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1  |  INTRODUC TION

In 1974, Dr. Werner Ries wrote that the ability to accurately pre-
dict biological age (BA) would be of major importance for geriatrics 
and that a useful predictor would be quantitative, non-invasive, and 

reflect human functional capacity (Ries,  1974). Although BA is an 
abstract concept, it is one that makes intuitive sense and helps ex-
plain why different individuals exhibit disparate aging trajectories. It 
additionally allows for differentiation between people that have an 
equivalent chronological age (CA). Over the next several decades, 
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Abstract
Although chronological age correlates with various age-related diseases and condi-
tions, it does not adequately reflect an individual's functional capacity, well-being, or 
mortality risk. In contrast, biological age provides information about overall health 
and indicates how rapidly or slowly a person is aging. Estimates of biological age are 
thought to be provided by aging clocks, which are computational models (e.g., elastic 
net) that use a set of inputs (e.g., DNA methylation sites) to make a prediction. In 
the past decade, aging clock studies have shown that several age-related diseases, 
social variables, and mental health conditions associate with an increase in predicted 
biological age relative to chronological age. This phenomenon of age acceleration is 
linked to a higher risk of premature mortality. More recent research has demonstrated 
that predicted biological age is sensitive to specific interventions. Human trials have 
reported that caloric restriction, a plant-based diet, lifestyle changes involving ex-
ercise, a drug regime including metformin, and vitamin D3 supplementation are all 
capable of slowing down or reversing an aging clock. Non-interventional studies have 
connected high-quality sleep, physical activity, a healthy diet, and other factors to age 
deceleration. Specific molecules have been associated with the reduction or reversal 
of predicted biological age, such as the antihypertensive drug doxazosin or the me-
tabolite alpha-ketoglutarate. Although rigorous clinical trials are needed to validate 
these initial findings, existing data suggest that aging clocks are malleable in humans. 
Additional research is warranted to better understand these computational models 
and the clinical significance of lowering or reversing their outputs.
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multiple attempts were made to quantify this elusive metric. For 
example, 24 age-related variables were transformed into BA scores 
by Borkan and Norris in 1980. Individuals with a higher BA score 
were estimated to look older by physicians and had a higher risk of 
mortality (Borkan & Norris, 1980). Subsequent age predictors were 
created using physiological variables (Dubina et al.,  1984), fitness 
test results (Lee et al., 1996), visual estimation (Olde Rikkert, 1999), 
frailty index scores (Goggins et al.,  2005), physical and biochemi-
cal parameters (Bae et al.,  2008), and answers to the work ability 
index (Cho et al., 2010). For all of these models, the correlation be-
tween predicted BA and CA varied based on the number of inputs 
and the specific population being measured. For example, the best-
performing predictors developed by Bae et al had R2 values of 0.66 
in women and 0.62 in men (Bae et al., 2008).

Following these and other important articles, a pivotal age 
quantification study emerged from the laboratory of Dr. Eric Vilain 
in 2011. In this work, Bocklandt et al identified a set of CpG sites 
whose methylation status correlated remarkably with CA in differ-
ent datasets. The authors went on to create a multivariate regres-
sion model which utilized the methylation status of three cytosines 
to measure age in saliva with a Pearson correlation of 0.87 and an 
average error of 3.5 years. Two of these CpGs were associated with 
the genes EDARADD and ELN and trended towards demethylation 
with age. The remaining DNA methylation site was linked to NPTX2 
and showed an age-dependent trend towards hypermethylation 
(Bocklandt et al., 2011). Dr. Steve Horvath, who was one of the au-
thors in this study, built upon this work to generate a seminal paper 
in 2013. Horvath used the elastic net regression model on a large 
body of methylomic data to identify 353 CpGs that could accurately 
estimate age in diverse sample types, including whole blood, saliva, 
buccal cells, and dermal fibroblasts. Horvath dubbed his pan-tissue 
model an “epigenetic clock” and used it to show that epigenetic age 
was significantly elevated in cancer tissue. This phenomenon of age 
acceleration, defined here as a higher predicted age relative to CA, 
was pronounced in breast cancer samples harboring mutations in 
the steroid receptor genes ESR1 and PGR (Horvath,  2013). Earlier 
that same year, Hannum et al used elastic net and methylomic data 
to estimate age in whole blood. This clock utilized 71 methylation 
markers as inputs and predicted that men epigenetically age at a 
faster rate than women. By making tissue-specific adjustments to 
the model, the authors additionally detected age acceleration in can-
cer samples (Hannum et al., 2013).

