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ABSTRACT

Objective: Deep learning models for clinical event forecasting (CEF) based on a patient’s medical history

have improved significantly over the past decade. However, their transition into practice has been limited,

particularly for diseases with very low prevalence. In this paper, we introduce CEF-CL, a novel method based on

contrastive learning to forecast in the face of a limited number of positive training instances.

Materials and Methods: CEF-CL consists of two primary components: (1) unsupervised contrastive learning for

patient representation and (2) supervised transfer learning over the derived representation. We evaluate the

new method along with state-of-the-art model architectures trained in a supervised manner with electronic

health records data from Vanderbilt University Medical Center and the All of Us Research Program, covering

48 000 and 16 000 patients, respectively. We assess forecasting for over 100 diagnosis codes with respect to

their area under the receiver operator characteristic curve (AUROC) and area under the precision-recall curve

(AUPRC). We investigate the correlation between forecasting performance improvement and code prevalence

via a Wald Test.

Results: CEF-CL achieved an average AUROC and AUPRC performance improvement over the state-of-the-art

of 8.0%–9.3% and 11.7%–32.0%, respectively. The improvement in AUROC was negatively correlated with the

number of positive training instances (P< .001).

Conclusion: This investigation indicates that clinical event forecasting can be improved significantly through

contrastive representation learning, especially when the number of positive training instances is small.
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INTRODUCTION

Electronic health records (EHRs) provide a historical accounting of

a patient’s medical status. When deployed in large healthcare organ-

izations, the depth and breadth of the data stored in EHR systems

can provide a substantial quantity of training data for modern ma-

chine learning frameworks and artificial intelligence applications.

In particular, deep learning has the potential to profoundly impact

many problems in healthcare,1–3 including the forecasting of a

patient’s future risk of health problems.4–8 However, one of the

greatest concerns over the application of deep learning is that the

resulting models tend to adapt to, and thus perform inference over,

the noise (ie, spurious feature-label correlation) inherent in training
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data,9 neglecting the intuitive causal relationships that clinicians

typically recognize. As a consequence, deep learning is, at times, in-

sufficiently reliable to transition from theory to practice.10

Recently, representation learning,11,12 a branch of machine

learning that trains large and deep models in an unsupervised manner,

has emerged as a potential solution to this problem. Through repre-

sentation learning, a forecasting problem is resolved through a simple

classifier built on top of the learned representation that can be infor-

mative without drawing upon the assistance of ground-truth labels.

Among the various approaches for representation learning, contras-

tive learning has, perhaps, demonstrated the greatest potential.13,14

However, the evidence to date has been generated in the domains of

computer vision and natural language processing.15–18 To the best of

our knowledge, this approach has not been adapted to clinical event

data, which is a composition of semantically heterogenous domains

(eg, diagnoses, medications, or demographics).

In this article, we focus on deep learning-based diagnosis forecast-

ing applied to a large population. We specifically aim to support

more accurate forecasts of which patients should be prioritized for

resources in resource-constrained environments. One example of such

a situation is to identify patients who might need prospective genotyp-

ing.19 There is evidence, for instance, that patient morbidity can be

significantly reduced when the right drug is provided at the right time

with the right dosage. As such, patients can be genotyped prior to an

event that requires use of the pharmacogenetics. However, the resour-

ces available for genotyping are, at the present moment in time, lim-

ited due to the fact that insurers do not reimburse for prospective

genotyping, such that healthcare organizations (or patients) are left

with deciding whether or not to pay for the generation of relevant ge-

netic data. Thus, to balance costs against clinical outcomes, a medical

center could provide risk forecasting for its population to identify the

patients who would benefit the most from prospective genotyping.

We introduce CEF-CL, a novel method for individual-level Clini-

cal Event Forecasting through Contrastive Learning. We illustrate

the potential for this method with data derived from two clinical

data sets. The first, corresponds to data from the NIH-sponsored All

of Us Research Program,20 a publicly available resource that enables

reproducibility of this investigation. The second is an EHR data set

from Vanderbilt University Medical Center.21 We conduct experi-

ments with five different types of sequential models trained with a

purely supervised paradigm (as a baseline) and CEF-CL across over

100 diagnosis code forecasting tasks. We show that the performance

improvement achieved by CEF-CL over the baseline is inversely pro-

portional to the prevalence of the diagnoses. We use a large number

of forecasting tasks to illustrate that this new learning method has

potential for a wide range of applications, but also highlight several

clinical phenomena for which it appears to achieve notable perfor-

mance.

