBR) models

were constructed to determine independent predictive factors for high
tumour mutation count or TMB. Least absolute shrinkage and selection
operator (LASSO) penalised NBR model with cross-validation was further
built to identify clinicopathologic and radiological features that contrib-
uted most to tumour genomic characteristics.
Statistical analyses were conducted using R 4.0.2 (R Core Team, Vienna,

Austria). All statistical tests were two-sided, and P < 0.050 (or FDR q < 0.100)
was considered statistically significant in this study.

RESULTS
Clinicopathologic Characteristics
A total of 247 SSNs (77 pGGNs, 48 HGGNs and 122 PSNs) in 223
patients were included in this study (Table 1). The median tumour
size at resection (9.3 vs. 13.6 vs. 23.8 mm for pGGN vs. HGGN vs.
PSN, respectively, P < 0.001) and the proportion of lobectomy
(25% vs. 27% vs. 65% for pGGN vs. HGGN vs. PSN, respectively, P <
0.001) were much higher in PSNs. Pathologically, the percentage
of IAC (40% vs. 65% vs. 94% for pGGN vs. HGGN vs. PSN,
respectively, P < 0.001) and MIP/SOL/Mucinous predominant
histologic subtype (0% vs. 4% vs. 4% for pGGN vs. HGGN vs.
PSN, respectively, P < 0.001) were significantly lower in pGGNs.
STAS, lymphovascular invasion and pathologic stage IB disease
only presented in PSNs. The high IAC proportion (40%) of the
pGGN subgroup was probably due to the large tumour size (9.3
[7.0–15.6] mm) and that NGS could only be applied to large
pGGNs with enough tissue for sampling.

Genomic features
No significant difference was found regarding the distribution of
NGS panels between three SSN subgroups (P= 0.559). Seven
hundred and fifty-eight nonsynonymous somatic mutations were
identified in all SSNs, including 496 SNVs, 31 splice-site, 51 stop-
gain/start lost, 73 frame-shift indels and 107 in-frame indels,
insertions and deletions (Fig. 1a). The mutational landscapes of
SSNs in WES cohort are summarised in Supplementary Fig. 4A.
The tumour mutation count (Fig. 1b), genomic alteration count

(Fig. 1c) and MATH score (Fig. 1d) were compared to further reveal
the genomic difference of the radiologically different SSNs. In NGS
panel cohort, the median tumour mutation count of all SSNs was 3
(IQR, 1–4). The median tumour mutation count of PSNs was
significantly higher than that of pGGNs and HGGNs, while no
difference was detected between pGGNs and HGGNs (2 [IQR, 1–4]
vs. 2 [IQR, 1–3] vs. 3 [IQR, 2–4] for pGGN vs. HGGN vs. PSN,
respectively; P value: pGGN vs. HGGN: 0.723, pGGN vs. PSN: 0.001,
HGGN vs. PSN < 0.001). The results of negative binomial regression
models revealed that age, smoking status and solid components
in the mediastinal window were still independent risk factors for
tumour mutation count in multivariate analyses (Table 2 and
Supplementary Fig. 3). Similar results were found in WES cohort.
The median TMB of HGGNs and PSNs were significantly higher
than that of pGGNs (pGGN vs. HGGN, P= 0.037; pGGN vs. PSN, P <
0.001). The median TMB of PSNs was higher than that of HGGNs,
though without a significant difference (HGGN vs. PSN, P= 0.127,
Supplementary Fig. 4B).
Next, the genomic alteration counts were compared between

pGGNs, HGGNs and PSNs (Fig. 1c). The median genomic alteration
count of PSNs was significantly higher (2 [IQR, 1–5] vs. 3 [IQR, 1–4]
vs. 4 [IQR, 2–6] for pGGN vs. HGGN vs. PSN, respectively; P value:
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pGGN vs. HGGN: 0.839, pGGN vs. PSN: 0.001, HGGN vs. PSN <
0.001). Finally, we compared the tumour heterogeneity between
pGGNs, HGGNs and PSNs (Fig. 1d). The MATH score of PSNs was
also significantly higher, indicating relatively high ITH in PSNs
(18.54 [IQR, 0–29.24] vs. 15.67 [IQR, 0–33.37] vs. 28.04 [IQR,
12.22–49.07] for pGGN vs. HGGN vs. PSN, respectively; P value:
pGGN vs. HGGN: 0.624, pGGN vs. PSN: 0.003, HGGN vs. PSN: 0.005).