Since these pioneering publications by Horvath (Horvath, 2013) 
and Hannum et al (Hannum et al., 2013), an inordinate amount of 
progress has been made in the aging clock field, which has also 
been referred to as biohorology (Galkin et al.,  2020). The most 
common aging clocks use a machine learning model in conjunction 
with a set of CpG inputs. While less common, other clocks have 
been created using RNA (Mamoshina et al., 2018), proteins (Enroth 
et al., 2015), and metabolites (Robinson et al., 2020). The biomedical 
relevance of these models has been demonstrated by their ability 
to capture differences in human health. For example, patients with 
Alzheimer's disease (M. E. Levine et al., 2018), Parkinson's disease 

(Paul et al.,  2021), osteoarthritis (Vidal-Bralo et al.,  2016), obesity 
(Horvath et al., 2014), coronary heart disease (Roetker et al., 2018), 
and the premature aging disease Werner syndrome (Maierhofer 
et al., 2017) have all been reported to exhibit age acceleration. Age 
acceleration has also been linked to diverse factors, including ciga-
rette smoking (Wu et al., 2019), bipolar disorder (Fries et al., 2020), 
COVID-19 infection (Cao et al., 2022), and self-assessed social status 
(Hamlat et al., 2022). Importantly, age acceleration correlates with 
premature mortality (Perna et al., 2016) and functional capacity. For 
example, the mortality predictor and epigenetic aging clock GrimAge 
(A. T. Lu, Quach, et al., 2019) was recently shown to correlate with 
reaction time, cognitive function, polypharmacy, frailty, and walk-
ing speed in older adults (McCrory et al., 2021). The ability of these 
models to predict diverse age-related outcomes suggests that they 
can provide insights into BA. As such, we subsequently refer to the 
outputs of aging clocks as BA. Considerations surrounding this la-
beling are discussed in the “Outstanding Questions and Limitations 
in the Field” section.

On the whole, a considerable amount of research in the bioho-
rology field has shown that specific diseases and factors are linked 
to age acceleration. In comparison, only a small number of aging 
clock studies have connected a particular intervention or variable to 
a decrease in BA. In this review, we focus on the latter and highlight 
preliminary evidence suggesting that aging clocks can be slowed and 
reversed in humans.

1.1  |  Machine learning and age prediction

Since artificial intelligence is often conceptualized as a mysterious 
dark box (Castelvecchi, 2016) and lies at the heart of aging clocks, 
we will briefly introduce how machine learning models identify and 
utilize features for age prediction. We refer the interested reader to 
more in-depth reviews of this topic (Galkin et al., 2020; Zhavoronkov 
& Mamoshina, 2019).

Typically, the first step is selecting the best set of inputs that can be 
combined to estimate CA. Genome-wide measurements are usually 
obtained using array-based or high-throughput sequencing assays, 
resulting in measurements of thousands of proteins (Tin et al., 2019), 
tens of thousands of genes (Duggan et al., 1999), or even millions 
of DNA methylation sites (Zhang & Jeltsch, 2010) for each sample. 
For array-based methylomics, the Infinium HumanMethylation450 
and MethylationEPIC chips offered by Illumina are commonly uti-
lized (Bell et al., 2019). However, the limited number of age values re-
sults in more inputs than there are measured outcomes. This means 
that age prediction is inherently an underdetermined problem, or 
that many different sets of inputs can be used (Porter et al., 2021). 
Therefore, a feature selection step is needed to identify the most 
informative input values. There are many ways to explicitly filter the 
inputs. For example, inputs that have low variance across age or are 
highly correlated to other inputs can be removed. In addition, in-
puts that have low read coverage can be omitted to minimize noise. 
Next, inputs are often transformed prior to model training to remove 
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bias. Common transformations include (1) normalization to balance 
the importance of highly expressed inputs with, for example, a log 
transformation, (2) confounding factor correction to remove batch 
effects (Leek et al., 2010) or account for cell type composition (Lowe 
& Rakyan, 2014), and (3) dimensionality reduction using linear de-
compositions such as principal component analysis (Higgins-Chen 
et al., 2021; M. Levine et al., 2020). The resulting datasets can then 
be used to train age prediction models.

