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ABSTRACT

Objectives: To develop and validate a standards-based phenotyping tool to author electronic health record

(EHR)-based phenotype definitions and demonstrate execution of the definitions against heterogeneous clinical

research data platforms.

Materials and Methods: We developed an open-source, standards-compliant phenotyping tool known as the

PhEMA Workbench that enables a phenotype representation using the Fast Healthcare Interoperability Resour-

ces (FHIR) and Clinical Quality Language (CQL) standards. We then demonstrated how this tool can be used to

conduct EHR-based phenotyping, including phenotype authoring, execution, and validation. We validated the

performance of the tool by executing a thrombotic event phenotype definition at 3 sites, Mayo Clinic (MC),

Northwestern Medicine (NM), and Weill Cornell Medicine (WCM), and used manual review to determine preci-

sion and recall.

Results: An initial version of the PhEMA Workbench has been released, which supports phenotype authoring,

execution, and publishing to a shared phenotype definition repository. The resulting thrombotic event

phenotype definition consisted of 11 CQL statements, and 24 value sets containing a total of 834 codes. Techni-

cal validation showed satisfactory performance (both NM and MC had 100% precision and recall and WCM had

a precision of 95% and a recall of 84%).

Conclusions: We demonstrate that the PhEMA Workbench can facilitate EHR-driven phenotype definition, exe-

cution, and phenotype sharing in heterogeneous clinical research data environments. A phenotype definition

that integrates with existing standards-compliant systems, and the use of a formal representation facilitates au-

tomation and can decrease potential for human error.
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INTRODUCTION

Many studies designed to generate biomedical knowledge begin

with cohort identification, also called electronic health record

(EHR)-driven phenotyping. This is a resource-intensive process in-

volving many stakeholders that must often be repeated every time the

same cohort is studied.1,2 Given the increased focus in EHR-based

clinical research, many different approaches and tools have been de-

veloped for EHR-driven phenotyping that attempt to reduce duplica-

tion of work, decrease the time investment required, and limit the

potential for human error.3–12 While these approaches and tools have

grown in response to specific needs, the result is a fragmented ecosys-

tem of tools and approaches that are neither interoperable nor porta-

ble from one EHR system to another. For example, the electronic

Medical Records and Genomics (eMERGE) Network13–15 shares co-

hort definitions via the Phenotype KnowledgeBase (PheKB),16 but the

published knowledge artifacts do not conform to any formal knowl-

edge representation standards, and range from narrative descriptions,

to flowcharts, to custom SQL scripts. We present a standards-based

representation for cohort definitions (also called phenotype defini-

tions) and an accompanying tool that facilitates interoperability with

existing systems. This enables incremental adoption and cross-

platform execution, reduces duplication of work, and unifies existing

techniques.

BACKGROUND

Computable phenotyping
EHR-driven phenotyping is a 3-step, iterative process: defining the

phenotype (authoring), executing the phenotype against some data

repository (execution), and evaluating or validating the correctness

of the resulting cohort (validation). Authoring is a collaboration be-

tween clinical experts and informaticists to elucidate requirements

specific enough to proceed to the execution step. Informaticists per-

form the execution step, sometimes in collaboration with database

analysts, in order to extract the cohort from the data source using

SQL or other code custom-built for the specific data source. Valida-

tion is typically done by experts who review the entire patient medi-

cal record. Although recent studies have explored how to identify

relevant phenotype logic using automated methods,17,18 the expert-

driven authoring step cannot be fully automated as it requires input

from clinical domain experts to establish a clinically correct defini-

tion. Likewise, validation requires clinical expertise to confirm that

the resulting cohort members match the clinical criteria. However,

execution is repeated every time the cohort of interest is used in bio-

medical knowledge generation and can be automated.

