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Abstract
Pharmacokinetic/pharmacodynamic (PK/PD) indices making use of area under 
the curve, maximum concentration, and the duration that in vivo drug concentra-
tion is maintained above a critical level are commonly applied to clinical dose pre-
diction from animal efficacy experiments in the infectious disease arena. These 
indices make suboptimal use of the nonclinical data, and the prediction depends 
on the shape of the PK profiles in the animals, determined by the species-specific 
absorption, distribution, metabolism, and elimination properties, and the dosing 
regimen used in the efficacy experiments. Motivated by the principle that effi-
cacy is driven by pharmacology, we conducted simulations using a generalized 
pathogen dynamic model, to assess the properties of an alternative efficacy pre-
dictor: the area under the effect curve (AUEC), computed using in vitro PD and 
in vivo PK. Across a wide range of hypothetical scenarios, the AUEC consistently 
showed regimen-independent strong correlation (R2 0.76–0.98) with in vivo ef-
ficacy, superior to all other indices. These findings serve as proof of concept that 
AUEC should be considered in practice as a translation tool for cross-species dose 
prediction. Using AUEC for clinical dose prediction could also potentially cut 
down animal use by reducing or avoiding dose fractionation experiments.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Several pharmacokinetic/pharmacodynamic (PK/PD) indices are commonly 
used in predicting efficacy for anti-infectives.
WHAT QUESTION DID THIS STUDY ADDRESS?
The area under the effect curve (AUEC) was assessed as a novel index potentially 
overcoming some of the limitations of the conventional PK/PD indices.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Simulations using a generalized disease-drug model under a range of experimen-
tal conditions suggest that the AUEC could be a more reliable predictor than 
the conventional indices, while being a simpler approach compared with more 
mechanistic ones.
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INTRODUCTION

Infectious diseases represent a major global health 
burden, affecting hundreds of millions of people 
every year. Drug development success rates for infec-
tious diseases are relatively high compared with other 
therapeutic areas,1 however, the return of investment 
is low.2,3 For cost-effective drug development, it is im-
perative to appropriately leverage the data made avail-
able during the discovery phase, in order to: identify 
clinical dosing regimens likely to be effective and safe, 
encourage compliance, and counter the development 
of drug-resistance.

Conventionally, drug-caused pathogen reduction for 
any given mechanism is thought to be time-dependent 
or concentration-dependent. In the former case, the so-
called pharmacokinetic/pharmacodynamic (PK/PD) in-
dices considered as potential predictors of drug effect are 
usually the time that the concentration remains above the 
minimum inhibitory concentration (TMIC), the time the 
concentration remains above the level that causes 50% of 
maximum effect (TEC50), or the time the concentration re-
mains above the level that causes 90% of maximum effect 
(TEC90). In the latter case, indices that reflect drug concen-
trations, like area under the curve (AUC) or maximum 
concentration (Cmax), can be related to anti-pathogen 
effect.4–6

Clinical dose prediction from animal experiments often 
relies on PK/PD indices.7 Typically, efficacy experiments 
with dose-fractionation design are conducted in rodents. 
Correlation between each of the PK/PD indices with in 
vivo efficacy is estimated; the index with the strongest cor-
relation (highest R2) is deemed as the optimal predictor 
and is used to identify the clinical dose, aided by observed 
or predicted human PK.8,9

Despite their wide use, these PK/PD indices have 
limitations. Indeed, as PK drives efficacy through PD, 
and the PK-PD relationship is a continuous one, we 
must acknowledge that (i) all in vivo drug concentra-
tions on the PK curve contribute to PD and therefore 
to efficacy; and (ii) dosing interval (hence the shape of 
the PK curve) has an impact on PD and potentially on 
efficacy by extension. The indices TMIC, TEC50, and TEC90 

dichotomize the drug concentration and hence the drug 
effect. Both Cmax and AUC are PK endpoints which are 
missing direct PD meaning. Furthermore, using Cmax 
implies only the peak of the PK profile affects efficacy, 
whereas using AUC overlooks the effect of dosing inter-
val (or the shape of the PK curve), which varies greatly 
among species and hence is highly relevant in cross-
species dose prediction.