To further diminish the confounding effects caused by patholo-
gical subtype, we conducted subgroup analysis on IAC samples. A
total of 177 IAC samples were incorporated in the subgroup analysis,
including 31 pGGNs, 31 HGGNs, and 115 PSNs, respectively (Table 1).
Tumour mutation count, genomic alteration count, and MATH score
were further compared among the three radiological subtypes (see
Supplementary Fig. 5A–C). The median tumour mutation count (3

Table 1. Clinicopathologic characteristics by radiological subtype.

Characteristic Total (N= 247) pGGN (n= 77 (31%)) HGGN (n= 48 (20%)) PSN (n= 122 (49%)) P value

Age at resection, y 59.0 (50.5–66.0) 56.0 (45.0–64.0) 54.5 (48.5–64.0) 62.0 (56.0–67.0) <0.001*

Sex 0.429

Male 91 (37) 24 (31) 20 (42) 47 (39)

Female 156 (63) 53 (69) 28 (58) 75 (61)

Smoking status 0.552

Nonsmoker 199 (81) 65 (84) 37 (77) 97 (80)

Smoker 48 (19) 12 (16) 11 (23) 25 (20)

Total size on CT, mm 16.1 (10.2–25.0) 9.3 (7.0–15.6) 13.6 (10.3–16.3) 23.8 (17.1–29.5) <0.001*

Procedure type <0.001*

Wedge resection 106 (43) 47 (61) 30 (63) 29 (24)

Segmentectomy 29 (12) 11 (14) 5 (10) 13 (11)

Lobectomy 112 (45) 19 (25) 13 (27) 80 (65)

Pathological subtype <0.001*

AIS 7 (3) 7 (9) 0 (0) 0 (0)

MIA 63 (25) 39 (51) 17 (35) 7 (6)

IAC 177 (72) 31 (40) 31 (65) 115 (94)

Predominant histology <0.001*

LEP 85 (34) 47 (61) 23 (48) 15 (12)

ACI/PAP 155 (63) 30 (39) 23 (48) 102 (84)

MIP/SOL/Mucinous 7 (3) 0 (0) 2 (4) 5 (4)

MIP/SOL component 0.042*

No 237 (96) 76 (99) 48 (100) 113 (93)

Yes 10 (4) 1 (1) 0 (0) 9 (7)

STAS 0.012*

No 239 (97) 77 (100) 48 (100) 114 (93)

Yes 8 (3) 0 (0) 0 (0) 8 (7)

VPI 0.191

No 243 (98) 77 (100) 48 (100) 118 (97)

Yes 4 (2) 0 (0) 0 (0) 4 (3)

LVI <0.001*

No 233 (94) 77 (100) 48 (100) 108 (89)

Yes 14 (6) 0 (0) 0 (0) 14 (11)

Pathological stage <0.001*

0 7 (3) 7 (9) 0 (0) 0 (0)

IA 230 (93) 70 (91) 48 (100) 112 (92)

IB 10 (4) 0 (0) 0 (0) 10 (8)

NGS panel 0.559

HR363 45 (18) 17 (22) 10 (21) 18 (15)

HR457 78 (32) 25 (32) 12 (25) 41 (34)

RS520 124 (50) 35 (46) 26 (54) 63 (51)

Note: Data are number (%) or median (interquartile range).
ACI acinar, AIS adenocarcinoma in situ, CT computed tomography, IAC invasive adenocarcinoma, LEP lepidic, LVI lymphovascular invasion, MIA minimally
invasive adenocarcinoma, MIP micropapillary, NGS next-generation sequencing, PAP papillary, SOL solid, STAS spread through air spaces, VPI visceral pleural
invasion.
Significant differences are labelled with asterisks (P < 0.050).
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[IQR, 1–5] vs. 2 [IQR, 1–3] vs. 3 [IQR, 2–4.5] for pGGN vs. HGGN vs.
PSN; Wilcoxon P value: pGGN vs. HGGN: 0.173, pGGN vs. PSN: 0.614,
HGGN vs. PSN: 0.009; Kruskal–Wallis P value: 0.039) and genomic
alteration count (3 [IQR, 2–7.5] vs. 3 [IQR, 2–4] vs. 4 [IQR, 2–6.5] for
pGGN vs. HGGN vs. PSN; Wilcoxon P value: pGGN vs. HGGN: 0.256,
pGGN vs. PSN: 0.663, HGGN vs. PSN: 0.021; Kruskal–Wallis P value:
0.084) of PSNs was significantly higher than that of HGGNs. In terms
of intratumor heterogeneity, there was an increasing trend
regarding MATH score among the three radiological subtypes;
however, no significant difference was found probably due to
limited sample size and thus insufficient statistical power (20.3 [IQR,
13.3–25] vs. 22.4 [IQR, 0–33.9] vs. 28.6 [IQR, 12.6–47.8] for pGGN vs.
HGGN vs. PSN; Wilcoxon P value: pGGN vs. HGGN: 0.977, pGGN vs.
PSN: 0.097, HGGN vs. PSN: 0.078; Kruskal–Wallis P value: 0.088).