Current strategies
The EHR-driven phenotyping research community, and the Pheno-

type Execution Modeling Architecture (PhEMA) (https://project-

phema.org) project, have identified many requirements for the use

of computable artifacts to automate EHR-driven phenotyping.19–26

These include: using structured and standardized data representa-

tions, using human-readable and computable representations for co-

hort criteria, and providing interfaces for external software with

backwards compatibility. These requirements not only enable auto-

mation of the execution step, but they also reduce the risk of human

error.

At least 2 strategies have been employed to meet these require-

ments, namely, the use of common data models (CDMs), and the

use of generic formal logic representation and execution environ-

ments. The use of CDMs involves transforming and mapping data

from existing data repositories into the CDM format and standard-

ized vocabularies. Any computable phenotyping artifacts created at

one site can be used at other sites using the same CDM.26 This ap-

proach has been successfully used by the Observational Health Data

Sciences and Informatics (OHDSI) program,3 the National Patient-

Centered Clinical Research Network (PCORnet),27 and

others.26,28,29 However, phenotype definitions created for one CDM

cannot be used for another CDM. Generic logic execution environ-

ments such as KNIME and Drools have been successful but are not

based on any healthcare standard and may require a labor-intensive

data transformation step.30–32 Formal representations such as the

Health Level Seven International (HL7) Health Quality Measure

Format (HQMF), the Clinical Decision Support Knowledge Artifact

Specification (CDS KAS), and Arden Syntax have also been used

successfully for representing clinical logic.32–34 Yet, only Arden Syn-

tax has a natively human-readable representation, and none have a

convenient user interface for authoring and execution.

Existing tools
There are several existing tools for authoring and executing comput-

able phenotype and cohort definitions. One highly mature and

widely used tool is the OHDSI Atlas (https://github.com/OHDSI/At-

las) tool. This tool is built on the Observational Medical Outcomes

Partnership (OMOP) CDM,3 and provides users with an interface

for specifying logical criteria. Additionally, cohort definitions can be

exported in JSON format and shared with other OMOP users.

However, this format is not a formally defined standard, and cannot

contain sub-phenotype definitions. Integrating Biology and the Bed-

side (i2b2)4 also provides an interface for cohort identification, but

similarly does not use a formal standard or have the ability to export

or import these definitions natively. A nascent phenotyping method,

Phenoflow, supports the development of portable phenotypes using

a formal representation.35 While the overall workflow process is

based on the Common Workflow Language (CWL) standard,36 the

individual steps are implemented using custom programming code.

Building upon these existing systems and lessons learned from

their implementations, we built and validated a tool, the PhEMA

Workbench, which allows users to author phenotype logic, assemble

value sets (collections of standard medical codes) via integration

with existing tools, and execute phenotypes without requiring man-

ual translation.

METHODS

Standards-based representation
To represent the phenotype definition, we propose a fully Fast

Healthcare Interoperability Resources (FHIR)-based representation.

Inclusion and exclusion logic is expressed using the Clinical Quality

Language (CQL), which produces an unambiguous and human

readable representation. CQL source files are contained in Library

resources as defined in the FHIR Clinical Reasoning Module. Each

phenotype has one main CQL library containing the “Case” defini-

tion, and any number of helper libraries. Value sets are represented

using ValueSet resources as defined in the FHIR Terminology Mod-

ule. A Composition resource is used to collect all Library and Value-

Set resources into a single document that fully describes the

phenotype definition. By convention, the Composition section entry

for the main phenotype Library is titled “Phenotype Entry Point” to

indicate to the executing system where to find the “Case” definition.

1450 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 9

https://projectphema.org
https://projectphema.org
https://github.com/OHDSI/Atlas
https://github.com/OHDSI/Atlas


As defined in the FHIR Foundation Module, the Composition and

all other resources are contained within a Bundle resource used to

persist or transmit the fully specified computable phenotype defini-

tion. This representation enables FHIR operations to be used for

storage, retrieval, and execution. For example, the $cql operation

defined in the Clinical Practice Guidelines (CPG) implementation

guide can be used to execute the phenotype, and the $document op-

eration defined in the FHIR Foundation Module can be used to as-

semble the complete phenotype definition based on the Composition

resource.