More sophisticated methods for dose prediction 
have been extensively discussed in recent literature.10–20 
These approaches rely on mathematical description of 
experimental data conducted in vitro or in animals to 
project the drug effect on pathogen dynamics in patients. 
They have the appeal of mechanistical reflection of the 
drug-disease interaction and the ability of situational 
predictions, at the cost of more extensive laboratory ex-
perimentation and the need for sometimes unverifiable 
assumptions.

We propose the area under the effect over time curve 
(AUEC), which accounts for the collective pharmaco-
logical contribution of all in vivo drug concentrations 
over a dosing interval and is conditioned on the shape of 
the PK curve, as a “middle-ground” approach between 
the simpler, mostly PK-based, approaches and the more 
complex mechanistic approaches. It simplifies the trans-
lation and avoids the need to identify an anti-pathogen 
breakpoint, hence, it has the potential to enable efficient 
fit-for-purpose dose prediction on a large scale for early-
stage drug candidates. The purpose of this work was to 
systematically evaluate the performance of AUEC as an 
alternative PK/PD index correlating with in vivo efficacy 
of anti-infectives, using simulations in a wide range of 
scenarios.

METHODS

PK/PD simulations and fittings were carried out in 
NONMEM (version 7.3.0 and higher; see Supplementary 
Material  S1). Post-processing of simulation and fitting 
outputs (such as exploratory plots, goodness of fit plots, 
and derivation of R2 values) was performed in R (version 
3.5.2 and higher).

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Situational use of AUEC as a cross-species translational tool for dose prediction 
is warranted. It has the potential to cut down animal use by reducing or avoiding 
dose fractionation experiments.
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In vitro PD model

In vitro drug effect (Evitro) was simulated according to 
Equation 1, as a function of in vitro drug concentration 
(Cvitro).

 Interpretation of Evitro depends on the in vitro experiment 
performed: pathogen reduction, growth inhibition, kill per-
centage, or kill rate.

A range of EC50vitro and γvitro values were tested 
(Table 1). EC90vitro was derived as 91/γvitro × EC50vitro.

In vivo efficacy model

In vivo pathogen dynamics and drug effect were described 
via a growth-kill model with a maximum pathogen carry-
ing capacity of the host system10:

In Equation 2, P(t) is the pathogen load at time t, knet is 
the net growth rate, Pmax is the maximum pathogen car-
rying capacity, Emaxvivo is the drug's maximum pathogen 
depletion rate, C(t)vivo is the drug concentration at time t 
(derived from the in vivo PK model), EC50vivo is the con-
centration required in vivo to elicit 50% of Emaxvivo, and 
γvivo describes the steepness of the concentration-response 
curve. The initial and maximum pathogen load on the log-
arithmic scale were assumed to be 6 and 20, respectively. 
Intersubject variability of 20% was included on EC50vivo. 
Net growth rate (knet) was assumed to be 0.3 h−1; Emaxvivo 
was assumed to be five times knet to reflect high efficacy.

In vivo PK model

The PK was simulated in mice weighing 0.025 kg, using 
a one-compartmental model with parameters consistent 
with those commonly observed for anti-infectives: absorp-
tion rate constant (ka) 1  h−1, apparent clearance (CL/F) 
1.28 L/h/kg and apparent volume (V/F) 5.6 L/kg, result-
ing in a half-life of ~ 3 h. The 3-h half-life in mice would 
allometrically scale to a 20-h half-life in humans, consist-
ent with drug candidates selected for once daily admin-
istration. Low-to-moderate intersubject variability was 
included on CL/F, V/F, and ka, with percent coefficient of 
variation ~ 20%.

Animal experiment

Dose fractionation was implemented with dosing in-
tervals of 3, 6, 12, or 24 h at total daily doses of 0.12, 
0.36, 1.08, and 3.24 mg/kg. Doses were selected based on 
simulated in vivo exposure and drug potency, and they 
were reasonably consistent with actual in vivo experi-
ments. A total of 160 animals were used (10 per dosing 
regimen). The therapy was initiated at the steady-state 
of pathogen replication (day 7) to reflect a late/chronic 
stage of the infection, and the treatment duration was 
relatively long (10 days).

