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Posterior Probabilities of
Membership in Ability Groups
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Abstract
A novel approach to item-fit analysis based on an asymptotic test is proposed. The new test
statistic, χ2w , compares pseudo-observed and expected item mean scores over a set of ability bins.
The item mean scores are computed as weighted means with weights based on test-takers’ a
posteriori density of ability within the bin. This article explores the properties of χ2w in case of
dichotomously scored items for unidimensional IRT models. Monte Carlo experiments were
conducted to analyze the performance of χ2w . Type I error of χ2w was acceptably close to the
nominal level and it had greater power than Orlando and Thissen’s S� x2. Under some con-
ditions, power of χ2w also exceeded the one reported for the computationally more demanding
Stone’s χ2∗.
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Introduction

Item response theory (IRT) models are a potent tool for explaining test behavior. However, the
validity of analyses that involve IRT is critically related to the extent to which an IRTmodel fits the
data. Several authors pointed to consequences of lack of fit of the IRT model for subsequent
analyses (e.g., Wainer & Thissen, 1987; Woods, 2008; Bolt et al., 2014). The Standards for
Educational and Psychological Testing (AERA, APA, and NCME, 2014) recommend that
provision of evidence of model fit should be a prerequisite for making any inferences based on
IRT.

Analysis of fit at a level of single item plays an especially important role in the assessment of
IRT model validity, since IRT models are designed for the very purpose of explaining observable
data by separating item properties from the properties of the test-takers. In unidimensional IRT
models for dichotomous items, the probability of the response pattern y ¼ ðy1,…, yn Þ conditional
on ability of the test-taker, θ, is assumed to follow
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pðyjθÞ ¼ ∏
n

j¼1

�
fjðθÞ

�yj�1� fjðθÞ
�1�yj , (1)

where fj is a monotonically increasing function that describes the conditional probability of a
correct response to item j2f1,…,ng. The marginal likelihood of response vector y is given by

pðyÞ ¼
Z

pðyjθÞgðθÞdθ, (2)

where g is the a priori ability distribution. Finally, a posteriori density of θ given response vector y
is

gðθjyÞ ¼ pðyjθÞgðθÞ
pðyÞ

: (3)

These equations illustrate how item response functions fj mirror the structure of observable
data. They serve as building blocks of the whole IRTmodel, and their form impacts any inferences
regarding test-taker position on the θ continuum. Therefore, item-fit analysis is crucial in IRT. The
item-level misfit information allows one to improve the overall model fit by discarding the
misfitting items from analyses or by replacing the IRT model with one defined over a richer
parameter space.

Many different approaches to item-fit testing have been developed. Despite ample research on
the topic, the available solutions either are restricted to special cases of models and testing designs
or require resampling. This article describes a universal and computationally feasible method for
testing item-fit that aims at filling the gap in what is currently proposed.

Existing Item-Fit Statistics

Item-fit statistics are measures of discrepancy between the expected item performance, based on fj,
and the observed item performance. Usually, the difference between the observed and expected
item-score is calculated over groups of test-takers with similar ability and aggregated into a single
number. The pursuit of an item-fit measure that would allow for statistical testing started with the
first applications of IRT. A selective account of previous research is presented to provide the
context for the development of the approach proposed in the article. An in-depth review of
research on item-fit is available, for example, in Swaminathan et al. (2007).

Grouping on Point Estimates of θ

First advancements in this field of research were inspired by the solutions available for models that
did not deal with latent variables. These early approaches grouped test-takers on their point
estimates of θ and computed Pearson’s X 2 (Bock, 1972; Yen, 1981) or likelihood-ratio test statistic
G2 (McKinley & Mills, 1985). Uncertainty in measurement of θ is not accounted for under such
grouping and the observed counts within groups are treated as independent from each other.
Consequently, these fit statistics produce inflated Type I error rates, especially when tests are short
(Orlando & Thissen, 2000; Stone & Hansen, 2000). Only in the case of Rasch-family of models,
where the number-correct score is a sufficient statistic for bθ, such approaches yield item-fit
statistics that are in accordance with the postulated asymptotic distribution (Andersen, 1973; Glas
& Verhelst, 1989).
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Grouping on Observed Sum-Scores

Orlando and Thissen (2000) approached the problem from a different angle. Instead of relying on
the partition of latent trait, they grouped test-takers on their number-correct scores. This allowed to
compute the observed frequency of correct responses directly from observable data. In order to
compute the expected frequency of correct responses at a given score group, Orlando and Thissen
ingeniously employed the algorithm of Lord and Wingersky (1984). Their version of Pearson’s
statistic, S� X2, has become a standard point of reference in studies on item-fit because S� X2 is
fast to compute and has Type I error rates very close to the nominal level.

