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ABSTRACT

Objectives: To develop and validate a standards-based phenotyping tool to author electronic health record
(EHR)-based phenotype definitions and demonstrate execution of the definitions against heterogeneous clinical
research data platforms.

Materials and Methods: We developed an open-source, standards-compliant phenotyping tool known as the
PhEMA Workbench that enables a phenotype representation using the Fast Healthcare Interoperability Resour-
ces (FHIR) and Clinical Quality Language (CQL) standards. We then demonstrated how this tool can be used to
conduct EHR-based phenotyping, including phenotype authoring, execution, and validation. We validated the
performance of the tool by executing a thrombotic event phenotype definition at 3 sites, Mayo Clinic (MC),
Northwestern Medicine (NM), and Weill Cornell Medicine (WCM), and used manual review to determine preci-
sion and recall.

Results: An initial version of the PhEMA Workbench has been released, which supports phenotype authoring,
execution, and publishing to a shared phenotype definition repository. The resulting thrombotic event
phenotype definition consisted of 11 CQL statements, and 24 value sets containing a total of 834 codes. Techni-
cal validation showed satisfactory performance (both NM and MC had 100% precision and recall and WCM had
a precision of 95% and a recall of 84%).

Conclusions: We demonstrate that the PhEMA Workbench can facilitate EHR-driven phenotype definition, exe-
cution, and phenotype sharing in heterogeneous clinical research data environments. A phenotype definition
that integrates with existing standards-compliant systems, and the use of a formal representation facilitates au-
tomation and can decrease potential for human error.
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INTRODUCTION

Many studies designed to generate biomedical knowledge begin
with cohort identification, also called electronic health record
(EHR)-driven phenotyping. This is a resource-intensive process in-
volving many stakeholders that must often be repeated every time the
same cohort is studied."* Given the increased focus in EHR-based
clinical research, many different approaches and tools have been de-
veloped for EHR-driven phenotyping that attempt to reduce duplica-
tion of work, decrease the time investment required, and limit the
potential for human error.>~'? While these approaches and tools have
grown in response to specific needs, the result is a fragmented ecosys-
tem of tools and approaches that are neither interoperable nor porta-
ble from one EHR system to another. For example, the electronic
Medical Records and Genomics (eMERGE) Network'3™!° shares co-
hort definitions via the Phenotype KnowledgeBase (PheKB),' but the
published knowledge artifacts do not conform to any formal knowl-
edge representation standards, and range from narrative descriptions,
to flowcharts, to custom SQL scripts. We present a standards-based
representation for cohort definitions (also called phenotype defini-
tions) and an accompanying tool that facilitates interoperability with
existing systems. This enables incremental adoption and cross-
platform execution, reduces duplication of work, and unifies existing
techniques.

BACKGROUND

Computable phenotyping

EHR-driven phenotyping is a 3-step, iterative process: defining the
phenotype (authoring), executing the phenotype against some data
repository (execution), and evaluating or validating the correctness
of the resulting cohort (validation). Authoring is a collaboration be-
tween clinical experts and informaticists to elucidate requirements
specific enough to proceed to the execution step. Informaticists per-
form the execution step, sometimes in collaboration with database
analysts, in order to extract the cohort from the data source using
SQL or other code custom-built for the specific data source. Valida-
tion is typically done by experts who review the entire patient medi-
cal record. Although recent studies have explored how to identify

1718 the expert-

relevant phenotype logic using automated methods,
driven authoring step cannot be fully automated as it requires input
from clinical domain experts to establish a clinically correct defini-
tion. Likewise, validation requires clinical expertise to confirm that
the resulting cohort members match the clinical criteria. However,
execution is repeated every time the cohort of interest is used in bio-

medical knowledge generation and can be automated.