Derivation of PK/PD indices

Five PK/PD indices were considered as potential predic-
tors of in vivo pathogen load at the end of treatment: area 
under concentration-time curve over 24 h at steady-state 
(AUC24), maximum concentration at steady-state (Cmax), 
time above EC50vitro (TEC50) and EC90vitro (TEC90; expressed 
as percentage of time over the dosing interval), and area 
under the effect, E, over 24 h at steady-state (AUEC24), 
which was derived as the integral of Equation 3:

Equation 3 is as Equation 1 where in vitro concentration is 
substituted with C(t)vivo, i.e., predicted in vivo concentration 
over time, and Emaxvitro is assumed equal to Emaxvivo (as it is 
only a proportionality constant not impacting PK/PD index 
correlation with in vivo efficacy).

Evaluation of the PK/PD indices’ 
performance

The correlation of each PK/PD index with in vivo efficacy 
was evaluated in a wide range of scenarios (Table 1).

For each scenario, in vivo efficacy was defined as 
(Pmax − Pend)/Pmax × 100, where Pend is the pathogen load at 
the end of the treatment. A sigmoidal Emax relationship 
between efficacy and each PK/PD index was estimated:

 In Equation  4, Index is the value of the PK/PD index, 
Index50 is the index value corresponding to 50% reduc-
tion in pathogen load, and γ_index is the shape parameter 
specific to the PK/PD index (AUC24, Cmax, TEC50, TEC90, or 
AUEC24). To compare the quality of the fittings among the 
indices, R2 was used as per common practice. Goodness of 
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EC50vitro = EC50vivo = 2.4 ng/mL EC50vitro = EC50vivo = 24 ng/mL EC50vitro = EC50vivo = 240 ng/mL
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F I G U R E  1   The importance of adequate dose range in relation to the drug's potency (a), and of matching in vitro/in vivo drug's 
potency (b). AUC, area under the curve; Cmax, maximum concentration; EC50, concentration leading to half of the maximum effect; EC90, 
concentration leading to 90% of maximum effect; obs, observed; SS, steady-state.
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fit was also graphically assessed via plotting observed data 
and predicted curve of efficacy versus PK/PD index.

First, the base scenario (Table  1, scenario 1) and its 
variations (Table 1, scenarios 2–17) were explored, where 
different PD parameters (EC50 and γ) were considered, as-
suming in vitro/in vivo concordance or mismatch.

Second, the dependency of the PK/PD indices on the 
PK curve shape was assessed in the base scenario and 
its variations via the estimation of the covariate effect of 
dosing interval on the key parameter for the relationship 
between each PK/PD index and efficacy (i.e., Index50).  
A drop of 10.83 points (p < 0.001) in the log-likelihood 
objective function was considered statistically significant. 
This was motivated by the observation that drugs tend to 
have shorter half-lives in smaller animals, and the shape 
difference in the PK curve could be a major contributor to 
mis-prediction of clinical dose from animal models. Less 
frequent dosing produces more fluctuating PK profiles, 

resembling shorter half-lives. A PK/PD index less depen-
dent on this shape would have higher cross-species trans-
lation reliability.

Last, additional conditions were explored, challeng-
ing the hypotheses applied for the base scenario and its 
variations regarding the degree of in vivo drug efficacy 
(Emaxvivo 5 times knet vs. 3.3, 2.0, or 1.5 times knet), treat-
ment start (on day 7 for late-stage infection versus on 
day 3 for early-stage infection), and treatment duration 
(10 days vs shorter duration of 6, 4, or 2 days), to “stress-
test” the dependency of our results on the base scenario 
(see Table 1).

RESULTS

Under the condition of a highly efficacious drug treat-
ing the disease at the steady-state, a relatively simple 

F I G U R E  1    (Continued)
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base scenario (scenario 1) served as a starting point, 
from which groups of other scenarios (scenarios 2–17) 
were explored. Further conditions of lower efficacy 

drugs, pre-steady-state treatment, or shorter treatment 
duration were also explored. Table  1 shows the R2 for 
the estimated relationship between in vivo efficacy and 

γvitro = γvivo = 0.5 γvitro = γvivo = 1 γvitro = γvivo = 2
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(a) Impact of the steepness of concentration−effect curve
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F I G U R E  2   Impact of the steepness of concentration-effect curve (a), and of its mismatch between in vitro and in vivo experiments (b). 
AUC, area under the curve; AUEC, area under the effect curve; Cmax, maximum concentration; EC50, concentration leading to half of the 
maximum effect; EC90, concentration leading to 90% of maximum effect; obs, observed; SS, steady-state.
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each PK/PD index in all conditions. The efficacy ver-
sus PK/PD index correlation plots of the base scenario 
are reported as a reference for the other scenarios in 
Figures 1, 2, and 4.