MATERIALS AND METHODS

Challenges for few-shot learning
Few-shot learning (FSL)22 represents a set of machine learning prob-

lems where only a limited number of training instances with super-

vised information (eg, known class labels) are available to the model

training process. With respect to health data, a clinical event fore-

casting model is typically learned from a case group (ie, patients

with the target diagnosis), which is assigned positive labels before

the training process. In many scenarios, the case group may be quite

small due to the rarity of the target disease. As such, the general clin-

ical event forecasting problem falls within the scope of FSL.

In an FSL setting, the training instances in the case group are an

insufficient representation of the corresponding population’s data

distribution, which leads to several problems. First, as shown by

Prabhu and colleagues,23 diseases in the long tail of the prevalence

distribution tend to exhibit large intraclass variability (ie, the train-

ing instances that are members of the same class exhibit very differ-

ent patterns). Second, the low volume of case instances hinders

regularization during a parameter-learning process supervised by the

case/control labels. As a consequence, it is difficult to train an effec-

tive and generalizable classifier.

As neural networks grow in their depth and number of parame-

ters, their ability to learn complex patterns improves.24–27 This flexi-

bility makes it seem as though deep learning can model the complex

processes that govern disease development—particularly when they

are influenced by multiple contributing factors and exhibit compli-

cated trajectories over time.28–31 However, when model architec-

tures based on modern deep learning techniques, which we refer to

as backbone models, are deployed in an FSL setting, there is an im-

balance in the quantity of parameters that are to support modeling

power and the amount of supervised information available to guide

the optimization of the parameters (ie, too many parameters but too

little supervised information). Consequently, optimizing for high

modeling power could produce undesirable generalization behav-

iors, such as: (1) memorization, where the model fits a transforma-

tion from features to labels in the training set (even when the label is

arbitrarily assigned), which perpetuates spurious relationships32; (2)

overconfidence: the model generates an output with high confidence

for test instances that are outside of the training distribution33; (3)

instability: small perturbations ¼ to the input induce large changes

in the model’s output.34 It is possible that a multitask learning strat-

egy35 could resolve these problems (ie, the model is trained for mul-

tiple tasks simultaneously). For instance, Choi and colleagues36

showed that a joint-training strategy can induce a strong regulariza-

tion effect on the learning process for healthcare related tasks. How-

ever, this is usually not feasible in practice because: (1) it requires

the incorporation of extra knowledge that is not readily available

(eg, labels for auxiliary tasks) and (2) many labeled cohorts are cre-

ated for a single learning task only.

Representation learning as a basis
We build on the work of Ma and colleagues37 and alter the learning

schema from the traditional end-to-end supervised paradigm. In do-

ing so, we combine unsupervised representation learning (URL) and

supervised transfer learning (STL). This method separates the model

into two components. The first component, which possesses almost

all of the parameters in the model, is trained to learn informative pa-

tient representations in an unsupervised manner. The second compo-

nent, which is composed of a limited number of parameters, is

trained to fit the derived patient representation with ground-truth

labels. Figure 1 illustrates the relationship between traditional end-

to-end supervised paradigm and the proposed hybrid method. The

hybrid method is notable for several reasons. First, it reduces the

risk of overfitting the model to the training data by encouraging the

training process to reduce its reliance on training labels. Second,

when the minority class is composed of a substantially smaller num-

ber of instances than the majority class (eg, as is the case in rare dis-

orders), the relationships between the features for the minority class
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can be sufficiently learned by leveraging instances from the majority

class that share the same feature space.