A likelihood-based approach to item-fit with aggregation over sum-scores was developed by
Glas (1999) and further expanded by Glas and Suarez-Falcon (2003). This approach stands out
from other item-fit measures, not only by accounting for the stochastic nature of item parameters,
but also because it does not directly bank on the observed versus expected difference. Itemmisfit is
modeled by additional group-specific parameters, modification indices, introduced in order to
capture systematic deviance of data from the item response function. To test for significance, the
modification indices are compared to zero and the Lagrange multiplier test is employed. However,
as pointed by Sinharay (2006), results of simulations run by Glas and Suarez-Falcon (2003) show
that Type I error of their statistic can be elevated under some score groupings.

Resampling Methods

Partitioning of ability on observed scores, rather than latent θ, limits practical applications of
statistics such as S� X2 or LM proposed by Glas. When test-takers respond to different sets of
items their raw sum-scores become incomparable. However, a lot of appeal of IRT arises exactly
from the fact that it can be applied in analysis of incomplete testing designs. So, the pursuit for a
solution that relies on residuals computed over θ scale has never stopped.

Stone (2000) developed a simulation-based approach. He proposed a χ2∗ statistic calculated
over quadrature points of θ, with a resampling algorithm for determining the distribution of χ2∗

under the null hypothesis. Stone’s χ2∗ repeatedly proved to provide acceptable Type I error rate
and it exceeded S� X2 in power (Stone & Zhang, 2003; Chon et al., 2010; Chalmers &Ng, 2017).
However, this came at a significant computational cost.

Other computationally intensive approaches were also developed. Sinharay (2006) and Toribio
and Albert (2011) applied the posterior predictive model checking (PPMC) method, that is,
available within Bayesian framework (Rubin, 1984). Theoretical advantage of PPMC method
over Stone’s χ2∗ or Orlando and Thissen’s S� X2 lies in the fact that the uncertainty of item
parameter estimation is taken into account in PPMC. However, simulational studies performed by
the authors showed that PPMC tests were too conservative in terms of Type I error, albeit still
being practically useful in terms of statistical power. Chalmers & Ng (2017) proposed a fit statistic
averaged over a set of plausible values (draws from (3)) that required additional resampling to
obtain the p -value. Their statistic had deflated Type I error rates, similarly to PPMC.

Problem With Existing Item-Fit Statistics

From a practical stance, the existing research on item-fit is disappointing. The researcher assessing
item-fit faces a choice either to use Orlando and Thissen’s S� X2, which has low power and is not
always applicable, or must refer to methods that require considerable CPU time. In consequence,
they may decide not to give any consideration to statistical significance and assess item-fit merely
on the value of some discrepancy measure. An example of such an approach is found in PISA
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2015 technical report (OECD, 2017, p. 143), where mean deviation (MD) and root mean square
deviation (RMSD) are used with disregard for their sampling properties.

The statistic proposed in this article aims at filling the gap by providing a method of testing item
fit that is suitable in contexts when raw-score grouping is not applicable and is computationally
feasible for practical use.

The Proposed Item-Fit Test

Let Δ1,…, Δr be non-intersecting grouping intervals of ability θ, such that

Δ1[…[ Δr ¼ R, Δk \ Δh ¼ � for k ≠ h: (4)

The proposed approach to item-fit analysis compares two types of estimates of the expected
item score over intervals Δk : bOj and bEj. Row vector bOj is computed from the observed item

responses, yj, with a covariance estimate bV j. Row vector bEj consists of model-based expectations
that are obtained from bf j.

To test for model fit, the following Wald-type statistic is employed

χ2w j ¼
�bOj � bEj

� bV�1

j

�bOj � bEj

�T

, (5)

which is assumed to be asymptotically chi square distributed with r � q degrees of freedom, where
q is the number of estimated model parameters used in computation of bEj.

The following sections will define quantities used in equation (5) and lay out the rationale
behind the asymptotic claim about χ2w. The presentation will be restricted to unidimensional
IRT models for dichotomous items because most of the research in the field was done under
these restrictions and it also allows to keep things simple. Therefore, Oj and Ej will be
henceforth referred to as vectors of the pseudo-observed and expected proportions of correct
responses. It should be kept in mind, however, that equation (5) is defined in terms that apply
to polytomous items and equation (4) could also be defined over multidimensional ability
space.