Many models exist for mapping inputs into an age read-
out, including random forest (Schultz et al.,  2020), elastic net 
(Horvath, 2013), and least absolute shrinkage and selection operator 
(LASSO) (Lehallier et al., 2020). There are others (Galkin et al., 2020; 
Zhavoronkov & Mamoshina, 2019) that vary in their structure, in-
terpretability, and assumptions. In the case of a continuous variable 
age readout, a regression model is needed (modeling discrete out-
comes requires a different type of model called a classifier). While 
we previously found random forest to be especially adept at predict-
ing transcriptomic age (Shokhirev & Johnson, 2021), elastic net and 
LASSO models are simpler to interpret and work well for epigenetic 
age prediction (Bell et al., 2019). Importantly, some models include 
implicit feature selection as part of their training and structure, and 
are appropriate for underdetermined problems. For example, a pen-
alty is added to LASSO regression models that depends on the total 
magnitude of the weights. During training, some weights are ad-
justed down to zero, implicitly removing less informative inputs from 
the model. In other words, there is no one answer and the specific 
model chosen must be justified in the context of the data structure, 
interpretability, and performance.

After a model is selected and inputs are preprocessed, model 
training takes place. Each model has its own algorithm for adjust-
ing internal parameters to produce the most optimal prediction. In 
random forest models, random decision trees are built from a subset 
of the possible inputs, and the trees combine their prediction as an 
ensemble called a forest (X. Chen & Ishwaran, 2012). In the case of 
age prediction (Shokhirev & Johnson, 2021), decision trees are built 
hierarchically from the root down by finding thresholds in input val-
ues that result in the lowest error compared to the average CA of the 
samples in each partition. Additional branches are added to further 
partition the samples until the leaves represent a small number of 
samples. Since each decision tree is built using a subset of the data 
and the answer is compiled from all trees in a forest, this helps to 
minimize overfitting and promote generalizability. Regardless of the 
model used, the problem of generalizability is approached by split-
ting the data into training and test sets. This helps ensure that the 
model does not have a chance to memorize the data.

When used correctly, these machine learning models (Figure 1a) 
are accurate and able to make predictions in new data of the same 
type. These clocks can even be dissected to gain insights into aging 
mechanisms (Raj & Horvath, 2020) and identify potential drug tar-
gets relevant to age-related disease (Johnson et al., 2021). These 
models can be conceptualized as representing various mathemati-
cal windows into BA as a function of distinct biological readouts. 
The predicted age, which is a proxy for BA and inevitably deviates 

from CA, can be a valuable tool for predicting age-related health 
outcomes.

1.2  |  Aging clocks are targetable in 
complex animals

Ever since Dr. Cynthia Kenyon's discovery that longevity in 
Caenorhabditis elegans could be doubled by introducing a single mu-
tation in the insulin receptor-like gene daf-2 (Kenyon et al., 1993), a 
slew of research has demonstrated that different genetic (Brown-
Borg et al.,  1996), dietary (Mattison et al.,  2017), pharmacological 
(Bitto et al., 2016), and behavioral (Nilsson et al., 2019) interventions 
are capable of extending lifespan and/or improving healthspan in 
complex model organisms. If an aging clock truly reflects an individ-
ual's unique aging rate and overall health, we would expect its out-
put to be significantly lowered by established aging interventions.

Arguably, the most evolutionarily conserved life extension strategy 
is caloric restriction without malnutrition (Fontana & Partridge, 2015). 
Decreasing dietary intake has been reported to prolong lifespan in 
diverse organisms, including yeast (S. J. Lin et al., 2004), mosquitoes 
(Joy et al., 2010), fish (Terzibasi et al., 2009), and monkeys (Mattison 
et al., 2017). Indicative of an ability to measure this longevity effect, dif-
ferent research groups have found that restricting calories lowers epi-
genetic age in mice and rats (M. Levine et al., 2020; Meer et al., 2018; 
Minteer et al., 2022; Petkovich et al., 2017; Thompson et al., 2018; Wang 
et al.,  2017). A related dietary intervention is methionine restriction, 
which lengthens life, enhances stress resistance, and augments health 
in mice (Miller et al., 2005). Using frailty index scores as inputs, Schultz 
et al used random forest machine learning to create models that estimate 
BA or time-to-death. Mice that were subjected to methionine restriction 
had lower frailty index scores and were predicted to be both younger 

F I G U R E  1 Aging clocks are targetable. (a) With age, the 
methylome undergoes significant changes characterized by 
aberrant hypermethylation and hypomethylation. These age-
associated epigenetic changes serve as the basis for epigenetic 
aging clocks that are thought to measure biological age. (b) Existing 
evidence suggests that aging clocks are malleable and can be 
slowed or reversed in response to various interventions, such as 
caloric restriction, a plant-based diet, drugs, or lifestyle change 
involving physical activity
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and longer-lived (Schultz et al., 2020). Although non-dietary, a distinct 
lifestyle intervention of exercise reduces the epigenetic age of skeletal 
muscle in mice aged 22–24 months. Older mice that engaged in volun-
tary progressive weighted wheel running were epigenetically ~8 weeks 
younger than their sedentary counterparts (Murach et al., 2022).