Base scenario

In the base scenario (scenario 1), where there was 
no in vitro versus in vivo discrepancy for EC50 or γ 
and the doses for the animal experiment adequately 
covered the entire effect curve, a reasonable fit (i.e., 
a fitted curve well representing the overall trend) 
was obtained only for AUC24 and AUEC24 (Figure 1a, 
center column). The AUEC24 performed better than 
AUC24, with R2 > 0.9 (Table 1). Other PK/PD indices, 
most notably TEC50, showed data clustering, suggesting 
regimen-dependent relationship between the PK/PD  
index and efficacy.

Appropriate dose range for the drug's  
potency

In reality, the dose range of in vivo experiment does 
not always cover the full range of drug efficacy. Table 1 
scenarios 2–5 and Figure 1a show how this would im-
pact the performance of various PK/PD indices by 
using the same dosing regimens as for the base scenario 

but changing drug potency. When both EC50vitro and 
EC50vivo went from high to low, lower dose levels were 
more likely to show efficacy. This was reflected by bet-
ter efficacy at lower AUC24 and Cmax, as well as at lower 
TEC50 and TEC90. In scenarios 2–5, the data of AUC24 
and AUEC24 were far less dispersed around the fitting 
curve compared to the data of other PK/PD indices 
(Figure 1a). The R2 remained high and relatively stable 
for AUEC24 and was generally lower for all other PK/PD 
indices (Table 1).

Mismatch between in vitro/in vivo drug  
potency

The in vivo and in vitro potencies of a drug are likely to 
be different. Although this discrepancy will not affect the 
strength of correlation (R2) for AUC24 and Cmax, its impli-
cation for the other PK/PD indices is shown in Table  1 
scenarios 6–9 and Figure 1b. Under the tested conditions, 
AUEC24 was usually the best predictor, with R2 higher or 
comparable to that of AUC24 (Table  1). Both TEC50 and 
TEC90 performed poorly, except for TEC50 when EC50vitro 
was approximately one-third of EC50vivo (scenario 7). In 
this case, the R2 of TEC50 was like that of AUEC24, how-
ever, data appeared more dispersed around the fitted 
curve. When there was in vitro/in vivo potency mismatch, 
AUEC24 was the only endpoint that maintained consistent 
relationship with efficacy.
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Steepness of concentration-effect curves

AUEC24 was a reliable predictor with high R2 (>0.9) and 
good fit, regardless of the steepness of the concentration-
effect curve (Table  1 scenarios 10–13 and Figure  2a). 
When both γvitro and γvivo went from low to high, there was 
slight improvement in predictivity for AUC24 and notable 
improvement for Cmax. The dosing-interval dependency of 
the data pattern for TEC50 remained evident, irrespective 
of the steepness of the concentration-effect curve. As γ in-
creased, EC90 would become closer to EC50; this could 
explain the more similar data distribution for TEC90 and 
TEC50 at higher γvitro and γvivo. As γ decreased, EC90 would 
become higher, leading to TEC90 approaching zero within 
the dose range tested.

Mismatch between in vitro/in vivo 
steepness of concentration-effect curve

It is also conceivable that the in vitro concentration-effect 
curve has a different steepness than the in vivo curve 
(γvitro ≠ γvivo). This should have no impact on the relation-
ship with efficacy for AUC24, Cmax, and TEC50 (Table 1 sce-
narios 14–17, Figure 2b). As a driver of in vivo efficacy, 
AUEC24 was better than or comparable to AUC24 (when 
γvitro went from low to high, scenario 17), and superior to 
all other PK/PD indices.

Dosing interval as a covariate for the 
relationship between a PK/PD index and 
in vivo efficacy

Although statistical significance of dosing interval as a co-
variate for the efficacy versus PK/PD index relationship 
reflects the improvement of the fitting, the variation of the 
Index50 across dosing intervals is more important. Indeed, 
this variation reflects the pharmacological dependency of 
Index50 on dosing regimen.