System description
Architecture

The PhEMA Workbench is designed as a standalone tool that can be

used for phenotype authoring, execution, and publishing to a shared

phenotype definition repository. It is intended for use by informati-

cians and research data analysts who routinely work with EHR-

based queries. The architecture (Figure 1) is designed to function

without requiring any changes to existing phenotyping tools or infra-

structure, and integrates with OHDSI out of the box. The components

include a web application that runs in the user’s browser, a backend API

to support integrating with existing systems, as well as services for

phenotype development and testing. The application is written using

TypeScript, a strongly typed language that compiles to JavaScript,

and the API is written in Java. All code is open-source and available

in the PhEMA GitHub organization (https://github.com/PheMA).

The tool used for testing during authoring is CQF Ruler (https://

github.com/DBCG/cqf-ruler). It consists of a HAPI FHIR server

(https://hapifhir.io/), and an implementation of the FHIR Clinical

Reasoning Module and CPG implementation guide, which both use

the reference implementation of the CQL engine (https://github.

com/DBCG/cql_engine).

Features

The first component is the CQL editor (Figure 2), for writing CQL

expressions. It provides syntax highlighting and allows users to exe-

cute CQL against any environment capable of CQL execution, in-

cluding the provided testing environment.

The application also provides a terminology manager (Figure 3),

which allows a user to assemble a collection of value sets into an

FHIR
Server

CQL
Engine

OHDSI
Web API

CQL on OMOP
Workbench

API

Server

Public Services

Client

Workbench
Application

OHDSI
Web API

CQL Engine

Authoring & Testing Environment 

Institutional
Workbench API

PheKB

Institutional Services

Institutional OHDSI
Web API

Phenotype Repositories

Figure 1. System architecture. Services in the box labeled Server run on the PhEMA server and are accessible via the public internet. The box labeled Client runs

in the browser on the user’s machine and is accessed by navigating to a specific URL on the PhEMA server. Optional publicly accessible third party services such

as additional FHIR servers or OHDSI Web API instances are shown in the box labeled Public Services. The Phenotype Repositories box shows repository services

(currently only PheKB). The Institutional Services box shows services that run behind institutional firewalls.
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FHIR Bundle of ValueSet resources. Value sets can be uploaded by

dragging and dropping them into the application, or by selecting a

set of files on the filesystem. Supported formats include FHIR Value-

Set or Bundle resources, concept sets exported from OHDSI Atlas,

or a custom CSV (comma separated value) format. The user is also

able to directly search the NLM’s Value Set Authority Center

(VSAC) FHIR server,37 examine the results, and add them into the

Bundle if appropriate.

To ensure that the expressed logic performs as expected, an au-

thor can test their CQL against test data during development. The

Workbench provides an FHIR server that can be loaded with syn-

thetic data. This gives the author confidence that the developed phe-

notype definition is logically and semantically correct. The CQL is

executed on the FHIR server using the $cql extended operation, pro-

vided by CQF Ruler.

The Workbench integrates with the PheKB phenotype repository

(top left panel in Figures 2-4) using the PheKB API, and supports

listing all publicly available phenotypes, importing phenotype defi-

nitions represented using FHIR, and publishing new phenotype defi-

nitions. The Workbench currently supports OHDSI and FHIR as

execution targets. At execution time, the Workbench API processes

the complete FHIR-based phenotype definition, translates it to the

appropriate representation, using CQL on OMOP29 in the case of

the OHDSI target, and executes the logic against the target data

store (Figure 4); establishing the corresponding cohort. The work-

bench also supports individual CQL library evaluation outside of

the context of a phenotype, and generation of an OMOP compliant

SQL script representing the phenotype definition.