Current strategies
The EHR-driven phenotyping research community, and the Pheno-
type Execution Modeling Architecture (PhEMA) (https://project-
phema.org) project, have identified many requirements for the use
of computable artifacts to automate EHR-driven phenotyping.'*~°
These include: using structured and standardized data representa-
tions, using human-readable and computable representations for co-
hort criteria, and providing interfaces for external software with
backwards compatibility. These requirements not only enable auto-
mation of the execution step, but they also reduce the risk of human
error.

At least 2 strategies have been employed to meet these require-
ments, namely, the use of common data models (CDMs), and the
use of generic formal logic representation and execution environ-

ments. The use of CDMs involves transforming and mapping data
from existing data repositories into the CDM format and standard-
ized vocabularies. Any computable phenotyping artifacts created at
one site can be used at other sites using the same CDM.?® This ap-
proach has been successfully used by the Observational Health Data
Sciences and Informatics (OHDSI) program,’ the National Patient-
Centered  Clinical Research Network (PCORnet),”” and
others.?®?%2° However, phenotype definitions created for one CDM
cannot be used for another CDM. Generic logic execution environ-
ments such as KNIME and Drools have been successful but are not
based on any healthcare standard and may require a labor-intensive
data transformation step.>*? Formal representations such as the
Health Level Seven International (HL7) Health Quality Measure
Format (HQMEF), the Clinical Decision Support Knowledge Artifact
Specification (CDS KAS), and Arden Syntax have also been used
successfully for representing clinical logic.’*=** Yet, only Arden Syn-
tax has a natively human-readable representation, and none have a
convenient user interface for authoring and execution.

Existing tools
There are several existing tools for authoring and executing comput-
able phenotype and cohort definitions. One highly mature and
widely used tool is the OHDSI Atlas (https://github.com/OHDSI/At-
las) tool. This tool is built on the Observational Medical Outcomes
Partnership (OMOP) CDM,> and provides users with an interface
for specifying logical criteria. Additionally, cohort definitions can be
exported in JSON format and shared with other OMOP users.
However, this format is not a formally defined standard, and cannot
contain sub-phenotype definitions. Integrating Biology and the Bed-
side (i2b2)* also provides an interface for cohort identification, but
similarly does not use a formal standard or have the ability to export
or import these definitions natively. A nascent phenotyping method,
Phenoflow, supports the development of portable phenotypes using
a formal representation.> While the overall workflow process is
based on the Common Workflow Language (CWL) standard,>® the
individual steps are implemented using custom programming code.
Building upon these existing systems and lessons learned from
their implementations, we built and validated a tool, the PAPEMA
Workbench, which allows users to author phenotype logic, assemble
value sets (collections of standard medical codes) via integration
with existing tools, and execute phenotypes without requiring man-
ual translation.

METHODS

Standards-based representation

To represent the phenotype definition, we propose a fully Fast
Healthcare Interoperability Resources (FHIR)-based representation.
Inclusion and exclusion logic is expressed using the Clinical Quality
Language (CQL), which produces an unambiguous and human
readable representation. CQL source files are contained in Library
resources as defined in the FHIR Clinical Reasoning Module. Each
phenotype has one main CQL library containing the “Case” defini-
tion, and any number of helper libraries. Value sets are represented
using ValueSet resources as defined in the FHIR Terminology Mod-
ule. A Composition resource is used to collect all Library and Value-
Set resources into a single document that fully describes the
phenotype definition. By convention, the Composition section entry
for the main phenotype Library is titled “Phenotype Entry Point” to
indicate to the executing system where to find the “Case” definition.
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As defined in the FHIR Foundation Module, the Composition and
all other resources are contained within a Bundle resource used to
persist or transmit the fully specified computable phenotype defini-
tion. This representation enables FHIR operations to be used for
storage, retrieval, and execution. For example, the $cql operation
defined in the Clinical Practice Guidelines (CPG) implementation
guide can be used to execute the phenotype, and the $document op-
eration defined in the FHIR Foundation Module can be used to as-
semble the complete phenotype definition based on the Composition
resource.