A possibility of developing aWald-type item-fit statistic such as equation (5) was mentioned by
Stone (2000), at the very end of his paper. Stone discussed bOj and bEj computed at quadrature
points, rather than over ability intervals, and did not indicate any way of obtaining bV j. To give due
credit for the general idea to Stone, the symbol χ2w is adopted for equation (5), as in the original
article.

Case When Item Parameters are Known

Assume that the IRT model holds, and the parameters of fj are known. A posterior probability that
ability of test-taker i with a response vector yi falls into interval Δk is a definite integral of (3) over
Δk

τki ¼ gðθj yi, ΔkÞ ¼
Z
Δk

gðθjyiÞdθ ¼

Z
Δk

pðyijθÞgðθÞdθ
pðyiÞ

: (6)

After observing m response vectors, an estimate of Ojk , that is, of the pseudo-observed
proportion of correct responses to item j in interval Δk , is given by
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Ojk ¼
Pm

i¼1yijτkiPm
i¼1τki

: (7)

Ojk is a weighted mean of item responses with weights being the posterior probabilities of test-
taker membership in grouping interval Δk . This estimate closely resembles the ML estimate of
component mean in Bernoulli mixture model (McLachlan & Peel, 2000). A mixture model

analogy can be further seen by noting that for each response vector yi: τki ≥ 0,
Pr
k¼1

τki ¼ 1 and

pðyjjyiÞ ¼
Pr
k¼1

τkipðyjj yi,ΔkÞ. The difference with mixture model is that a posteriori group

membership, τki, used in (7) is obtained “externally” from the IRT model likelihood and not
estimated via the likelihood of a mixture model.

The proposed item-fit test statistic assumes that the vector of estimates of pseudo-observed
proportions (7) over all ability intervals (4), Oj, is asymptotically multivariate normal with mean
Oj and covariance matrix V j. That is, as m→∞�

Oj � Oj

�
V

� 1
2

j →
d

Nrð0,IrÞ: (8)

A test regarding Oj can be derived from (8). To verify H0 : Oj ¼ O0j versus H1 : Oj ≠O0j the
following quadratic form with an asymptotic χ2r distribution is employed�

Oj � O0j

�
V�1

j

�
Oj � O0j

�T

→
d

χ2r : (9)

The covariance matrix V j in (9) is replaced by an estimator V j ¼ ½vjkh� r×r, where the ðk,hÞ th
element, a covariance between Ojk and Ojh, is given by

vjkh ¼
Pm

i¼1τkiτhi

�
yij � Ojk

��
yij � Ojh

�
�Pm

i¼1τki
��Pm

i¼1τhi
� : (10)

As pointed out in Shao (1999, p. 404), (9) is also true if V j is replaced by a consistent estimator.
Let yinj denote a response vector of test-taker i to all items but the item j. Model-based

probability of a correct response to item j in interval Δk upon observing yinj is given by

ejki ¼ p
�
yj ¼ 1

��� yinj,Δk

�
¼

p
�
yj ¼ 1,yinj

���Δk

�
p
�
yinj

���Δk

� ¼

Z
Δk

fjðθÞp
�
yinj

���θ�gðθÞdθZ
Δk

p
�
yinj

���θ�gðθÞdθ : (11)

After observingm response vectors, a model-based expected proportion of correct responses to
item j in interval Δk to par with (7) can be computed as

Ejk ¼
Pm

i¼1ejkiτkiPm
i¼1τki

: (12)

Finally, the item-fit is tested by stating H0 : Oj ¼ Ej against H1 : Oj ≠Ej with a test statistic
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χ2w j ¼
�

Oj � Ej

�
V

�1

j

�
Oj � Ej

�T

, (13)

that is asymptotically chi squared with r degrees of freedom.