Experimental setup
Phenotype definition

To test the PhEMA Workbench, we selected a Thrombotic Event

(TE) phenotype developed by clinician collaborators at Weill Cor-

nell Medicine (WCM), which identifies patients who have experi-

enced one or more of 10 different thrombotic events. The definition

for each event has up to 3 criteria sets that correspond to different

confidence levels. The lowest confidence level (3) only requires that

a patient has a single diagnosis code. To meet the Level 2 criteria,

patients need to additionally have a specific drug or lab order,

depending on the specific thrombotic event. For the highest confi-

dence level (1), patients must meet the Level 2 requirements, and

also have an order for a specified procedure, and in some cases an

additional lab order as well. All criteria must occur within 1 week.

The phenotype definition was shared with the PhEMA collaborators

as a textual narrative description (Table 1).

Authoring

We used the experimental architecture illustrated in Figure 5. In the

first step, authoring and publishing were done by a single author

(PSB), referencing the TE phenotype narrative description. We omit-

ted criteria that required natural language processing (NLP), as this

data are not directly available to OHDSI cohort definitions. Test

data were created using the CQL Testing Framework tool (https://

github.com/AHRQ-CDS/CQL-Testing-Framework), which allows

users to generate FHIR resources using a light-weight configuration

file. Value sets were generated in FHIR format using a custom script

that expands a CSV file with extensional and basic intensional (eg,

Figure 2. CQL editor (right). The Phenotypes box in the top left lists the phenotypes available to import from PheKB. The Remote Connections box on the bottom

left lists the configured third-party services. The 3 boxes labeled Logical Libraries, Terminologies, and CQL Editor all show components of the imported pheno-

type definition. Event logs are shown at the bottom.
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regex) definitions. The value set for anticoagulant drugs was

imported directly from the VSAC FHIR server. All value sets were

assembled into the final phenotype Bundle using the Workbench ter-

minology manager component. Once all CQL logic was written and

tested, and appropriate value sets were assembled, the phenotype

was packaged using the proposed FHIR-based representation and

published to PheKB.

Execution

Phenotypes were executed against EHR data extracted into separate

databases to avoid possible performance and patient consent issues.

LVR at Northwestern Medicine (NM), PA at WCM, and DJS at the

Mayo Clinic (Mayo), imported the phenotype from PheKB into the

PhEMA Workbench application. At NM, the phenotype was exe-

cuted directly against an OMOP instance without any local customi-

zation, using the OHDSI Web API, from the Workbench. The

OMOP database at NM contains data from a subset of the patient

population that has consented to participate in the eMERGE Net-

work with data sourced from the NM EpicCare EHR system. At

WCM and Mayo, there was no instance of the OHDSI Web API

available; thus, an SQL script was generated by PA and DJS using

the SQL execution target available in the Workbench application.

This SQL script was then manually executed against the WCM and

Mayo OMOP databases, respectively. The WCM OMOP database

contains data for patients from both WCM and NewYork-

Presbyterian (NYP) hospitals that have at least one visit, condition,

and procedure recorded. The EHRs used at WCM and NYP are Epi-

cCare and Allscripts, respectively. The Mayo OMOP database con-

sists of patients that were enrolled in the Mayo Biobank.38

Validation

We defined cases to be only those patients matching the Level 1 cri-

teria. In order to validate edge cases where failures of logic are most

likely to occur, we used patients matching the Level 2 criteria (but

not matching Level 1) as non-cases. A validation protocol was

shared along with an SQL script to randomly select cases and non-

cases from the output generated through the Workbench execution

step, SQL scripts to extract all relevant data, and a data entry form

for reviewers to capture which criteria were met by each cohort

member (if any).

At NM, a review of a random selection of 25 cases and 25 non-

cases was performed by LVR, who determined whether or not the

patient had the appropriate data to meet the confidence Level 1 cri-

teria for at least one of the thrombotic event types. A second author

(JAP), blinded to the results of the first reviewer, conducted a confir-

matory review of 5 cases and 5 non-cases. This procedure was fol-

lowed at Mayo, with DMK reviewing 25 cases and 25 non-cases,

and DJS performing the blinded confirmatory review of 5 cases and

non-cases. At WCM, 2 primary reviewers (ETS and SA) both

reviewed and verified the same set of 25 cases and 25 non-cases,

with a secondary reviewer (PA) resolving any discordant determina-

tions. We report precision, recall, and inter-rater agreement using

Cohen’s kappa39 as performance measures for each site.