To realize such a learning paradigm, we introduce contrastive

learning into the representation modeling of EHR data. Contrastive

learning is a discriminative approach for learning the latent represen-

tation of data by: (1) maximizing the semantic similarity between

instances in the same predefined latent class and (2) minimizing the

semantic similarity between instances in different predefined latent

classes.38 The essential component of contrastive learning is to ac-

quire an instance’s latent class as an auxiliary input to the learning al-

gorithm. It is straightforward to obtain the latent class via data

augmentation for certain tasks (eg, in computer vision tasks, images

and their crops/rotations are in the same latent class). Yet it is not evi-

dent how the latent class for EHR data in the form of temporally or-

ganized clinical events (eg, the assignment of series of diagnosis

codes) should be defined. Thus, we introduce a data augmentation

strategy to adapt contrastive learning to the needs of EHR modeling.

Learning method framework
We introduce a learning method for clinical event forecasting with

longitudinal data. In this setting, each patient is associated with a

medical history represented as a sequence of episodes—inclusive of

inpatient stays and outpatient visits. Each episode includes informa-

tion for three semantically disparate domains: diagnoses, proce-

dures, and nondiagnostic information in the form of patient

demographics, the episode length, and time between episodes. Note

that this method is not restricted to these domains and can be ap-

plied on data with additional domains, such as prescribed medica-

tions or laboratory test results. This framework consists of two

stages: (1) URL and (2) STL. In the URL stage, we apply a contras-

tive method and design the corresponding data augmentation strat-

egy for EHR data. The data augmentation and contrastive

pretraining subsections as follows collectively describe the URL

stage. Figure 2 provides a summary of this stage of the process.

Data augmentation

Data augmentation produces latent classes by generating partial

views for each patient. Specifically, each patient in the data set cor-

responds to a latent class, including the patient’s record and the

record’s partial views For each patient, we generate a pair of views

in each training epoch through a two-step process. First, following

the augmentation method introduced by Giorgi and colleagues,39

we select two subsequences of consecutive episodes from each

patient’s record. Next, we remove all information except for an ar-

bitrarily selected medical concept type (eg, diagnoses) from one sub-

sequence. We represent the partial views as v� for the subsequence

with all domains and vk for the subsequence with the domain k.

Contrastive pretraining
The objective for contrastive pretraining is to learn latent represen-

tations for the diagnosis and procedure event history of patients that

can be effectively leveraged for a downstream forecasting task.

We use multiple encoders with the same architecture, each of

which corresponds to a type of augmented partial view. Specifically,

v� and each vk are mapped into the latent space through encoders

denoted as Encoder� and Encoderk, respectively. Note that the en-

coder can be used with the architecture of any existing backbone

model.

The optimization objective for contrastive pretraining is defined

as:

Loss ¼ �
X

i

X
k

log
exp sim v�i ; v

k
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� �� �
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¼ 1

s

Encoder� v�i
� �

Encoderk vk
i

� �T

kEncoder� v�i
� �
kkEncoderk vk
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� �
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where s is a positive-valued temperature hyperparameter. This ob-

jective is referred to as the NT-Xent by Chen and colleagues40 and is

equivalent to the infoNCE41 loss, which approximates the mutual

information between different views of the same record.

Transfer learning
In this step, the objective is to obtain a classifier for forecasting. We

first use the trained Encoder� to derive a latent representation for

Figure 1. An illustration of (A) a traditional end-to-end supervised training paradigm, where the feature learning and forecasting processes are integrated into

one model trained under the supervision of class labels; and (B) the new paradigm based on unsupervised-representation learning and supervised-transfer learn-

ing, where the two processes are processed by separated models and only the one for forecasting is trained under the supervision of class labels.
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each patient. We then perform transfer learning42 by training a lo-

gistic regression classifier with the representations and labels.

Materials
To assess the potential for contrastive learning, we performed an

empirical analysis with EHR data from two distinct resources. The

first corresponds to deidentified EHR data from Vanderbilt Univer-

sity Medical Center (VUMC). The second corresponds to the pub-

licly available Registered Tier data from the NIH-sponsored All of

Us Research Program.

We refined the data sets for this study in the following manner.