Driver genes
In the entire broad-panel NGS cohort, twelve driver genes at
FDR of 0.100 were identified (Fig. 2a). The most frequent

drivers were EGFR (71%), TP53 (26%), RBM10 (15%) and KRAS
(11%). PSNs harboured higher EGFR mutation frequency than
pGGNs and HGGNs (44% vs. 54% vs. 79% for pGGN vs. HGGN
vs. PSN, respectively. q value for Fisher test: pGGN vs. HGGN:
0.697; pGGN vs. PSN: < 0.001; HGGN vs. PSN: 0.014). Similarly,
TP53 mutation in PSNs was significantly higher than that in
pGGNs (5% vs. 8% vs. 19% for pGGN vs. HGGN vs. PSN,
respectively. q value for Fisher test: pGGN vs. HGGN: 0.697;
pGGN vs. PSN: 0.017; HGGN vs. PSN: 0.319). The results of
Cochran–Armitage test revealed a significantly increasing
trend in EGFR (P < 0.001) and TP53 (P= 0.004) mutations from
pGGNs to HGGNs to PSNs, while a significantly decreasing
trend in ERBB2 (P < 0.001) and BRAF (P < 0.001) mutations was
identified. The driver genes of the WES cohort further
confirmed that PSNs owned the highest EGFR mutation
frequency, and that an increasing trend existed in mutation
frequencies of EGFR, TP53 and RBM10 from pGGNs to HGGNs to
PSNs (Supplementary Fig. 4C).
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We also conducted a subgroup analysis on IAC cohort to further
diminish the confounding effects caused by the pathological
subtype. In IAC cohort (Supplementary Fig. 5D and Supplementary
Table 7), there were increasing trends regarding EGFR (68% vs.
68% vs. 82% for pGGN vs. HGGN vs. PSN; Cochran–Armitage P
value: 0.052) and TP53 (6% vs. 13% vs. 20% for pGGN vs. HGGN vs.
PSN; Cochran–Armitage P value: 0.058) mutations among the
three radiological subtypes. Moreover, significantly decreasing
trends in KRAS (19% vs. 6% vs. 5% for pGGN vs. HGGN vs. PSN;
Cochran–Armitage P value: 0.017) and U2AF1 (10% vs. 0% vs. 1%
for pGGN vs. HGGN vs. PSN; Cochran–Armitage P value: 0.011)
mutations were observed.
In terms of co-occurrence and mutual exclusivity (COME), EGFR-

RBM10 co-occurred with statistical significance, while EGFR-KRAS
and EGFR-STK11 showed mutual exclusiveness in the entire broad-
panel NGS cohort (Fig. 2b). In pGGNs, the only pair of co-
occurrence drivers was RBM10-SETD2, while another two pairs
(EGFR- KRAS, EGFR-BRAF) showed mutual exclusiveness (Fig. 2c). In
HGGNs and PSNs, no statistically significant mutual co-occurrence
was identified. Two pairs of drivers (EGFR-ERBB2, EGFR-MAP2K1) in
HGGNs (Fig. 2d) and three pairs of drivers (EGFR-KRAS, EGFR-
MED12, EGFR-MET) in PSNs (Fig. 2e) showed mutual exclusiveness.
The difference in COME provided further evidence for genomic
discordance between radiologically different SSN subgroups.