RESULTS

Phenotype definition
The resulting thrombotic event phenotype logic consisted of 11

CQL statements, one for each thrombotic event type, and one for

Figure 3. Terminology manager (right). The Phenotypes box in the top left lists the phenotypes available to import from PheKB. The Remote Connections box on

the bottom left lists the configured third-party services. The Terminology Manager box allows the user to import, edit, and assemble value sets. Event logs are

shown at the bottom.
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the disjunction of the other 10. The phenotype definition had 24

value sets containing a total of 834 codes for the various diagnoses,

procedures, labs, and drugs referenced by the phenotype logic. Four

different data sources were used: lab values, procedure orders, diag-

noses, and drug orders, represented by the Observation, Procedure,

Condition, and MedicationRequest FHIR resources, respectively.

During the authoring process, 21 test cases were created to test the

phenotype definition logic. The resulting phenotype definition, in-

cluding criteria logic and value sets, as well as the test cases and

data, are available in the project repository on GitHub (https://

github.com/PheMA/thrombotic-event-phenotype).

Execution and validation
A summary of the phenotype execution and validation process is

shown in figure 6.

Northwestern Medicine

There were 8709 total patients in the NM OMOP database, of

which 378 (4.34%) met the TE confidence Level 1 criteria, and 743

(8.54%) matched the Level 2 criteria. Of the 25 cases and non-cases

randomly selected for review, all were determined by the first re-

viewer to have been correctly identified, and subsequently confirmed

by the secondary reviewer for the 5 random cases and non-cases.

Thus, the reviewers were fully concordant (Cohen’s kappa¼1.0)

and all patients were correctly identified (precision and recall both

100%), which shows the phenotype was faithfully converted.

Weill Cornell Medicine

The WCM OMOP database contained a total of 3 543 097 patients,

of which 14 826 (0.42%) were identified as cases and 33 476

(0.94%) as non-cases. The 2 primary reviewers were discordant in 6

instances (15%), resulting in kappa¼0.74. These discordances were

resolved by the secondary reviewer, and of the 25 cases, 22 (88%)

were confirmed to match the TE confidence Level 1 criteria, and of

the 25 non-cases, 24 (96%) were confirmed as not matching the

confidence Level 1 criteria. This results in a precision of 95% and a

recall of 84%.

During the CQL to OMOP translation step, cohort members

were misclassified at WCM due to how the OHDSI Web API per-

forms concept searches. Concepts are searched based on prefix

matches, which in a few cases can return unrelated concepts with

matching prefixes. This will be resolved in the next version of the

CQL on OMOP tool.

Mayo Clinic

The Mayo Clinic OMOP database instance contained 52 805 total

patients, of which 155 (0.29%) patients matched the confidence

Level 1 criteria and 292 (0.55%) patients matched the Level 2 crite-

ria. The reviewers were fully concordant (Cohen’s kappa¼1.0). Pre-

cision and recall were both 100%, which again shows the

phenotype was faithfully converted.