First, we selected data to cover similar time periods of length that

sufficiently characterize changes in clinical status for patients that

evolve over time. Specifically, the VUMC data covers January 1,

2005 to December 31, 2011, while the All of Us data covers July 1,

2011 to June 30, 2018, as the observation period. Note, for deiden-

tification purposes, in each resource each patient record was inde-

pendently date-shifted between �1 and �365 days. We

acknowledge that these two resources cover different time periods,

but we do not believe this influences our results, as we are not com-

bining these resources for analytic purposes.

Second, we reduced the data set to focus on patients with a suffi-

cient number of observations to support machine learning. Specifi-

cally, we retained patients with at least 25 episodes within the

observation period defined by this study. At the same time, for com-

putational efficiency, we restricted the total number of episodes per

patient to the final 200 during the observation period.

Third, we limited our analysis to the set of patients whose medi-

cal history is relatively completely recorded by the data source. Spe-

cifically, we follow criteria that is similar to that introduced by

Schildcrout et al,43 retaining patients who experienced at least five

episodes in the last two years of the observation period.

Finally, we assess the performance of the forecasting models us-

ing the 6-month period (ie, prediction window) after a patient’s final

episode in the observation period (ie, index date), which we refer to

as the forecasting period. Specifically, the data from the observation

and forecasting periods are used for the URL and the STL stages, re-

spectively. We define a future diagnosis of a patient as one that was

only seen in the forecasting period (ie, there was no indication in the

observation period). The patients with and without the future diag-

nosis are labeled as positive and negative, respectively. As such, to

ensure we utilize data that reflects the relatively authentic clinical

status for those in this study, we removed patients who lacked a visit

in the forecasted (ie, future) timeframe.

We mapped all diagnosis and procedure codes into their Clinical

Classifications Software (CCS) form (https://www.hcup-us.ahrq.

gov/tools_software.jsp, last accessed May 31, 2021). Table 1 pro-

vides summary statistics about the resulting data sets. It should be

noted that the information for age was calculated based on the age

at the final episode in the patients’ observation period, which is at

most 6 months before the end of the forecasting period.

EXPERIMENTS AND RESULTS

The forecasting tasks correspond to the CCS diagnosis codes with

more than 50 patients in each respective data set. There are 181 and

120 tasks for the VUMC and All of Us data sets, respectively. Each

data set is partitioned into a training, validation, and testing set

according to a 1:1:1 ratio. We perform experiments with various

backbone models trained in both an end-to-end supervised paradigm

(as baselines) and CEF-CL to predict future diagnoses in the fore-

casting period based on the episodes in the observation period. In

the experiments, the models are trained for each unique task. We

evaluate forecasting performance using two measures for each task:

(1) the area under the receiver operating characteristic (AUROC)

curve and (2) the area under the precision-recall (AUPRC) curve.

We observed that, in the FSL setting, the forecasting performance of

a model trained in a supervised manner highly depends on the ini-

tialization of its parameter. Therefore, to obtain a robust perfor-

mance estimation, we repeat the training process three times per

baseline per task.

Backbone models
We use five backbone models in our experiments. The first two cor-

respond to state-of-the-art model architectures, used by COmple-

mentary patterN AugmentatioN (CONAN)28 and Long-term

dependencies and Short-term correlations with the utilization of a

hierarchical Attention Network (LSAN).30 These models incorpo-

rate an attention mechanism44 both within and beyond the episode

level. We also use naı̈ve backbones with the simple structure of re-

current neural network (RNN), long short-term memory (LSTM),45

and Gated Recurrent Unit (GRU). We provide details for the model

architecture in Supplementary Appendix A.

Figure 2. An illustration of data augmentation and contrastive pretraining for data derived from EHRs. v1, v2, v3, and v* correspond to the type of partial views.
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Forecasting performance improvement with the

proposed method
Tables 2 and 3 report the average AUROC and AUPRC across the

forecasting tasks for each hbackbone model, training methodi pair.

Specifically, the averaging is performed on the min, max, and me-

dian performance of the outcomes for the three independent runs on

all tasks. It can be seen that contrastive pretraining improves upon

the AUROC of the backbone models by 5.5%–13.5% and 6.1%–

35.1%, on an average, for the VUMC and All of Us data, respec-

tively. The AUPRC improvement is 3.1%–31.9% and 23.8%–

88.1%, for VUMC and All of Us data, respectively.