Oncogenic pathways
At the sample level, we compared the alteration frequencies of
oncogenic signalling pathways by radiological subtype in both the
broad-panel NGS cohort (Fig. 3a) and WES cohort (Supplementary
Fig. 6A). In broad-panel NGS cohort, the most frequently altered
pathway was RTK/RAS (73%), followed by p53 (16%) and RNA
splicing/processing (13%). The results of Cochran–Armitage test
presented an increasing trend in the alteration frequencies of p53
(P < 0.001) and Cell cycle (P= 0.028) pathways from pGGNs to
HGGNs to PSNs (Fig. 3b). In terms of the number of pathways

altered (NPA), the mean NPA of the entire broad-panel NGS cohort
was 1.23. PSNs possessed a significantly higher NPA than pGGNs
and HGGNs (1.00 vs. 1.06 vs. 1.45 for pGGN vs. HGGN vs. PSN,
respectively. P value: pGGN vs. HGGN: 0.521, pGGN vs. PSN: 0.001,
HGGN vs. PSN: 0.021, Fig. 3c). Furthermore, the COME of
oncogenic pathways in the entire broad-panel NGS cohort was
displayed in Supplementary Fig. 7. In WES cohort, the results
demonstrated an increasing trend in the alteration frequencies of
RTK/RAS (P= 0.011), p53 (P= 0.006) and RNA splicing (P= 0.008)
pathways from pGGNs to HGGNs to PSNs (Supplementary Fig. 6B).
Consistently, the PSNs in WES cohort also obtained higher NPA
than pGGNs and HGGNs (0.75 vs. 1.00 vs. 1.38 for pGGN vs. HGGN
vs. PSN, respectively. P value: pGGN vs. HGGN: 0.305, pGGN vs.
PSN < 0.001, HGGN vs. PSN: 0.075, Supplementary Fig. 6C).
We also conducted a subgroup analysis on IAC cohort to further

diminish the confounding effects caused by the pathological
subtype. In IAC cohort (Supplementary Fig. 5E and Supplementary
Table 14), RTK/RAS (77%) was still the most frequently altered
pathway, followed by p53 (21%) and RNA splicing/processing
pathway (14%). A significantly increasing trend in the alteration
frequency of p53 pathway (13% vs. 10% vs. 27% for pGGN vs.
HGGN vs. PSN; Cochran–Armitage P value: 0.034) was identified in
IAC cohort.

Therapeutic actionabilities
In total, one hundred and ninety-four actionable alterations across
17 genes were identified using OncoKB database, including 132
(68%) level 1, 10 (5%) level 2, 13 (7%) level 3A, 17 (9%) level 3B and
22 (11%) level 4 alterations (Fig. 3d). The RTK/RAS pathway
harboured the most actionable alterations (94% [182/194]), of
which (73% [132/182]) had level 1 evidence. At sample level,
actionable alterations were identified in 72% (178/247) in 247 SSN
samples, of which (74% [132/178]) had level 1 evidence. PSNs
possessed a significantly higher frequency of level 1 actionable
target than pGGNs and HGGNs (30% vs. 50% vs. 67% for pGGN vs.

Table 2. Negative binomial regression analysis on association with mutation counts.

Variable Univariate analysis Multivariate analysis

IRR 95% CI P value IRR 95% CI P value

Age at resection, per 1 y increased 1.026 1.017–1.035 <0.001* 1.018 1.009–1.028 <0.001*

Sex

Male Reference Reference

Female 0.707 0.583–0.858 <0.001* 1.041 0.827–1.314 0.734

Smoking

No Reference Reference

Yes 1.747 1.408–2.168 <0.001* 1.560 1.203–2.026 <0.001*

Pathological subtype

AIS Reference Reference

MIA 1.176 0.598–2.455 0.650 1.467 0.774–2.990 0.266

IAC 2.043 1.066–4.176 0.038* 1.606 0.769–3.530 0.223

Predominant histology

LEP Reference Reference

ACI/PAP 1.721 1.397–2.126 <0.001* 1.221 0.823–1.851 0.333

MIP/SOL/mucinous 2.722 1.657–4.499 <0.001* 1.492 0.820–2.723 0.191

Total size on CT (L), per 1 mm increased 1.026 1.017–1.035 <0.001* 1.007 0.993–1.022 0.313

Solid size on CT (L), per 1 mm increased 1.023 1.012–1.033 <0.001* 0.978 0.950–1.005 0.117

Solid size on CT (M), per 1 mm increased 1.029 1.017–1.042 <0.001* 1.032 1.001–1.064 0.042*

ACI acinar, AIS adenocarcinoma in situ, CT computed tomography, IAC invasive adenocarcinoma, IRR incidence rate ratio, L Lung window, LEP lepidic, M
mediastinal (soft-tissue) window, MIA minimally invasive adenocarcinoma, MIP micropapillary, PAP papillary, SOL solid.
Significant differences in the multivariate analysis are labelled with asterisks (P < 0.050).
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HGGN vs. PSN, respectively, P < 0.001). The difference in numbers
of actionable alterations per sample among three subgroups was
not statistically significant (0.73 vs. 0.79 vs. 0.82, for pGGN vs.
HGGN vs. PSN, respectively, all P value > 0.050).