Different pharmacological treatments can also target aging clocks 
in mice. In the same study by Schultz et al, the authors treated animals 
with the angiotensin converting enzyme inhibitor enalapril. Like methi-
onine restriction, enalapril decreased frailty index scores and lowered 
BA. Enalapril did not significantly impact predicted time-to-death, how-
ever, potentially suggesting that it improved health without affecting 
lifespan (Schultz et al., 2020). In aged female mice, Florian et al showed 
that inhibiting Cdc42 with a molecule termed CASIN elongated lifespan, 
decreased epigenetic age, and reset the expression of inflammatory cy-
tokines in serum to a youthful level (Florian et al., 2020). Age decelera-
tion – defined here as a lower BA relative to CA—in mice was observed 
in response to treatment with rapamycin (Wang et al., 2017), an immu-
nosuppressant drug with a well-established ability to boost longevity 
(Bitto et al., 2016). Intriguingly, rapamycin was not associated with a sig-
nificantly reduced epigenetic age in a separate study done in marmoset 
monkeys (Horvath et al., 2021). Whether or not this is due to the con-
centration of rapamycin, treatment duration, the specific clocks used, 
or differences between mice and marmosets remains to be determined. 
One explanation for the differential results may be the disparate tissues 
analyzed. Measurements were made in liver and blood for mice (Wang 
et al., 2017) and marmosets (Horvath et al., 2021), respectively.

Genetic mutations or gene therapy are discrete paths towards 
slowing an animal's molecular clock. For example, long-lived mice 
that are deficient in growth hormone exhibit a decrease in epigen-
etic age. This includes mice lacking Ghr as well as animals carrying 
mutations in either Prop1 or Pou1f1 (Meer et al.,  2018; Petkovich 
et al., 2017; Wang et al., 2017). Separate work demonstrated that 
ectopically expressing the Yamanaka factors Oct4, Sox2, and Klf4 
using adeno-associated viral vectors restored vision in older mice 
and reversed epigenetic age in retinal tissue. This reprogramming 
approach was also able to recover eyesight in a mouse model of 
glaucoma (Y. Lu et al., 2020). More recent research from the labo-
ratory of Dr. Juan Carlos Izpisua Belmonte showed that epigenetic 
age in skin and kidney was reverted in response to long-term partial 
reprogramming in wild-type mice. This reversion was concomitant 
with improved wound healing and a reduced inflammatory signature 
in skin (Browder et al., 2022).

These data cumulatively indicate that aging clocks are sensitive 
to pro-longevity interventions in complex model organisms.

1.3  |  Interventions that turn back aging clocks 
in humans

In 2015, the results from the CALERIE (Comprehensive Assessment 
of Long term Effects of Reducing Intake of Energy) trial were pub-
lished (Ravussin et al., 2015). 220 non-obese adults were randomized 
and placed on either a 25% caloric restriction or ad-libitum diet for 

2 years. Although the mean caloric restriction practically achieved was 
11.7%, this was sufficient to promote weight loss, induce a decrease 
in circulating tumor necrosis factor-α, and cause a reduction in car-
diometabolic risk factors (Ravussin et al., 2015). Using the Klemera-
Doubal Method (Klemera & Doubal, 2006) and clinical biomarker data 
collected during this trial, Belsky et al subsequently estimated the BA 
of individuals in both trial arms. Ad-libitum and calorically restricted 
participants exhibited an annual BA change of 0.71 and 0.11 years, re-
spectively. This delta of 0.6 years was significantly different and, in the 
ad-libitum group, BA was significantly higher after 2 years. Consistent 
with a deceleration in aging, BA was statistically comparable after 
2 years in calorically restricted subjects (Belsky et al., 2017).