In addition, we also compare the performance of the best back-

bone models between the training methods (eg, for the VUMC data,

the best performing model, in terms of AUROC, is LSTM for end-

to-end supervised learning and RNN for CEF-CL). The result indi-

cates an AUROC and AUPRC improvement of 8.0% and 11.7% for

the VUMC data and 9.3% and 32.0%, respectively, for the All of

Us data. In addition, CEF-CL achieves better AUROC performance

than the baseline in 167 of the 181 (92.2%) tasks for VUMC data

and 113 of the 120 (94.2%) tasks for the All of Us data. Addition-

ally, CEF-CL achieves better AUPRC in 154 of the 181 (85.0%)

tasks for VUMC data and 106 of the 120 (88.3%) tasks for the All

of Us data. We refer the reader to Supplementary Appendix D for

the forecasting performance for each task.

Next, we analyzed the relationship between the improvement

brought about by CEF-CL and the performance of the baseline with

the best-performing backbone over the set of CCS codes in Figure 3,

where x-axis represents the AUROC gap between the baseline and

CEF-CL, while the y axis represents the baseline AUROC perfor-

mance. It can be seen that the improvement achieved through CEF-

CL is inversely correlated with the AUROC achieved by the base-

line. This is not surprising because the forecasting tasks with weak

baseline results clearly have larger room for improvement. However,

it should be recognized that the tasks that benefited the most from

Table 1. A summary of the data sets used in this study

Data set Patients (episodes)

Episodes per patient

(mean; median) Age (min, median, max) Gender (male, female) CCS diagnosis codes CCS procedure codes

VUMC 48 547 (2 725 373) 56; 45 0, 55, 90 41%, 59% 262 244

All of Us 16 123 (1 305 589) 81; 64 17, 62, 87 40%, 60% 282 244

Table 2. A summary of the AUROC for the forecasting tasks

Backbone model End-to-end supervised training CEF-CL Improvement

VUMC (181 tasks)

RNN 0.607 (0.584–0.629) 0.689 (0.677–0.702) 13.5%

GRU 0.637 (0.624–0.650) 0.680 (0.668–0.693) 6.8%

LSTM 0.638 (0.617–0.657) 0.684 (0.670–0.697) 7.2%

CONAN 0.633 (0.620–0.647) 0.668 (0.652–0.679) 5.5%

LSAN 0.618 (0.597–0.637) 0.662 (0.649–0.677) 7.1%

All of Us (120 tasks)

RNN 0.572 (0.544–0.609) 0.773 (0.758–0.791) 35.1%

GRU 0.683 (0.660–0.701) 0.772 (0.753–0.788) 13.0%

LSTM 0.690 (0.656–0.719) 0.784 (0.767–0.798) 13.6%

CONAN 0.717 (0.700–0.735) 0.761 (0.742–0.779) 6.1%

LSAN 0.670 (0.628–0.702) 0.764 (0.746–0.780) 14.0%

Note: In this table, the results are depicted as a (b�c), where a represents the average performance score calculated of three independent runs, while b and c rep-

resent the minimum score and the maximum score.

Table 3. A summary of the AUPRC for the forecasting tasks

Backbone model End-to-end supervised training CEF-CL Improvement

VUMC (181 tasks)

RNN 2.41 (2.12–2.83)�0�2 2.86 (2.62–3.30)�10�2 18.7%

GRU 2.56 (2.32–2.78)�10�2 2.64 (2.45–3.00)�10�2 3.1%

LSTM 2.24 (2.00–2.49)�10�2 2.72 (2.46–3.07)�10�2 21.4%

CONAN 2.10 (1.96–2.36)�10�2 2.43 (2.21–3.02)�10�2 15.7%

LSAN 1.85 (1.66–2.06)�10�2 2.44 (2.19–2.79)�10�2 31.9%

All of Us (120 tasks)