Case When Item Parameters are Estimated

When IRT model parameters are estimated from data, item response functions fj are replaced withbf j; a posteriori group membership τki (6) is replaced with an estimate bτki; and pseudo-observed
proportion (7), model-expected proportion (12), and covariance element (10) are replaced, re-
spectively, by estimates

bOjk ¼
Pm

i¼1yijbτkiPm
i¼1bτki , (14)

bEjk ¼
Pm

i¼1bejkibτkiPm
i¼1bτki , (15)

bvjkh ¼
Pm

i¼1bτkibτhi
�
yij � bOjk

��
yij � bOjh

�
�Pm

i¼1bτki��Pm
i¼1bτhi� : (16)

The item-fit statistic (13) for an IRT model with parameters estimated from data becomes
χ2w j ¼ ðbOj � bEjÞ bV�1

j ðbOj � bEjÞT as previously stated in (5). Number of degrees of freedom of χ2w j
needs to be adjusted to account for the number of estimated model parameters used in computation
of bEj.

Monte Carlo Experiments

This section describes results of three simulation studies conducted to examine properties of χ2w.
First simulations dealt with implementation issues and their main purpose was to verify how well
the asymptotic claims about χ2w hold upon varying approaches to construction of grouping in-
tervals. Second simulations replicated a Monte Carlo experiment designed by Stone and Zhang
(2003) that was augmented to include additional condition of incomplete response vectors. This
experiment allowed to analyze Type I error rates and power of χ2w against a benchmark of Orlando
and Thissen’s S� X2 and Stone’s χ2∗, and to verify performance of χ2w in an incomplete-data
design setting. Final study was based on the “bad items” design by Orlando and Thissen (2003)
and aimed at providing further information about power of χ2w.

Ability parameters in all three simulation studies were sampled from normal distribution
gðθÞ ¼ Nð0; 1Þ. Item response functions belonged to the logistic family of IRT models: the three-
parameter logistic model (3PLM)

fjðθÞ ¼ P
�
yj
��θ� ¼ cj þ 1� cj

1þ e�ajðθ�bjÞ , (17)

the two-parameter logistic model (2PLM, (17) with cj ¼ 0) and the one-parameter logistic model
(1PLM, (17) with cj ¼ 0 and aj ¼ a).

All analyses were performed in Stata. Item responses under (17) were generated using uirt_sim
(Kondratek, 2020). Parameters of IRTmodels were estimated by uirt (version 2.1; Kondratek, 2016)
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with its default settings—EM algorithm, Gauss–Hermite quadrature with 51 integration points, and
0.0001 stopping rule for maximum absolute change in parameter values between EM iterations. The
uirt software was also used to compute S� X2 and χ2w. Indefinite integrals over gðθÞ, needed for
expected proportions used in S� X2 and to obtain pðyiÞ seen in denominator of (6), were computed
by Gauss–Hermite quadrature with 151 integration points. Definite integrals over gðθÞ, seen in the
numerator of (6), employed Gauss–Legendre quadrature with 30 integration points at each bin of
ability, Δk .

Each of the Monte Carlo experiments involved 10,000 replications of the simulated conditions.
Type I error and power were computed as percentage of rejectedH0 at significance level α ¼ 0:05,
averaged over replications.

Simulation Study 1 – Number and Range of Grouping Intervals

Implementation of χ2w has required decisions on the number of grouping intervals (4) and their
range. Postulated distribution of χ2w is derived from asymptotic normality of the vector of the
pseudo-observed proportions (8); therefore, the conventional rule for appropriateness of normal
approximation to sample proportion was adopted to govern range of ability intervals. This resulted
in item-specific intervals Δk that were constructed so that

mjkbπjk

�
1� bπjk

�
≈ const, (18)

where bπjk is a simple model-based estimate of proportion of correct responses in interval Δjk

bπjk ¼ bp�yj ¼ 1jΔjk

� ¼
Z
Δjk

bf jðθÞgðθÞdθZ
Δjk

gðθÞdθ
: (19)

and mjk is the expected number of observations in interval Δjk , mjk ¼ m
R
Δjk
gðθÞdθ.

Ranges of Δjk that would meet the condition (18) were determined by first splitting the ability
distribution into smaller Δjv intervals that were equiprobable with respect to gðθÞ, mjv ¼ 0:001m,
and v2f1,…,1000g. The finer intervals were then aggregated into Δjk = Uv¼b

v¼a Δjv so thatPv¼b

v¼a
bπjvð1� bπjvÞ ≈ 1

r

Pv¼1000

v¼1
bπjvð1� bπjvÞ, where r was the desired number of Δjk (4). Computation of

bπjv in this step was performed with Gauss–Legendre quadrature with 11 integration points.
Behavior of χ2w upon adopting criterion (18) with three ability bins when testing fit of an easy