Other human trials have similarly reported that a dietary inter-
vention can affect an aging clock. In work conducted by Gensous 
et al, 120 healthy elderly Italian and Polish subjects (60 from each 
country) were subjected to a Mediterranean-like diet for a duration 
of 1 year. Horvath's classical model was used to measure epigen-
etic age in whole blood before and after the 12-month nutritional 
intervention. Although the results varied based on sex and coun-
try of residence, the delta between BA and CA (∆age) was reduced 
by 0.84 years in Polish subjects. In Polish women, ∆age decreased 
by −1.47 years. These individuals exhibited a ∆age that was lower 
than it was pre-intervention a year prior. The authors theorize 
that differences between groups may be due to cultural or social 
factors (Gensous et al., 2020). For example, the similarity of a pre-
intervention diet to the Mediterranean diet could have influenced 
the results. Fiorito et al analogously found that an altered diet could 
reduce epigenetic age in a cohort of 219 healthy, postmenopausal 
women. After 24 months of adopting a diet based on the consump-
tion of plant foods, ∆age was 0.66 years lower relative to controls 
(Fiorito et al.,  2021). Combination therapies including diet and 
exercise have also been reported to lower BA in healthy subjects 
(Fitzgerald et al., 2021) and in individuals with obesity or dyslipid-
emia (Yaskolka Meir et al.,  2021). In one of these studies, a com-
prehensive lifestyle intervention led to a significant decrease in 
Horvath's classical clock relative to controls after a short period of 
8 weeks. Although it only trended towards statistical significance 
(p = 0.066), subjects in the treatment group were predicted to have 
an epigenetic age that was 1.96 years lower than when they started 
the study (Fitzgerald et al., 2021). In a separate cohort of patients 
with severe obesity, a decrease in epigenetic ∆age was observed 
12 months after bariatric surgery (Fraszczyk et al., 2020).

Early-stage data indicate that an individual's aging clock can 
also be targeted pharmacologically. A pilot, non-placebo-controlled 
study by Fahy et al gave metformin, growth hormone, and dehy-
droepiandrosterone to 10 healthy adult men aged 51–65 years. 
The authors theorized that the diabetic drug metformin would help 
counteract the deleterious effects of growth hormone, which can 
induce hyperinsulinemia. Concomitant with immunological changes, 
epigenetic age was reversed after a year of treatment. While the 
results differed based on the specific model used, subjects had an 
epigenetic age that was 2.16 years younger than when they began 
treatment 12 months earlier according to the GrimAge clock (Fahy 
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et al., 2019). A separate randomized, placebo-controlled clinical trial 
investigated the effects of vitamin D3 supplementation in obese/
overweight individuals with low vitamin D status. Using either the 
Horvath or Hannum clock, the authors found that vitamin D3 sup-
plementation respectively decreased epigenetic age by 1.85 or 
1.9 years compared to placebo (L. Chen et al.,  2019). Drug treat-
ment additionally influences epigenetic age in patients with HIV. 
96 weeks of anti-retroviral therapy led to a 3.6 year decrease in ∆age 
(Esteban-Cantos et al., 2021). Although it wasn't an interventional 
trial, a recent study reported that transient reprogramming reversed 
a transcriptomic aging clock by approximately 30 years in vitro in 
human dermal fibroblasts (Gill et al., 2022).

It is important to note that some aging clock trials have reported 
negative results. For example, Nwanaji-Enwerem et al performed a 
post-hoc analysis of a placebo-controlled, randomized control trial 
involving 192 overweight or obese breast cancer survivors. This trial 
lasted for 6 months and included four intervention arms: placebo, pla-
cebo with weight loss, metformin, and metformin with weight loss. 
Using various clocks, the authors found that epigenetic age was not 
significantly altered in any group (Nwanaji-Enwerem et al., 2021). In 
an independent observational study, metformin was not linked to a 
delay in epigenetic age (Quach et al., 2017). This is intriguing given 
that metformin is associated with protection against various age-
related diseases (Barzilai et al.,  2016) and reduced GrimAge when 
used alongside growth hormone and dehydroepiandrosterone (Fahy 
et al., 2019). Future research efforts are warranted to better under-
stand the relationship between metformin and aging clocks. In a sep-
arate placebo-controlled clinical trial involving 1470 subjects, daily 
consumption of 5 mg folic acid and 30 mg elemental zinc for 6 months 
did not influence epigenetic age in sperm (Jenkins et al.,  2022). 
Compared to controls, epigenetic age was similarly unimpacted by 
60 g/day of mixed nuts in a 14-week trial involving 72 participants 
(Salas-Huetos et al.,  2021). In the aforementioned study by Fiorito 
et al, exercise did not significantly impact BA. It did, however, correct 
aberrant methylation patterns in pathways related to cancer (Fiorito 
et al., 2021). Since not all trials are pre-registered, it is possible that 
there are other unpublished studies which found negative results.