RNN 1.93 (1.64–2.30)�10�2 3.63 (3.24–4.19)�10�2 88.1%

GRU 2.71 (2.46–3.09)�10�2 3.64 (3.21–4.32)�10�2 34.3%

LSTM 2.80 (2.42–3.22)�10�2 3.71 (3.35–4.36)�10�2 32.5%

CONAN 2.81 (2.57–3.09)�10�2 3.48 (3.06–4.08)�10�2 23.8%

LSAN 2.57 (2.20–3.00)�10�2 3.51 (3.10–4.21)�10�2 36.6%

Note: In this table, the results are depicted as a (b�c), where a represents the average performance score calculated of three independent runs, while b and c rep-

resent the minimum score and the maximum score.
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CEF-CL in the VUMC and All of Us data (as shown in the dashed

boxes in Figure 3) differed. Notably, in the VUMC data, the tasks

that benefited the most were Cancer; other and unspecified primary

(AUROC improvement, baseline AUROC: 0.255, 0.755), Cancer of

bronchus; lung (0.223, 0.498), and Infective arthritis and osteomye-

litis (0.202, 0.564). By contrast, the tasks that benefited the most in

the All of Us data were Phlebitis; thrombophlebitis and thromboem-

bolism (0.300, 0.489), Respiratory failure; insufficiency; arrest

(0.299, 0.546), and Open wounds of head; neck; and trunk (0.288,

0.591).

At the same time, we acknowledge that the forecasting perfor-

mance of CEF-CL, in terms of AUROC, for some of these tasks re-

main is sufficiently high to support real world deployment.

Therefore, we also highlight the tasks that are seemingly well-

forecasted with the baseline and still moderate performance im-

provement through CEF-CL (with solid boxes in Figure 3). Specifi-

cally, examples of these tasks are OB-related trauma to perineum

and vulva (0.113, 0.834) and Polyhydramnios and other problems

of amniotic cavity (0.11, 0.812) for the VUMC data; Hyperplasia of

prostate (0.132, 0.821) for the All of Us data.

To further investigate how CEF-CL improves forecasting for

tasks for which the baseline performed poorly, we analyze the per-

formance improvement achieved by CEF-CL with respect to the fre-

quency of each task’s target concept. Figure 4 compares the best-

performing backbone for CEF-CL and end-to-end supervised learn-

ing in terms of forecasting performance improvement over the set of

target CCS diagnosis codes. Specifically, the x-axis represents the

prevalence of positive cases in the data set and the y-axis represents

the absolute improvement in terms of AUROC. It should be noted

that the relative and absolute improvement exhibited highly similar

patterns, such that we present only the absolute improvement here

and defer the relative improvement to the Supplementary Material.

We focus on AUROC because it is insensitive to label imbalance.

We performed a linear regression between the x and y values for the

tasks. It is evident that the CEF-CL outperforms the best baseline—

particularly on the tasks with more imbalanced training data (ie,

few-shot tasks). We statistically confirmed this finding by running a

Wald Test with the null hypothesis that the slope is zero. It was

found that P¼1.2�10�8 and 3.7�10�8 for the VUMC and All of

Us data sets, respectively. As such, the evidence suggests that the

proposed framework is particularly more adept at few-shot learning

tasks than the baseline.

DISCUSSION

Though these findings are notable, there are several open issues that

require further consideration. First, we believe that the performance

gain occurs because the end-to-end supervised training paradigm is

incapable of: (1) handling high intraclass variance for the positive

class and (2) model discriminative patterns in the samples with the

same label. By comparison, the contrastive pretraining resolves both

Figure 3. AUROC improvement achieved through CEF-CL versus AUROC of the baseline with the best performing backbone over the set of CCS codes. Each

marker corresponds to a unique task defined by a CCS diagnosis code (the significantly enhanced forecasts with AUROC improvement greater than 0.2 and 0.1

are highlighted with dashed boxes for VUMC and All of Us data, respectively). The gray line is a linear regression line of the observations (VUMC: Slope¼�0.90,

r2¼0.23; All of Us: Slope¼�0.98, r2¼0.51) as an indication of the correlation between AUROC improvement and the baseline AUROC.
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of these problems, which leads to a greater improvement in the face