2PLM item (aj ¼ 1:7 and bj ¼ �1:84) under true H0 is illustrated in Figure 1 (upper panel) and
compared to an alternative equiprobable division of ability (lower panel). Graphs presented in
Figure 1 were obtained in a simple Monte Carlo experiment in which the item tested for fit was
embedded in a 30-item 2PLM test. The remaining 29-item parameters were sampled from
ln av ≠ j ∼ Nðln 1:7, 0:4Þ and bv ≠ j ∼Nð0; 1Þ, and the sample size was m ¼ 1000. In each repli-
cation, χ2w j was computed and the pseudo-observed proportions of correct responses bOjk (14) were
stored. Upon completing 10,000 replications, the resulting empirical distribution of χ2w j was
compared against theoretical χ2ð1Þ in a Q–Q plot, and the pseudo-observed proportions were
transformed according to (8) so that standardized variables were obtained and compared against
theoretical Nð0; 1Þ on histograms.

The equiprobable division would be a tempting alternative to (18) as it results in equal expected
number of observations in each interval, mjk ≈ const. By being independent from item parameters,
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it would decrease the computational cost of χ2w because the group membership probabilities, bτki,
would need to be obtained only once. However, simulation results presented in Figure 1 indicate
that χ2w j grossly deviated from theoretical χ2ð1Þ upon such division. The expected number of
observations in each bin exceeds 333, but because of the extreme easiness of the item, the

Figure 1. Distribution of χ2w under different choices of interval range.
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rightmost bin is associated with a very small value on the mjkbπjkð1� bπjkÞ criterion. The trans-
formed proportion of correct responses in this bin experiences a visible ceiling effect, and thus the
χ2ð1Þ assumption does not hold. Yet, when χ2w j was computed with intervals constructed using
criterion (18), it resulted in a good approximation to χ2ð1Þ, even at these rather difficult conditions
in terms of sample size and item difficulty.

A second problem of implementation of χ2w required deciding on the number of ability bins, r.
It was expected that increasing r would be detrimental to the normal approximation of
pseudo-observed proportions. So, from the standpoint of Type I error, the safest approach would
be to use the smallest possible number of intervals, r ¼ qþ 1, leading to χ2w with a single degree of
freedom. However, the relation between r and power of χ2w was not obvious. On the one hand,
increasing r would allow to detect a locally finer grade of deviances between (14) and (15). On the
other hand, it would increase the entries of the covariance matrix (16) because of smaller effective
sample size per interval.

Number of Ability Bins – Simulation Design. To investigate properties of χ2w under varying number of
bins, a Monte Carlo experiment was conducted under similar scheme that was used to obtain
results reported in Figure 1. The conditions of experiment were extended to cover different IRT
models (1PLM, 2PLM, and 3PLM), items of varying marginal difficulty, πj ¼

R
fjðθÞgðθÞdθ

(πj ¼ 0:5 and πj ¼ 0:9 for all models and additionally πj ¼ 0:3 for 3PLM), two sample sizes
(m2f400, 4000g), and two test lengths (n2f10, 40g). Under each of these conditions Type I
error was obtained in both fixed and estimated parameters case, and Q–Q plots were plotted for
certain number of ability bins for closer assessment of the distribution of χ2w. Additionally, power
to detect misfit was analyzed with varying number of ability bins by fitting a 1PLM or 2PLM
model to an item estimated under 3PLM. This article presents only main conclusions from the
experiment; detailed results under all tested conditions are provided in the online supplement.

Number of Ability Bins – Simulation Results. Figure 2 depicts relationship between the number of
ability intervals and resulting detection rates for an item of medium difficulty (πj ¼ 0:5) that was
simulated as 3PLM and then estimated as 3PLM (Type I error) or as either 2PLM or 1PLM
(statistical power). It illustrates that increasing the number of ability bins results in decrease of
statistical power of χ2w. Additionally, increase of r eventually leads to elevated Type I error rates.
These patterns were also seen in other conditions considered in the experiment, with the det-
rimental effect of increased r on the Type I error being especially prominent for difficult items in
small samples (online supplement).

Based on these results, it was decided to implement χ2w with r ¼ qþ 1 intervals for 3PLM and
2PLM. For 1PLM: either r ¼ 3 if criterion (18) exceeds 20, or r ¼ 2 otherwise. Number 20 pre-
cautiously doubles the conventional rule for when a normal approximation to sample proportion is
appropriate. These settings were used in all the simulation studies covered in the rest of the article.