In each of the studies reporting a significant reduction in BA 
(Table 1), an aging clock was used to make a prediction before and 
after an intervention. The findings from these preliminary trials col-
lectively suggest that it is possible to intervene and decrease BA in 
humans (Figure  1b). Although exciting, many of these trials were 
fairly short-term and used a small number of subjects. Larger-scale, 
placebo-controlled studies are warranted to validate these results, 
perform measurements over longer time courses, and determine the 
extent to which BA can be reduced.

1.4  |  Factors associated with a slower aging clock 
in humans

A multitude of factors have been shown to associate with human age 
deceleration (Table 2). A study performed by Quach et al looked at 

cross-sectional data from 4575 individuals spanning two different 
cohorts. Using metrics of ∆age, they identified several variables to 
be significantly correlated with slower epigenetic aging. These fac-
tors include fish intake, levels of blood markers for fruit/vegeta-
ble consumption, physical activity, education, and income (Quach 
et al.,  2017). Subsequent work by Levine et al constructed a new 
epigenetic clock called PhenoAge that was optimized to predict 
mortality, healthspan, and physical functioning. PhenoAge measure-
ments corroborated that education, income, exercise, and markers of 
fruit/vegetable consumption are linked with a lower epigenetic age 
(M. E. Levine et al., 2018). We similarly found a connection between 
increased physical activity and age deceleration using a plasma prot-
eomic clock. In collaboration with Drs. Benoit Lehallier and Tony-Wyss 
Coray, we applied this model in 47 healthy adults that were either 
sedentary or engaged in frequent aerobic exercise. The difference in 
proteomic age was significant, with aerobic exercise-trained individu-
als estimated to be 5.43 years younger (Lehallier et al., 2020). Other 
groups have likewise connected dietary factors, physical activity, and 
other lifestyle choices to a slower aging clock (Table 2). Interesting 
examples to highlight include omega-3 supplementation (A. T. Lu, 
Quach, et al., 2019), light alcohol consumption (Liang et al.,  2022), 
moderate coffee consumption (Enroth et al., 2015), good sleep qual-
ity (Gao et al., 2022), vitamin D supplementation (Vetter et al., 2022), 
and Mediterranean diet adherence (Esposito et al., 2022).

A smaller set of studies have found a specific molecule or drug 
to be associated with a decrease in BA. In a recent retrospective 
analysis, epigenetic age was calculated in 42 subjects taking a sup-
plement containing 1000 mg of calcium alpha-ketoglutarate for an 
average period of 7 months. A novel clock predicted that these in-
dividuals were 8 years younger post-supplementation (Demidenko 
et al., 2021). Although a placebo-controlled trial is needed to vali-
date this finding and determine if clinically meaningful changes are 
concomitant with such a drastic reduction in epigenetic age, they are 
interesting given that calcium alpha-ketoglutarate extends lifespan 
and improves health in mice (Asadi Shahmirzadi et al., 2020). Using 
a rather innovative model based on wearable device movement 
data, McIntyre et al linked the FDA-approved, antihypertensive 
drug doxazosin to age deceleration. In the same study, the authors 
demonstrate that doxazosin elongates both lifespan and healthspan 
in nematode worms. The dietary intake of fiber, magnesium, and 
vitamin E was also associated with decelerated aging (McIntyre 
et al., 2021). Since a large number of molecules have been reported 
to enhance lifespan and/or healthspan in animal models (Tacutu 
et al., 2018), future research efforts should assess whether or not 
any of these compounds can safely influence aging clocks in humans.

1.5  |  Outstanding questions and limitations 
in the field

In this work, we refer to the measurement made by an aging clock 
as BA given that the disparity between BA and CA significantly cor-
relates with age-related health outcomes such as mortality (Perna 
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et al., 2016) and disease burden (Hillary et al., 2020). Whether or not 
the metric provided by an aging clock truly represents BA is, however, 
debatable. Ultimately, these clocks make a calculation based on a set 
of inputs, which are typically molecular in nature and predictably vary 
with age in a population. In the case of epigenetic models, the methyl-
ation status (i.e., methylated or demethylated) of CpGs is utilized. If an 
intervention decreases the number outputted by an epigenetic clock, 
this means that the status of specific DNA methylation sites resem-
bles that of a younger individual. While such a change may indicate 
that an individual has become biologically younger, it is feasible that 
a more youthful epigenetic signature can be induced irrespective of 
BA. One way to explore these two possibilities would be to determine 
if inputs used by aging clocks represent downstream biomarkers or 
instead causally contribute to age-related dysfunction. For example, 
the CpGs cg16867657 and cg21572722 were prioritized by a newer 
epigenetic aging clock trained using methylomic information shared 
by Illumina's Infinium HumanMethylation450 and MethylationEPIC 
arrays (Horvath et al., 2018). Both of these sites become hypermeth-
ylated with age and are associated with the gene ELOVL2, which 
encodes for Elongation of very long chain fatty acids protein 2 
(UniProt, 2021). In mice, introducing a point mutation in Elovl2 results 
in premature visual decline and the early appearance of autofluores-
cent material typically seen in older animals. In addition, treating mice 
with the DNA methylation inhibitor 5-Aza-2′-deoxycytidine demeth-
ylates the promoter of Elovl2, increases gene expression of Elovl2, and 
rescues age-related visual decline (D. Chen et al., 2020). Additional 
research is thoroughly warranted to better understand the relation-
ship between BA and aging clocks.