Cancer-evolution models
To gain further insights into the temporal heterogeneity of
somatic mutations in SSN-LUAD evolution, we applied CAPRI
algorithm in both broad-panel and WES cohorts (Fig. 4 and
Supplementary Fig. 8). In the broad-panel cohort, our model
captured early somatic mutational events including EGFR (63%),
KRAS (6%) and BRAF (5%). The selection of RBM10 (non-parametric
bootstrap score [NPB] 63%), TP53 (NPB 73%) and TSC2 (NPB 83%)
mutations by EGFR were observed. Moreover, FAT3 mutation
occurred in a specific order following EGFR and TP53 mutations
with an NPB score of 90%. In the WES cohort, EGFR (54%), STK11
(6%), and KRAS (5%) were identified as early mutations. Similar
postulated selective advantage relations, including the selection
of RBM10 (NPB 98%) and TP53 (NPB 52%) mutations by EGFR, were
confirmed in this cohort. In summary, our models revealed EGFR
mutation as a key early event in the progression of SSN-LUADs,
with subsequently two evolutionary trajectories involving either
RBM10 or TP53 mutation.

Mutational signatures
Using the NMF algorithm, we discovered three mutational
signatures in the WES cohort, and defined them as de novo S1,
S2, and S3 respectively (Fig. 5a and Supplementary Table 19). To
reveal the potential contribution of endogenous and exogenous
mutagens to these de novo signatures, cosine similarity analyses
against 30 validated human cancer signatures from COSMIC
database (https://cancer.sanger.ac.uk/cosmic/signatures_v2) and

53 environmental carcinogen signatures investigated by Kucab
et al. were performed [29]. Mutational signatures best matching
those de novo ones were (1) exposure to tobacco carcinogens, (2)
exposure to dibenz[a,h]anthracene (DBA), and (3) deamination of
5-methylcytosine (Fig. 5b). DBA are polycyclic aromatic hydro-
carbons (PAHs) produced by incomplete combustion of organic
matter, primarily found in gasoline exhaust, tobacco smoke, coal
tar and soot (https://pubchem.ncbi.nlm.nih.gov). More impor-
tantly, these airborne particulate PAHs adsorbed by fine particu-
late matter (PM2.5-bound PAHs) are highly carcinogenic, and have
relatively high regional concentration in Eastern Asia [30]. Thus,
our mutational signature analyses suggested that cumulative
exposure to ambient air pollutants potentially played a role during
tumorigenesis of SSN-LUADs in the Chinese population [31, 32].
Finally, relative percentage of each de novo signature and

corresponding clinical features of individual patients were
illustrated in Fig. 5c. The proportion of samples enriched in each
de novo signature was not significantly different among the three
radiological subtypes (Fig. 5d).

Genomic clustering analyses
The above-mentioned results showed that different subtypes of
SSN-LUADs harboured distinctive genomic landscape. However,
whether genomic features could distinguish radiological subtype
remained unknown. We thus performed unsupervised clustering
using genomic features regardless of radiological subtype. As
shown in Supplementary Fig. 9, two distinct genomic “clusters”
emerged in the SSN-LUADs using consensus clustering on high-
frequency somatic mutations. Compared with cluster 2, samples
from cluster 1 not only possessed higher tumour mutation count
(3 [IQR, 2–4] vs. 2 [IQR, 1–3], P < 0.001), but also had significantly
higher genomic alteration count (4 [IQR, 2–6] vs. 2 [IQR, 1–5],
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P < 0.001) and higher intratumor heterogeneity (the MATH score:
29.2 [IQR, 15.4–51.1] vs. 12.2 [IQR, 0–23.7], P < 0.001). Thus, SSN-
LUADs allocated in cluster 1 harboured significantly higher
complexity in genomic architecture compared with those
allocated in cluster 2. The distribution of radiological subtypes
between the two genomic clusters was then assessed. We found
that unlike pGGNs/HGGNs, PSNs were significantly enriched in
cluster 1 (OR: 0.470, [95% CI, 2.524–8.828], P < 0.001). Moreover,
the results of Cochran–Armitage test revealed a significantly
increasing trend in cluster 1 proportion from pGGNs (44%) to
HGGNs (54%) to PSNs (79%), confirming a progressively complex
genomic architecture among the three radiological subtypes
during the acquisition of solid component on chest CT.