of imbalanced training data. Second, the performance improvements

differ between tasks. Although we demonstrated that the improve-

ment was correlated with the baseline performance and the fre-

quency of the task’s target concept, other factors could contribute to

the differences, such as the complexity of the forecasting tasks or the

amount of data necessary to achieve stability over the tasks. To ac-

count for potential performance variation and stability issues of the

tasks, we recommend future research incorporate known confound-

ers (eg, detailed demographic information) in the models and to con-

duct experiment on larger data sets. Third, it was observed that

there are differences in the tasks that achieve the greatest forecasting

performance improvement achieved through CEF-CL with respect

to the data sets studied. There are numerous potential reasons for

the difference, such as the fact that All of Us is composed of data

from a wide variety of organizations’ EHRs whereas the VUMC

data are drawn from a single organization. However, determining

the driving factors for such differences is beyond the scope of this in-

vestigation.

It should be recognized that this investigation has implications

for longitudinal EHR modeling more generally. This is particularly

because EHR modeling relies on a mechanism that is capable of de-

riving meaningful representations of a patient at the current moment

and historically. As such, we believe that the contrastive representa-

tion learning framework introduced in this study can be used to fa-

cilitate a broad scope of research including both of discriminative

(eg, predictive modeling) and generative tasks (eg, synthetic data

generation46).

While our work sets a foundation for learning in low prevalence

environments, there are opportunities to further extend our method-

ology, particularly with respect to its scalability, and clinical viabil-

ity, in several ways. First, the backbone models in our experiments

used the feature and outcome spaces built on CCS codes. However,

CEF-CL can use other types of models based on data from other

clinical coding systems, such as the International Classification of

Diseases (ICD), as well as various semantic types of clinical concept

(eg, medications, vital signs, or laboratory test results). In addition,

CEF-CL leverages the sequential property only between healthcare

episodes. Thus, this approach can be adapted to the scenario of out-

come prediction for a single medical encounter (eg, an ICU stay) by

using backbone models designed for modeling the temporal trajec-

tory of patient health status recorded in a finer granularity (eg, with

1 hour as a unit). Second, in the URL step, we directly utilize the

multidomain nature of EHR data, using medical concepts from each

domain as a separate augmentation. This step leverages insights

gained from the principle of compositional generalization47—an in-

telligent system’s capability of generalizing learned knowledge to

new tasks and situations comes partly from learning the knowledge

in a compositional manner (eg, learning syntax and semantics of lan-

guage separately48).9 However, we anticipate CEF-CL can be fur-

ther improved by incorporating colearning,49 where each group of

separated features is treated as being conditionally independent.

Figure 4. Absolute AUROC differences in CCS code forecasting tasks with training data under different levels of the number of positive cases. The x-axis corre-

sponds to the number of positive cases per 1000 instances in the training set. Each marker corresponds to a unique task, where solid (hollow) markers indicate

positive (negative) improvement. The forecasts with AUROC improvement greater than 0.2 are highlighted with dashed boxes. The solid line is the linear regres-

sion line. The dashed horizontal line is a baseline of average improvement of all tasks.
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Therefore, a strategy considering the feature independence in the

URL step might lead to even better downstream performance.

Finally, we acknowledge that in our experiments, repeating each

training process only three times might lead to relatively higher vari-

ance in the performance estimation for each task. However, each ex-

periment requires a nontrivial amount of computation (eg, on an

NVIDIA 2080Ti GPU, the model training process was �1 hour per

task, which implies running all 181 tasks on all baselines takes more

than 500 GPU hours). Still, since we aim to compare the perfor-

mance of the models in an overall manner, the variance for each in-

dividual task is amortized in the average AUROC and AUPRC

across all tasks, such that the results can be compared in a reliable

manner.

CONCLUSION

This paper introduced a framework to enhance clinical event fore-

casting through a 2-stage process of URL followed by transfer learn-

ing. We specifically illustrated how to adapt contrastive

representation learning and a corresponding data augmentation

strategy for to EHR data organized in a longitudinal manner. This

investigation is notable in that the new approach significantly out-

performs the traditional end-to-end supervised training paradigm,

especially for FSL tasks. The findings of this study indicated that not

all forecasting tasks could be improved upon using the new frame-

work. Further research can be conducted to investigate the reason of

lack of improvement for certain tasks.
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