It is also worth noting that not all clocks are equivalently predic-
tive when it comes to aging-relevant measurements. Indicative of 
this, GrimAge outperformed the PhenoAge, Horvath, and Hannum 
clocks when it came to predicting health and mortality in a longi-
tudinal dataset involving 490 older subjects (McCrory et al., 2021). 
Recent work by Macdonald-Dunlop et al performed a thorough 
comparison of 15 different omics-based clocks. The authors found 
that, while some clocks correlated well with specific disease risk 
factors (e.g., systolic blood pressure and cortisol), others were 
more prognostic of age-related disease incidence and appeared to 
better reflect the generalized effects of aging (Macdonald-Dunlop 
et al., 2022). Moreover, there is an interesting relationship between 
accuracy and usability. If a clock becomes overly adept at predicting 
CA and the average delta between BA and CA is too low, then it will 
fail to correlate with meaningful health outcomes (Q. Zhang, Vallerga, 
et al., 2019). In addition, each distinct clock uses a unique set of in-
puts that correspond to different biological processes. For example, 
we previously showed that accurate, plasma proteomic clocks could 
be generated using proteins associated with disparate pathways in 
the Reactome database, such as the “signal transduction”, “innate 
immune system”, “extracellular matrix organization”, and “adaptive 
immune system” pathways (Lehallier et al.,  2020). Since aging is a 
multifarious process characterized by diverse, complex dysfunction 
(Lopez-Otin et al., 2013), it is possible that each of these clocks pro-
vides a unique window into BA. Indeed, one could imagine that the 

opacity of these windows varies depending on the quality and type 
of aging clock. Alternatively, it could be argued that distinct models 
reflect different aspects of health and biology that correlate with 
CA. For example, the epigenetic model DNAmTL was trained to pre-
dict telomere length. Although DNAmTL correlates with telomere 
length, CA, and health outcomes, it does not match telomere length 
in cultured cells. Instead, it appears to capture population doubling 
as evinced by the finding that cells expressing telomerase exhibit a 
passage-dependent reduction in DNAmTL (A. T. Lu, Seeboth, et al., 
2019). Thus, DNAmTL appears to be capturing an interesting signal 
that is distinct from what it was originally trained on.

Another consideration is the relationship between aging clocks 
and health. Specifically, does a reduction in BA clearly translate to 
a tangible improvement in well-being? In each of the human inter-
ventional studies summarized in Table 1, there is independent ev-
idence that the intervention itself or an aspect of the intervention 
promotes health and/or decreases mortality. For example, clin-
ical trials in humans have shown that caloric restriction induces 
weight loss (Ravussin et al., 2015), improves thymopoiesis (Spadaro 
et al., 2022), elevates sleep quality (Martin et al., 2016), and attenu-
ates the expression of circulating inflammatory factors (Montefusco 
et al., 2021). Regarding metformin, existing evidence suggests that 
this diabetic drug may protect against various age-related dis-
eases (Barzilai et al.,  2016). Indicative of this, a systematic review 
and meta-analysis concluded that all-cause mortality was lower in 
diabetic, metformin-users compared to non-diabetics (Campbell 
et al., 2017). The Targeting Ageing with Metformin (TAME) trial in-
tends to rigorously test the feasibility and safety of metformin as 
an aging intervention in older adults (https://www.afar.org/tame-
trial). In a recently published clinical trial involving 25,871 subjects, 
supplementation with vitamin D3 for 5 years led to a significant, 
22% decrease in autoimmune diseases, including the age-related 
disease rheumatoid arthritis (Hahn et al., 2022). Moreover, a large-
scale systematic review and meta-analysis concluded that vitamin 
D supplementation associates with a reduced risk of cancer mortal-
ity (Y. Zhang, Fang, et al., 2019). The Mediterranean diet, which is 
considered to be plant-based, attenuates the progression of athero-
sclerosis to coronary heart disease (Jimenez-Torres et al., 2021), im-
proves cognitive function in older adults (Valls-Pedret et al., 2015), 
and reduces the incidence of major cardiovascular events (Estruch 
et al., 2018). An ever-growing body of evidence similarly argues that 
physical activity and a plant-rich diet promote healthy aging in hu-
mans (H. Kim et al., 2019; Y. H. Lin et al., 2020). Both antiretrovi-
ral therapy (Zhao et al.,  2018) and gastric bypass surgery (Adams 
et al., 2007) reduce mortality in patients with HIV or severe obesity, 
respectively. For the interventional studies summarized in Table 1, 
the reported reduction in BA may therefore reflect improvements in 
health and a shift towards a more optimal aging trajectory.

