Skip to main content
. 2022 Jul 2;21(8):e13664. doi: 10.1111/acel.13664

TABLE 2.

Factors associated with a slower aging clock in humans

Factor(s) Aging clock(s) used Cohort size Age information (years) Tissue/data analyzed Study reference
Fatty fish consumption, coffee consumption, exercise Enroth et al. (2015) 976 14–94 Plasma Enroth et al. (2015)
Smoking cessation Horvath (2013) and Hannum et al. (2013) 22 46.77 ± 6.99 Blood Lei et al. (2017)
Poultry intake, fish intake, markers of vegetable/fruit consumption, education, income, exercise, alcohol consumption Horvath (2013) and Hannum et al. (2013) 4575 30–100 Blood Quach et al. (2017)
Markers of vegetable/fruit consumption, nut consumption, education, income, exercise, alcohol consumption PhenoAge (M. E. Levine et al., 2018) 4207 50–79 Blood M. E. Levine et al. (2018)
Omega‐3 supplementation, carbohydrate intake, dairy intake, whole grain intake, markers of vegetable/fruit consumption, education, income, exercise, alcohol consumption GrimAge (A. T. Lu, Quach, et al., 2019) 2174 59–73a Blood A. T. Lu, Quach, et al. (2019)
Aerobic exercise Lehallier (Lehallier et al., 2020) 47 19–77 Plasma Lehallier et al. (2020)
Calcium alpha‐ketoglutarate TruAge (Demidenko et al., 2021) 42 43–72 Saliva Demidenko et al. (2021)
Leisure‐time physical activity GrimAge (A. T. Lu, Quach, et al., 2019) 1040 21–74 Blood Kankaanpää et al. (2021)
Doxazosin, fiber intake, magnesium intake, vitamin E intake MoveAge (McIntyre et al., 2021) 5139 18–85+ Accelerometer data McIntyre et al. (2021)
Lifestyle factors, including physical activity, intake of vegetables and fruits, and moderate drinking Li (J. Li et al., 2018) 286 48.9 ± 10.6 Blood Peng et al. (2021)
Cardiovascular health factors, including diet, smoking status, and physical activity Horvath (Horvath, 2013) and Hannum (Hannum et al., 2013) 2170 64.19 ± 7.06 Blood Pottinger et al. (2021)
Mediterranean diet, Dietary Approaches to Stop Hypertension diet Esposito (Esposito et al., 2022) 4510 ≥ 35 Blood Esposito et al. (2022)
Sleep quality Klemera‐Doubal Method (Klemera & Doubal, 2006) and PhenoAge (M. E. Levine et al., 2018) 363,886 56.5 ± 8.1 Blood Gao et al. (2022)
Higher diet quality DunedinPoAm (Belsky et al., 2020), GrimAge (A. T. Lu, Quach, et al., 2019), and PhenoAge (M. E. Levine et al., 2018) 1995 67 ± 9 Blood Y. Kim et al. (2022)
Higher diet quality Hannum (Hannum et al., 2013), PhenoAge (M. E. Levine et al., 2018), and GrimAge (A. T. Lu, Quach, et al., 2019) 2694 56 ± 9 Blood Kresovich et al. (2022)
Light alcohol consumption MonoDNAmAge (Liang et al., 2022), Horvath (Horvath, 2013), Hannum (Hannum et al., 2013), PhenoAge (M. E. Levine et al., 2018), and GrimAge (A. T. Lu, Quach, et al., 2019) 2242 18–83 Monocytes, blood, and peripheral blood mononuclear cells Liang et al. (2022)
Serum zinc levels Horvath (2013) 10 37.83 ± 12.05 Blood leukocytes Noronha et al. (2022)
Vitamin D supplementation Horvath (2013) and Vetter et al. (2019) 1036 68.28 ± 3.49 Blood Vetter et al. (2022)
a

Self‐reported omega‐3 intake data was available for 2174 members of a larger cohort composed of 2356 people. The age range provided is for the full cohort (n = 2356).