DISCUSSION
To deepen the understanding of the heterogeneity among
radiologically different SSNs, for the first time, we compared the

genomic features of resected LUADs manifesting as pGGNs,
HGGNs and PSNs using broad-panel NGS, and further validated
the results in the WES cohort. Results of both the broad-panel NGS
and WES cohorts accordantly reflected HGGNs harboured much
lower complexity in genomic architecture compared with PSNs. A
slight uptrend in genomic architecture complexity was identified
from pGGNs to HGGNs in WES cohort, although similarly lower
level of malignancy was revealed for pGGNs and HGGNs in the
broad-panel NGS cohort, penetrating that HGGN was an
intermediate form in the evolution of SSN between pGGN and
PSN. The stepwise evolutionary genomic characteristic of pGGN,
HGGN and PSN offered valuable biological insights into the
management of radiologically different SSNs, and alert clinicians
to the significance of solid component in both the mediastinal
window and lung window which may prompt better management
of SSNs.
Currently, most guidelines take only solid component in the

lung window into consideration in SSNs management. Now that
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previous studies have reported differences in the natural history
and long-term survival between HGGN and PSN [8, 9], it is
worthwhile to explore in depth the molecular mechanism
underlying the clinicopathological heterogeneity between pGGN,
HGGN and PSN. On the one hand, HGGNs possessed lower
complexity in genomic architecture compared with PSNs. In the
broad-panel NGS cohort, we identified significantly lower tumour
mutation count, genomic alteration count and MATH score in
HGGNs compared with PSNs. Moreover, lower driver gene
mutation frequencies (including EGFR and TP53), oncogenic
pathway mutation frequencies (including p53) and NPA were
detected in HGGNs than in PSNs, which were validated in the WES
cohort. These results are in favour of previous studies reporting
worse clinicopathological outcome in PSNs [9].
On the other hand, although similarly stable genomic

characteristics in HGGNs and pGGNs were identified in broad-
panel NGS cohort, a slight upgoing trend from pGGNs to HGGNs
was revealed in WES cohort. In broad-panel NGS cohort, HGGNs
harboured similar tumour mutation count, genomic alteration
count, MATH score and NPA compared with pGGNs. Meanwhile, in
WES cohort, HGGNs possessed higher TMB and NPA than pGGNs.
In both cohorts, HGGNs harboured higher frequencies of EGFR and
TP53 mutations than pGGNs, though without statistically sig-
nificant difference. The slightly inconsistent results were likely due
to the incomplete overlap of two sequencing methods. The broad
panel covered only the hot-spot mutations but not rare mutations
included in WES. To sum up, the evidence above is detailed
enough to sustain that HGGN represents an intermediate form
between pGGN and PSN deep from genomic level. SSN with solid
component only in lung window may already reflect the onset of
progression in genomic complexity.
Remarkably, stepwise evolution from pGGN to HGGN to PSN

was uncovered by the uptrend of pivotal driver mutations and
pathway alterations. As for driver mutation frequencies, an
increasing trend in EGFR and TP53 from pGGNs to HGGNs to
PSNs was revealed using Cochran–Armitage test in both cohorts.
As for pathways alteration frequencies, an increasing trend in p53
and Cell cycle was identified from pGGNs to HGGNs to PSNs in
broad-panel NGS cohort. In WES cohort, the alteration frequencies
of RTK/RAS, p53 and RNA splicing raised from pGGNs to HGGNs to
PSNs. The similar differences in frequencies of driver gene
mutation and oncogenic pathway alteration by radiological
subtype were revealed in IAC subgroup. Those results implied
EGFR and TP53 mutations, and pathway alterations including p53,
RTK/RAS, Cell cycle and RNA splicing, played important roles in
driving the invasiveness of SSNs, both from pGGN to HGGN and
from HGGN to PSN. The stepwise evolutionary genomic char-
acteristics from pGGN to HGGN to PSN echoed the radiological
natural history of SSNs [8].
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