System description

Architecture

The PAEMA Workbench is designed as a standalone tool that can be
used for phenotype authoring, execution, and publishing to a shared
phenotype definition repository. It is intended for use by informati-
cians and research data analysts who routinely work with EHR-
based queries. The architecture (Figure 1) is designed to function
without requiring any changes to existing phenotyping tools or infra-
structure, and integrates with OHDSI out of the box. The components

include a web application that runs in the user’s browser, a backend API
to support integrating with existing systems, as well as services for
phenotype development and testing. The application is written using
TypeScript, a strongly typed language that compiles to JavaScript,
and the API is written in Java. All code is open-source and available
in the PAEMA GitHub organization (https:/github.com/PheMA).
The tool used for testing during authoring is CQF Ruler (https://
github.com/DBCG/cqf-ruler). It consists of a HAPI FHIR server
(https://hapifhir.io/), and an implementation of the FHIR Clinical
Reasoning Module and CPG implementation guide, which both use
the reference implementation of the CQL engine (https:/github.
com/DBCG/cql_engine).

Features
The first component is the CQL editor (Figure 2), for writing CQL
expressions. It provides syntax highlighting and allows users to exe-
cute CQL against any environment capable of CQL execution, in-
cluding the provided testing environment.

The application also provides a terminology manager (Figure 3),
which allows a user to assemble a collection of value sets into an
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Figure 1. System architecture. Services in the box labeled Server run on the PhEMA server and are accessible via the public internet. The box labeled Client runs
in the browser on the user’'s machine and is accessed by navigating to a specific URL on the PhEMA server. Optional publicly accessible third party services such
as additional FHIR servers or OHDSI Web API instances are shown in the box labeled Public Services. The Phenotype Repositories box shows repository services
(currently only PheKB). The Institutional Services box shows services that run behind institutional firewalls.
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Figure 2. CQL editor (right). The Phenotypes box in the top left lists the phenotypes available to import from PheKB. The Remote Connections box on the bottom
left lists the configured third-party services. The 3 boxes labeled Logical Libraries, Terminologies, and CQL Editor all show components of the imported pheno-

type definition. Event logs are shown at the bottom.

FHIR Bundle of ValueSet resources. Value sets can be uploaded by
dragging and dropping them into the application, or by selecting a
set of files on the filesystem. Supported formats include FHIR Value-
Set or Bundle resources, concept sets exported from OHDSI Atlas,
or a custom CSV (comma separated value) format. The user is also
able to directly search the NLM’s Value Set Authority Center
(VSAC) FHIR server,>” examine the results, and add them into the
Bundle if appropriate.

To ensure that the expressed logic performs as expected, an au-
thor can test their CQL against test data during development. The
Workbench provides an FHIR server that can be loaded with syn-
thetic data. This gives the author confidence that the developed phe-
notype definition is logically and semantically correct. The CQL is
executed on the FHIR server using the $cql extended operation, pro-
vided by CQF Ruler.

The Workbench integrates with the PheKB phenotype repository
(top left panel in Figures 2-4) using the PheKB API, and supports
listing all publicly available phenotypes, importing phenotype defi-
nitions represented using FHIR, and publishing new phenotype defi-
nitions. The Workbench currently supports OHDSI and FHIR as
execution targets. At execution time, the Workbench API processes
the complete FHIR-based phenotype definition, translates it to the
appropriate representation, using CQL on OMOP* in the case of
the OHDSI target, and executes the logic against the target data
store (Figure 4); establishing the corresponding cohort. The work-
bench also supports individual CQL library evaluation outside of
the context of a phenotype, and generation of an OMOP compliant
SQL script representing the phenotype definition.

Experimental setup

Phenotype definition

To test the PhAEMA Workbench, we selected a Thrombotic Event
(TE) phenotype developed by clinician collaborators at Weill Cor-
nell Medicine (WCM), which identifies patients who have experi-
enced one or more of 10 different thrombotic events. The definition
for each event has up to 3 criteria sets that correspond to different
confidence levels. The lowest confidence level (3) only requires that
a patient has a single diagnosis code. To meet the Level 2 criteria,
patients need to additionally have a specific drug or lab order,
depending on the specific thrombotic event. For the highest confi-
dence level (1), patients must meet the Level 2 requirements, and
also have an order for a specified procedure, and in some cases an
additional lab order as well. All criteria must occur within 1 week.
The phenotype definition was shared with the PhEMA collaborators
as a textual narrative description (Table 1).