Q–Q plots were obtained according to the adopted rule for the number of intervals for a more
detailed verification of the postulated asymptotic distribution of χ2w (online supplement). For
m ¼ 4000, the empirical distribution of χ2w was well aligned with theoretical χ2 under all tested
conditions, both in the known and the estimated parameters case. Approximation was also well-
behaved for m ¼ 400 and moderate item difficulty. However, combined conditions of small
sample size and extreme item difficulties resulted in deviation of χ2w from its theoretical asymptotic
distribution. We should notice that under such conditions, the criterion for appropriateness of
normal approximation of sample proportion (18) is small in value, even when the lowest possible
number of ability intervals is used. This alerts us that χ2w should be used with caution whenever fit
of extremely easy or difficult item is to be assessed in small samples. A condition mjkbπjkð1�bπjkÞ> 20 seems to be a good guideline on deciding if results of χ2w are trustworthy (see Figure 1).
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Simulation Study 2 – Type I Error and Power

Simulation Design. This study replicated Monte Carlo experiment designed by Stone and Zhang
(2003). Three test lengths, n2f10, 20, 40g, were crossed with three sample sizes,
m2f500, 1000, 2000g, and data was generated under two IRT models: 2PLM and 3PLM. Under
the 2PLM generating scenario, a set of 10 pairs of item parameters was constructed by crossing
two values of item discrimination parameter, aj 2f1:2, 2:2g, with five values of item difficulty
parameter, bj 2f � 2, � 1, 0, 1, 2g. 20-item and 40-item tests were built by adding another 10 or
3x10 items defined by repetition of the same parameter set. The 3PLM scenario used the same
discriminations and difficulties as the 2PLM. All items, except the easiest one with bj ¼ �2, were
added a pseudo-guessing parameter cj ¼ 0:25 in the 3PLM scenario.

This design was extended to create additional incomplete-data conditions. It was ac-
complished by taking the complete data generated under the original design for n2f20, 40g
and m2f1000, 2000g, and treating random 50% of responses for each item as missing. In
result, additional four generating conditions were introduced in which number of observations
per item and expected number of items per observation halved the size of the original complete
data.

Figure 2. Type I error and power of χ2w in relation to the number of ability bins.
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Figure 3. Type I error rates for S� X2 (top) and χ2w (bottom) conditional on item parameters.

Kondratek 473



In each replication, all item parameters were estimated from the simulated data under two
IRT models: 1PLM and 2PLM. In complete data conditions, Orlando and Thissen’s S� X2

and the χ2w statistics were computed from the estimates of the IRT model. In the missing
responses scenario, only χ2w was obtained because S� X2 is not applicable to data with
incomparable sum-scores. The case when generating model was the same as estimating model
(2PLM) served to analyze Type I error. Other three combinations, when generating model had
more parameters than estimating model, were used to assess statistical power of S� X2

and χ2w.

Table 2. Power rates for different item-fit statistics (%).

Test length Sample size
Results of current study

Results of Stone
and Zhang

S� X2 χ2w χ2w S� X2 χ2∗

Complete data Complete data 50% missing

Simulated 2PLM – Estimated 1PLM
n ¼ 10 m ¼ 500 23.8 35.1 26 51

m ¼ 1000 49.5 59.9 53 75
m ¼ 2000 80.7 86.5 81 94

n ¼ 20 m ¼ 500 23.2 47.5 23 56
m ¼ 1000 46.2 73.1 36.4 45 78
m ¼ 2000 78.7 93.7 60.8 80 96

n ¼ 40 m ¼ 500 20.3 52.3 22 52
m ¼ 1000 38.4 77.2 46.6 40 78
m ¼ 2000 71.9 95.5 71.9 75 94

Simulated 3PLM – Estimated 1PLM
n ¼ 10 m ¼ 500 36.5 47.8 35 69

m ¼ 1000 58.6 64.3 59 82
m ¼ 2000 75.0 77.8 75 88

n ¼ 20 m ¼ 500 41.4 61.9 42 67
m ¼ 1000 63.7 74.9 49.7 65 80
m ¼ 2000 75.9 86.2 66.0 77 87

n ¼ 40 m ¼ 500 41.5 66.2 42 68
m ¼ 1000 63.4 78.0 61.5 64 80
m ¼ 2000 74.6 88.2 74.6 75 90