Future trials using aging clocks should also take care to make tra-
ditional clinical measurements. Tests that assess functional perfor-
mance in older adults – such as grip strength, gait speed, the 6-min 
walk test, and the timed up-and-go test (Patrizio et al., 2021) – are es-
pecially valuable. In addition to estimating BA, it would be helpful to 

https://www.afar.org/tame-trial
https://www.afar.org/tame-trial
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measure classical clinical biomarkers that are known to associate with 
lifespan and healthspan. These include HbA1c, fasting blood glucose, 
C-reactive protein, triglycerides, high-density lipoprotein cholesterol, 
ApoA1, and total cholesterol (X. Li et al., 2021). Ultimately, the utility 
of BA being reduced without a concomitant functional improvement 
and/or a decreased risk of mortality is questionable. Conversely, a re-
duction in BA that is tethered to a clear enhancement in health and/
or longer life is of interest. Long-term, longitudinal trials in older pop-
ulations would be exceptionally valuable and offer insight into how 
a change in BA alters mortality-risk on an individual level. As more 
trials are published, we will gain a more thorough understanding of 
how clinically significant altering an aging clock is. Additional data 
will also help inform how these computational models compare to 
existing clinical diagnostics. Since it is possible that the participants 
drawn to these studies may be uniquely interested in health relative 
to the general population, placebo controls are especially important. 
Furthermore, traditional epigenetic aging clocks exhibit technical 
noise and replicates from the same sample can produce divergent re-
sults (McEwen et al., 2018). There are newer methods to control for 
this (Higgins-Chen et al., 2021) and this should be considered when 
deciding which computational model to implement.

Regarding future studies, there are a number of clinical trials that 
intend to explore whether or not a particular intervention will affect 
an aging clock. This includes the TRIIM-X trial (NCT04375657), which 
is an expansion of the aforementioned metformin, growth hormone, 
and dehydroepiandrosterone study by Fahy et al (Fahy et al., 2019). 
Other proposed trials seek to test the effects of tildrakizumab 
(NCT05110313), a polyphenol-rich supplement (NCT05234203), a 
fasting-mimicking diet in conjunction with a calorie mimetic supple-
ment (NCT04962464), dasatinib and quercetin (NCT04946383), a 
sleep supplement (NCT04988542), tree nuts and extra virgin olive oil 
(NCT04361617), and rapamycin (NCT04488601). These and future 
trials will enhance our collective understanding of what influences BA 
in humans.

A final point of consideration is the reversal of an aging clock, 
which has been reported in vivo in mice (Browder et al., 2022; Y. Lu 
et al., 2020) and in vitro in human cells (Gill et al., 2022) in response 
to reprogramming. As shown in Table 1, epigenetic age can also be 
reversed in response to different interventions. Although exciting, 
these results should be interpreted conservatively given that no 
intervention has been found to stall aging in any organism. These 
findings are likely showing that adopting a health-promoting change 
– such as transitioning to a healthy diet and increasing recreational 
physical activity – can reset an individual's aging trajectory. Such 
changes are of course possible and well-established. For example, 
quitting smoking following myocardial infarction leads to a substan-
tial decrease in mortality (Wilson et al., 2000).

2  |  CONCLUDING REMARKS

In addition to being useful research tools, aging clocks have the po-
tential to inform decision-making and provide personal evidence that 

a specific change is connected to slower or faster aging. Although the 
field of biohorology is relatively nascent and still developing, it holds 
promise for helping people live longer, healthier lives. Preliminary 
data support this optimism and argue that aging clocks are sensitive 
to health-promoting interventions in humans. Future research ef-
forts are warranted to better understand the relationship between 
these computational models, health, and longevity. Specifically, the 
clinical significance of slowing or reversing an aging clock needs to 
be elucidated.
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