For AUC50, dosing interval was a statistically signifi-
cant covariate across all scenarios 1–17, based on objective 
function value drop. However, AUC50 estimates varied in 
most cases by less than two-fold across dosing intervals 
(Figure 3a).

The effect of dosing interval on Cmax50 was statisti-
cally significant in all scenarios except scenario 2. The 
estimated Cmax50 generally had approximately a five-
fold variation across dosing intervals (Figure 3a), mainly 
due to higher estimates obtained for 24-h dosing interval 
(Figure 3b).

In most scenarios, TEC5050 and TEC9050 were not sta-
tistically significantly impacted by dosing interval, except 

for scenarios 5, 7, 10, and 11 for TEC5050 and scenario 11 
for TEC9050. Estimates for TEC5050 and TEC9050 varied up 
to ~ 1000-fold across dosing intervals (Figure 3a).

For AUEC50, dosing interval was a statistically signif-
icant covariate in all scenarios 1–17 except scenarios 6, 
10, 11, and 14. However, AUEC50 estimates were highly 
consistent across all dosing intervals, with less than two-
fold difference in most cases, and less than five-fold differ-
ences in all scenarios (Figure 3a).

For both AUC24 and Cmax, generally a longer dosing in-
terval was associated with a lower potency. No clear trend 
between dosing interval and potency was observed for 
TEC50, TEC90, and AUEC24 (Figure 3b).

Drugs with varying degrees of in vivo  
efficacy

When Emaxvivo was reduced from five times knet to 3.3, 2.0 
or 1.5 times, the R2 values remained high for AUC24 (0.71–
0.85) and AUEC24 (0.78–0.91), but were variable for Cmax 
(0.03–0.55) and TEC50 (0.09–0.84) and always negative for 
TEC90 (Table 1, “Impact of degree of in vivo drug efficacy”, 
and Figure 4a).

Timing of treatment initiation

When treatment was started at an early disease stage (day 3),  
instead of late stage (day 7), the R2 values for AUC24, 
Cmax, and AUEC24 were slightly higher than in the base 
scenario, but were negative for TEC50 and TEC90 (Table 1, 
“Early stage versus late stage of infection at start of ther-
apy”, and Figure 4b).

Duration of the therapy

When the duration of the therapy was reduced from 
10 days to 6, 4, or 2 days, the R2 values again remained 
high for AUC24 (0.85–0.89) and AUEC24 (0.95–0.96), 
were moderate-to-high for Cmax (0.53–0.67) and TEC50 
(0.53–0.83), whereas they remained negative for TEC90 
(Table 1, “Evaluation of shorter treatment duration”, and 
Figure 4c).

DISCUSSION

For any given dosing regimen, the three conventional PK/
PD indices, using AUC, Cmax, and time above a critical 
concentration cutoff, are all closely correlated. This is the 
reason that dose-fractionation experiments are necessary 
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for differentiating these indices for their correlation to ef-
ficacy. But this reveals a problem with all conventional 
PK/PD indices.

Dosing interval is a major driver for the shape of the 
PK profile, which has an impact on pharmacology and, 
by extension, efficacy.21 It affects the correlation between 
a conventional PK/PD index and in vivo efficacy and 
consequentially, clinical dose prediction. This has been 
supported by our recent unpublished observations: pre-
dicted clinical dose varied significantly depending on the 
dosing interval applied in animal experiments. In clini-
cal therapeutics, there are also reports that the required 
level of a PK/PD index depends on the dosing regimen.22 
Furthermore, there are situations where different PK/PD 
indices are suitable for different patient populations, for 
the same drug in the same indication23,24: if efficacy is 
driven by different PK/PD indices for older and younger 
patients or for patients with better and worse kidney func-
tion, at what age or creatine clearance value should one 
draw the line?

Therefore, it was not surprising that our simulations 
showed that the Index50 of the conventional PK/PD 

indices all depended on dosing interval (Figure 3). On the 
other hand, the Index50 for AUEC was largely indepen-
dent of dosing interval, suggesting that AUEC offers the 
potential for more robust dose prediction. In addition, it 
also promises an important additional benefit of reduc-
ing or avoiding dose fractionation in animal experiments, 
leading to lower animal numbers.