DISCUSSION

Our FHIR-based representation of phenotype definitions and

platform-agnostic tool can be used for computable EHR-driven phe-

notyping, and achieves results comparable to other methods. Fur-

thermore, our approach combines elements of the CDM approach

with elements of the generic logic approach, taking advantage of the

benefits of both, while mitigating some of the disadvantages. This

Figure 4. Example of phenotype execution. Results shown in the right-most panel.
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approach does not require additional data preparation, works across

data platforms, uses established healthcare standards, and uses both

human-readable and computable phenotype representations Addition-

ally, the Workbench integrates into existing clinical informatics re-

search infrastructure without requiring any changes to currently used

tools and can in fact complement them. Table 2 summarizes how the

PhEMA Workbench compares to existing phenotyping methods. Since

many tools exist to generate FHIR-compliant data (eg, scenario builder

(http://clinfhir.com/builder.html) and the CQL Testing Framework),

they can be leveraged to populate the testing environment used to vali-

date phenotype logic. This testing data can be used with publicly avail-

able standards-based testing tools. Furthermore, since the process is

Author
Phenotype
Authoring

Phenotype
Publishing

Workbench
Application

OMOP SQL
Generation

PhEMA
Server

NM Executor

SQL
Execution

WCM Executor

Automatic
Execution

Workbench
Application
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Import

Phenotype
Import
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Import

PheKB
Phenotype
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Workbench
Application

CQL to OMOP
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NM OMOP
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WCM OMOP
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Northwestern Medicine, Chicago

University of Washington, Seattle Public Internet

Weill Cornell Medicine, New York
Mayo Executor

OMOP SQL
Generation

Workbench
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Mayo OMOP
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Figure 5. Experimental architecture. The Thrombotic Event phenotype was authored by PSB at the University of Washington and published to the PheKB reposi-

tory in the proposed FHIR-based format using the Workbench application. LVR used the Workbench at Northwestern Medicine (NM) to automatically execute the

phenotype using an institutional instance of the Workbench API. At Weill Cornell Medicine (WCM), PA used the Workbench application to generate an SQL script

and executed it against the WCM OMOP database manually. The same approach was used at Mayo Clinic by DJS to generate and execute the SQL version of the

phenotype definition.

Figure 6. Results of the phenotype execution and manual review process.
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partially (in the case of WCM and Mayo) or completely (in the case of

NM) automated, the potential for human error is reduced.

Every step of the phenotype authoring process was done using

only FHIR and CQL, which are open standards developed by HL7.

Furthermore, while CQL is data model agnostic, our choice to use

FHIR for representing clinical data elements has several advantages.

First, since FHIR is becoming a de facto CDM, much work has been

done to generate mappings from the FHIR data model to other

widely used data models, such OMOP, i2b2, and others40; thus, our

phenotypes can be easily translated to various data models using

standardized mappings.

CQL as a logical expression language is highly expressive and is

capable of representing clinically validated phenotype definitions.

Since CQL is a formal language, it also eliminates ambiguity that

may result in variability of implementations. CQL is designed specif-

ically for the clinical domain; thus, it has functionality tailored for

representing clinical logic, such as the full set of temporal operators

defined by Allen’s interval algebra,41 aggregate operators commonly

used for quality measures and decision support, and uncertainty se-

mantics to deal with missing data. Additionally, CQL provides inte-

gration points with external systems such as NLP pipelines or ML

models.

The use of standards enables decoupling of both technical and

conceptual components of EHR phenotyping, which is a widely

used strategy in the technology industry to increase scalability, reli-

ability, and extensibility.23,42 For example, the CQL engine focuses

on logic execution, and delegates to a data provider module to col-

lect the relevant data; thus, additional modules and execution tar-

gets can be developed for different data sources without requiring

logic to be rewritten. Different CQL libraries can be assembled in a

modular way, allowing for code reuse and easy localization, with

site-specific logic contained in a library that can be used as a “drop-

in” replacement for more general libraries.