Simulated 3PLM – Estimated 2PLM
n ¼ 10 m ¼ 500 7.1 23.7 7 13

m ¼ 1000 9.3 40.2 10 30
m ¼ 2000 13.3 62.4 14 46

n ¼ 20 m ¼ 500 8.3 25.9 9 13
m ¼ 1000 11.5 41.0 23.9 10 25
m ¼ 2000 16.8 58.6 40.2 17 44

n ¼ 40 m ¼ 500 8.0 20.6 6 15
m ¼ 1000 11.4 32.1 25.1 7 28
m ¼ 2000 17.4 46.1 40.3 12 44

Note. Stone and Zhang (2003, Table 2).
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Simulation Results. Table 1 summarizes performance of S� X2 and χ2w when both the generating
and the estimating model were 2PLM. Entries in the table are percentages of rejected H0 at
significance level α ¼ 0:05 averaged over all items and all replications. Results for S� X2 and χ2∗

reported in Stone & Zhang (2003) are also included for reference. It should be kept in mind that
Stone and Zhang results were obtained with two orders of magnitude fewer replications. Figure 3
expands the analysis of Type I errors of S� X2 and χ2w, by presenting rejection rates of true H0 at
an item level. Results for the first 10 items are plotted against a 95% confidence bound around the
nominal significance level α ¼ 0:05, assuming standard error of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1� αÞ=104p

.
Type I error of S� X2, as seen in Table 1 and Figure 3, was almost flawlessly nominal for all

items, test-lengths, and sample sizes that were considered in the study. This result confirms what
was previously observed by Orlando and Thissen (2000) or Stone and Zhang (2003).

The averaged Type I error of χ2w was in 0.037–0.045 range (Table 1) which is acceptable. These
values do not exceed ranges reported for both S� X2 and χ2∗ by Stone and Zhang (2003) under the
same experimental conditions. However, the item-level information in Figure 3 reveals that for
higher discriminating items (aj ¼ 2:2) with moderate difficulty (bj 2f�1, 0, 1g) Type I error of χ2w
is deflated. This effect diminishes with increase in test length. From practical standpoint deflated
false rejection rates would not be a problem as long as χ2w has sufficient power to detect misfit.

Power of S� X2 and χ2w was examined by averaging rejection rates in three scenarios when the
model used for simulating responses had more item parameters than the model used in estimation:
2PLM-1PLM, 3PLM-1PLM, and 3PLM-2PLM. The results are presented in Table 2, together
with power of S� X2 and χ2∗ from simulation by Stone and Zhang (2003). The χ2w statistic
outperformed S� X2 with regard to power under all experimental conditions. When compared to
results for χ2∗ reported in Stone and Zhang (2003), χ2w was more sensitive in detecting misfit under
the 3PLM-2PLM. In other misfit scenarios χ2∗ and χ2w achieved similar power under long tests
(n ¼ 40) and the reported power of χ2∗ exceeded that of χ2w for shorter tests. Power of Stone’s χ2∗

seems to be unaffected by the test length. This puts Stone’s χ2∗ in a position of an especially useful
item-fit measure for short tests.

To conclude remarks on this Monte Carlo experiment, it is worth noticing that χ2w performed
well when random 50% of item responses were missing both in terms of its averaged Type I error
rates (Table 1) and power (Table 2). Results for χ2w under the missing responses condition closely

Table 3. Power rates for three types of misfitting items.

Item Test length
n = 500 n = 1000 n = 2000

S� X2 χ2w S� X2 χ2w S� X2 χ2w

BAD1 m = 10 0.379 0.634 0.551 0.845 0.790 0.969
m = 20 0.539 0.868 0.753 0.982 0.955 0.999
m = 40 0.598 0.964 0.861 0.999 0.992 1.000
m = 80 0.533 0.987 0.865 1.000 0.998 1.000

BAD2 m = 10 0.130 0.228 0.209 0.413 0.378 0.680
m = 20 0.221 0.450 0.406 0.749 0.731 0.953
m = 40 0.315 0.607 0.586 0.875 0.912 0.993
m = 80 0.351 0.641 0.659 0.905 0.957 0.996

BAD3 m = 10 0.221 0.520 0.444 0.802 0.783 0.969
m = 20 0.359 0.764 0.756 0.967 0.982 1.000
m = 40 0.443 0.842 0.873 0.990 1.000 1.000
m = 80 0.444 0.851 0.878 0.992 1.000 1.000
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resemble the ones that are observed for complete data but with twice less items and observations,
which is exactly the expected outcome. This result puts χ2w at advantage of over methods that rely
on observed sum-score portioning of ability, like S� X2.