There are ways to conduct preclinical experiments to 
mimic the predicted PK profile in patients. One way is 
to dose animals more frequently to compensate for the 
shorter half-life of the drug, so the PK fluctuation over 
time reflects what is predicted for humans, however, this 
is logistically challenging.21 Another way is to design 
highly sophisticated dynamic in vitro systems, such as the 
hollow-fiber models, which mimic both pathogen dynam-
ics and predicted drug kinetics in patients25; but they can 
be costly for early candidate screening on a large scale. In 
addition, both these approaches depend on the predicted 
shape of the PK profile in patients; and such prediction is 
often not reliable.

Here, we introduce the use of AUEC to predict in 
vivo efficacy, as a middle ground between the use of 

F I G U R E  3   Dispersion of Index50 across the range of dosing intervals, represented as: the maximum-to-minimum ratio for Index50s 
across all dosing intervals (a), the dosing-interval-specific Index50 normalized to Index50 estimated in base model (b)  
*For AUC24 and Cmax, fittings for scenarios 6–9 and 14–17 are the same as for scenario 1. For TEC50, fittings for scenarios 14–17 are the same 
as for scenario 1. AUC, area under the curve; Cmax, maximum concentration; EC50, concentration leading to half of the maximum effect; 
EC90, concentration leading to 90% of maximum effect.
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the conventional (mostly PK-based) PK/PD indices in 
standard animal experiments and the more logistically 

challenging and/or expensive in vivo/in vitro approaches. 
This is underpinned by the principle that efficacy is driven 
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F I G U R E  4   Performance of PK/PD indices for drugs with varying degrees of in vivo efficacy (a), treating different stages of infection 
(b), or with various treatment durations (c). AUC, area under the curve; AUEC, area under the effect curve; Cmax, maximum concentration; 
EC50, concentration leading to half of the maximum effect; EC90, concentration leading to 90% of maximum effect; Emax, maximum effect; 
obs, observed; PD, pharmacodynamic; PK, pharmacokinetic; SS, steady-state.



1040  |      CHEN et al.

by collective pharmacology, which is in turn influenced by 
the shape of the PK curve. Our simulations were designed 
in a generalized setting, so the principal findings could 
be broadly relevant: a generic pathogen dynamic model 
where the drug reduced pathogen load via a sigmoidal PD 

effect counteracting the saturable net pathogen growth 
in vivo; a sigmoidal in vitro dose–response relationship; 
and a one-compartment linear in vivo PK model with 
first-order absorption and elimination. Notably, our sim-
ulated in vivo dataset was more extensive than the usual 
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animal experiments; it was designed to stress-test the con-
ventional and newly proposed PK/PD indices. Within this 
setting, we explored a broad range of scenarios for a rela-
tively long duration of treatment with a highly efficacious 

drug at disease steady-state. The scenarios were designed 
to test the impact of the choice of dose range in relation 
to potency (by simultaneously changing the drug's po-
tency both in vitro and in vivo to the same extent), the 

F I G U R E  4    (Continued)
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mismatch between in vitro/in vivo potency, and the shape 
variation of in vitro and in vivo potency curves. Some of 
these variations were aimed to reflect in vitro versus in 
vivo differences in measured efficacy endpoint, pathogen 
vitality or fertility, treatment sensitivity or resistance, drug 
penetration to infection site, in vivo host immunity, and/
or nonspecific binding to proteins or laboratory ware.11,26 
Additional conditions for drugs with lower degrees of ef-
ficacy, therapies at different stages of infection, or various 
treatment durations were also tested, to assess the robust-
ness of the comparison of the PK/PD indices.

The AUEC24 showed strong correlation with in vivo ef-
ficacy in all conditions, comparable or better than other 
PK/PD indices in each scenario. The performance of 
AUC24 was worse (R2 ≤ 0.7) when the dose range was sub-
optimal in relation to the drug's potency (Table 1, scenar-
ios 2, 3, and 5). For TEC50 and TEC90, there was a tendency 
of data clustering around shorter (3, 6, and 12 h) or longer 
(24 h) dosing intervals (Figures 1, 2, and 4). Generally, Cmax 
showed moderate or poor correlation with in vivo efficacy.