Using a phenotype representation based on published standards

decouples phenotype authoring and execution. The phenotype au-

thor (informatician or research data analyst) only requires knowl-

edge of documented standards to define the phenotype. No

knowledge of the data model where the phenotype definition will be

executed is required, nor is access to the data. This means that

knowledge artifacts developed by third parties can be executed while

maintaining patient privacy, analogous to the model to data ap-

proach used for evaluating machine learning models on healthcare

data.43

While graphical tools for phenotype authoring do exist, for ex-

ample, OHDSI Atlas, the i2b2 query interface, and others,21 they

have limitations the PhEMA Workbench attempts to address (sum-

marized in Table 2). First, the phenotype definitions produced by

these tools do not conform to any healthcare standard. Thus, future

changes to how their phenotype definitions are structured could re-

sult in unintentional breaking of existing phenotype definitions if

not carefully managed. Also, while these definitions can be shared

between implementations of the same system, they cannot be shared

between systems (ie, they are not cross-platform), except with some

recent custom translators which still may lose some information

during translation due to the differences of granularity and opera-

tions supported by the CDMs.44 Furthermore, the expressivity of

the phenotype definitions supported by these tools may be limited.

Even directly using SQL to generate cohorts may not be as conve-

nient as using CQL, since SQL lacks clinical operators such as those

used to determine patient age (eg, current age or age at date of clini-

cal observation), as well as terminology operators to check whether

coded values are part of specific code systems or value sets. Addi-

tionally, SQL is very tightly coupled to the data model against which

it is executed, which means code is not reusable across databases

with different schemas.

Local customization is an important part of EHR-driven pheno-

typing, as variations in local guidelines and clinical practice can eas-

ily result in differences in the downstream observational datasets.26

The PhEMA Workbench supports local customization by allowing

users to directly view and edit logic before execution, as well as

swap out value sets for ones that are more appropriate for the local

context, all while remaining fully standards compliant. Various

methods exist to author CQL source code, but only one integrates

with a testing environment (the Atom CQL plugin [https://atom.io/

packages/language-cql]) and, to our knowledge, no other tool inte-

grates with a phenotype repository or has the ability to assemble

value sets from various sources.

Current limitations are as follows. First, we only tested a single

phenotype definition, and did not support NLP or machine learning

phenotype definitions. Although the TE phenotype we selected

includes multiple data elements and temporality, it does not exhaus-

tively demonstrate other complex logic such as medication exposure

periods. We have begun to address this limitation by developing a

repository of more complex definitions, which we intend to evaluate

using the Workbench in the future.45 Additionally, while we demon-

strated cross-platform authoring and execution, we only tested a sin-

gle execution target (OMOP), although we previously demonstrated

that cross-platform execution is possible.29 Our support for FHIR as

our standard data model is based on the core FHIR specification,

and does not currently support specific profiles or extensions. As a

result, the FHIR resources and fields we chose to use may not ex-

actly match data in other FHIR data repositories relying on profiles

and extensions. Additionally, we do not communicate our data

model computationally to other systems using an FHIR implementa-

tion guide.

The CQL language also only supports structured data elements

out of the box, but the PhEMA collaborators have developed NLP

integrations,46,47 to be integrated into the Workbench architecture.

There is also an upfront cost involved in implementing a CQL en-

gine for a new data source, which may be prohibitive if engineering

resources are not available.

CONCLUSION

We demonstrate that a fully FHIR-based phenotype representation

is feasible and enables the decoupling of authoring and execution,

leading to several advantages. If such an approach is broadly

adopted, it may increase the velocity of biomedical generation by in-

creasing semantic interoperability of phenotype definitions, and fa-

cilitating high-throughput cohort identification—reducing the

potential for human error.

Our representation of a clinician-developed phenotype defini-

tion, executed against 3 OMOP data repositories, achieved results

comparable to other methods. Additionally, our modular architec-

ture consisting of existing open-source tools, including the newly de-

veloped PhEMA Workbench, can provide an effective and efficient

phenotyping environment across institutions. The Workbench com-

plements existing tools, and requires no changes to existing systems,

giving end-users additional options without added restrictions.

In the future, we intend to use the PhEMA Workbench in clinical

studies, and are planning to extend the capabilities of the system to
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include NLP (using CQL4NLP47) and more sophisticated machine

learning models. We are also planning to continue improving the

Workbench user interface, for which we have a user-centered design

study currently underway to ensure usefulness for diverse end users

of the tool.
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