Simulation Study 3 – Power

Simulation Design. Last experiment adapted a design proposed by Orlando and Thissen (2003) to
analyze power in misfit scenarios that go beyond fitting of a restricted IRTmodel to data generated
from an unrestricted model. It involved three “bad” items that are described by response functions

BAD1 : PðyjjθÞ ¼ cj
1þeajðθ�ðbj�djÞÞ þ 1

1þe�ajðθ�bjÞ,

where aj ¼ 1:7, 2:5, bj ¼ 1, cj ¼ 0:25, and dj ¼ 1:5;

BAD2 : PðyjjθÞ ¼ dj
1þe�ajðθ�bjÞ,

where aj ¼ 1:7, 2, bj ¼ 0:5, dj ¼ 0:7; and

BAD3 : PðyjjθÞ ¼ xj
1þe�ajðθ�bjÞ þ yj

1þeajðθ�ðbj�djÞÞ,

where aj ¼ 1:7, 3:5, bj ¼ �1, dj ¼ 3, xj ¼ 0:55, and yj ¼ 0:45:

These bad items were, one at a time, embedded in tests consisting of n2f10, 20, 40, 80g total
items. The remaining v ≠ j items were drawn from 2PLM with ln av ≠ j ∼ Nð0, 0:5Þ and
bv ≠ j ∼Nð0; 1Þ. For each test length m2f500, 1000, 2000g, item responses were generated and
IRT model was fit to data. Items BAD2, BAD3, and all v ≠ j items were modeled with 2PLM
without imposing priors on item parameters, and item BAD1 was modeled with 3PLM using
noninformative priors: Nð0; 3Þ for bj, Nð1:1,3Þ for aj, and βð1:01,1:03Þ for cj. Estimated item
parameters were used to compute χ2w and S� X2 for the three bad items.

This design deviated from the original conditions used by Orlando and Thissen (2003) by
adopting 3PLM only for the item BAD1, instead of using it for all items. It was motivated by
observation that the cj parameter for items BAD2 and BAD3 approached 0 with increase ofm. The
3PLM would be an unnecessarily over-parametrized choice for items BAD2 and BAD3.

Simulation Results. Resulting power rates (Table 3) support previous evidence (Table 2) that χ2w is
more sensitive in detecting misfit than S� X2. Power of both statistics rose with increase of test
length and sample size, but under all tested conditions χ2w exceeded S� X2.

Summary

Multiple Monte Carlo experiments were conducted to examine properties of the new χ2w item-fit
statistic. Type I error of χ2w was close to nominal level. It outperformed Orlando and Thissen’s
S� X2 on power under all tested conditions. In the 3PLM-2PLM, misfit scenario χ2w was also
more sensitive in comparison with Stone’s χ2∗. The results are promising and χ2w poses as a viable
candidate to test for item fit. It is especially attractive because it can be applied to incomplete
testing designs, unlike alternatives that use observed scores for partitioning, and is far less
computationally demanding than available statistics that involve residuals over the latent trait.

It is worth pointing to the possibility of other applications of the item-fit approach that was
proposed in the article. First, χ2w is straightforwardly generalizable to polytomous items and to
multivariate abilities. Also, the quadrature used in implementation of χ2w can be replaced with other
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solutions to cover cases when ability is not normally distributed. Second, estimates of observed
proportions and of the covariance matrix in (5) can be utilized to construct confidence bounds
around observed proportions. Such confidence intervals can be plotted against bf j to aid graphical
analysis of item-fit. And finally, approach outlined in the article can also be applied to perform
differential item functioning (DIF) analysis.

It should be noted that mathematical underpinnings of χ2w laid out in the article are incomplete.
Asymptotic multivariate normality of vector of pseudo-observed proportions, (8), is assumed
without proof. Consistency of the proposed estimator of the covariance, (10), is likewise just
assumed. Careful consideration should also be exercised on how replacing item response
functions in the known parameter case of χ2w by their ML estimates impacts the asymptotic claims
about χ2w – especially when item parameters are estimated with priors. Results of simulational
studies support asymptotic claims made about χ2w. However, they cannot be automatically
generalized to cover conditions that would deviate from the specific ones that were considered
here. This opens ground for future research on χ2w.
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