Among the conventional indices, TEC50 appeared to be 
the strongest efficacy driver in scenario 2, whereas AUC24 
appeared to be the strongest driver for the other scenarios. 
This observation highlighted an issue with reliance on R2 
to determine the optimal efficacy predictor and presents 
another reason for avoiding the need to class a drug as 
being time- or concentration-dependent (at least not by 
R2). The R2 measures the relative dispersion of the data 
around the regression line: the higher this dispersion, the 
lower its value. As such, it is partly an artifact of the exper-
imental condition, such as the chosen dose range: it tends 
to penalize the index whose dynamic range (the middle 
part of the sigmoidal Emax curve) is best covered by the 
experimental data.

Both TEC50 and TEC90 showed weak correlation to ef-
ficacy across most scenarios (Table  1). To better under-
stand this, we estimated the strength of regimen-specific 
correlation by including dosing interval as a covariate on 
both Index50 and γ_index for TEC50 and TEC90 (data not 
shown). The R2 turned out to be quite different across 
dosing intervals, with higher values for 24-h and/or 12-h 
dosing intervals, which are more commonly applied in 
practice in animal experiments despite not providing PK 
profile shapes comparable to those in humans (animals 
tend to have much shorter half-lives than humans). This 
observation highlighted the apparent utility of the time-
dependent PK/PD indices in clinical therapeutics, where 
only a single dosing interval is used. It explained not only 
how the critical value for the time above a cutoff thresh-
old could depend on the dosing interval,22 but also how 
different efficacy drivers were required for different dos-
ing intervals.23 It revealed a paradox: less extensive or less 
robust dose fractionation experiments (unlike the one 

we simulated) are more likely to establish a correlation, 
which might actually be an experimental artifact.

Our simulations were aimed to reflect drug discovery 
settings, where the duration of both in vitro and in vivo ex-
periments is too short for resistance to develop. Therefore, 
resistance development was not included in our assess-
ment. However, we evaluated scenarios where in vivo 
EC50 could be much higher than in vitro EC50, as well as 
varying degrees of Emaxvivo approaching knet. Collectively, 
these scenarios may somewhat reflect in vivo resistance 
not being anticipated during the in vitro stage.

Mechanistic modeling of greater sophistication has 
been proposed for pharmacotherapies treating bacte-
rial,10,12,13 viral,14–17 and parasitic infections.11,18,19 These 
more resource-demanding approaches offer the appeal 
of closer reflection of the mechanism of the disease-drug 
systems. Supported by more extensive experimental data, 
such as in vitro time-kill curves to characterize the patho-
gen dynamics as a function of drug concentration, they 
are more versatile in their predictivity. Under explicit as-
sumptions, they have the potential to address multiple 
pathogen populations with different susceptibility to drug 
intervention, adjust for tissue penetration, incorporate 
host immunity, describe drug combinations, and predict 
the outcome of prolonged treatments. On the other hand, 
using PK/PD indices for clinical dose prediction of anti-
infectives is a relatively simple, empirical, and economical 
approach, suitable for large-scale screening and ranking 
of compounds.

Simulated with a generalized pathogen-drug model in 
a range of scenarios, our findings serve as proof of concept 
that AUEC could be an alternative efficacy determinant 
for cross-species dose prediction. It has the potential to be 
more robust than the conventional indices, with further 
benefit of reducing or avoiding animal dose-fractionation 
experiments.

For anti-infectives, the end point for both in vitro and 
in vivo experiments is often the same—pathogen count. 
This may have contributed to the strong correlation be-
tween AUEC (largely driven by in vitro pharmacology) 
and efficacy (in vivo). However, fundamentally the AUEC 
approach is aimed to directly establish the link between 
pharmacology and efficacy, instead of relying on drug 
concentration as a surrogate of pharmacology. The foun-
dation for pharmacotherapy, that pharmacology drives 
efficacy, is not limited to infectious diseases. Conceivably, 
the shape of the PK profile matters more when phar-
macology is more directly linked to drug concentration; 
hence, this is where AUEC's ability to reconcile species 
difference in PK profile matters more. Regardless of the 
indication or the dose predictor, the reliability of the ther-
apeutic dose predicted from preclinical efficacy model 
depends to a great extent on the relevance of the model. 
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The applicability and predictivity of this relatively sim-
ple approach of replacing PK AUC with PD AUEC as a 
translational tool for dose prediction, underpinned by 
the pharmacological basis of clinical efficacy, should be 
broadly tested in different types of infections alongside the 
conventional PK/PD indices and could also be explored in 
areas beyond infectious disease.
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