Authoring

We used the experimental architecture illustrated in Figure 5. In the
first step, authoring and publishing were done by a single author
(PSB), referencing the TE phenotype narrative description. We omit-
ted criteria that required natural language processing (NLP), as this
data are not directly available to OHDSI cohort definitions. Test
data were created using the CQL Testing Framework tool (https://
github.com/AHRQ-CDS/CQL-Testing-Framework), which allows
users to generate FHIR resources using a light-weight configuration
file. Value sets were generated in FHIR format using a custom script
that expands a CSV file with extensional and basic intensional (eg,
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Figure 3. Terminology manager (right). The Phenotypes box in the top left lists the phenotypes available to import from PheKB. The Remote Connections box on
the bottom left lists the configured third-party services. The Terminology Manager box allows the user to import, edit, and assemble value sets. Event logs are

shown at the bottom.

regex) definitions. The value set for anticoagulant drugs was
imported directly from the VSAC FHIR server. All value sets were
assembled into the final phenotype Bundle using the Workbench ter-
minology manager component. Once all CQL logic was written and
tested, and appropriate value sets were assembled, the phenotype
was packaged using the proposed FHIR-based representation and
published to PheKB.

Execution

Phenotypes were executed against EHR data extracted into separate
databases to avoid possible performance and patient consent issues.
LVR at Northwestern Medicine (NM), PA at WCM, and D]JS at the
Mayo Clinic (Mayo), imported the phenotype from PheKB into the
PhEMA Workbench application. At NM, the phenotype was exe-
cuted directly against an OMOP instance without any local customi-
zation, using the OHDSI Web API, from the Workbench. The
OMOP database at NM contains data from a subset of the patient
population that has consented to participate in the eMERGE Net-
work with data sourced from the NM EpicCare EHR system. At
WCM and Mayo, there was no instance of the OHDSI Web API
available; thus, an SQL script was generated by PA and D]JS using
the SQL execution target available in the Workbench application.
This SQL script was then manually executed against the WCM and
Mayo OMOP databases, respectively. The WCM OMOP database
contains data for patients from both WCM and NewYork-
Presbyterian (NYP) hospitals that have at least one visit, condition,
and procedure recorded. The EHRs used at WCM and NYP are Epi-
cCare and Allscripts, respectively. The Mayo OMOP database con-
sists of patients that were enrolled in the Mayo Biobank.>®

Validation

We defined cases to be only those patients matching the Level 1 cri-
teria. In order to validate edge cases where failures of logic are most
likely to occur, we used patients matching the Level 2 criteria (but
not matching Level 1) as non-cases. A validation protocol was
shared along with an SQL script to randomly select cases and non-
cases from the output generated through the Workbench execution
step, SQL scripts to extract all relevant data, and a data entry form
for reviewers to capture which criteria were met by each cohort
member (if any).

At NM, a review of a random selection of 25 cases and 25 non-
cases was performed by LVR, who determined whether or not the
patient had the appropriate data to meet the confidence Level 1 cri-
teria for at least one of the thrombotic event types. A second author
(JAP), blinded to the results of the first reviewer, conducted a confir-
matory review of 5 cases and 5 non-cases. This procedure was fol-
lowed at Mayo, with DMK reviewing 25 cases and 25 non-cases,
and DJS performing the blinded confirmatory review of 5 cases and
non-cases. At WCM, 2 primary reviewers (ETS and SA) both
reviewed and verified the same set of 25 cases and 25 non-cases,
with a secondary reviewer (PA) resolving any discordant determina-
tions. We report precision, recall, and inter-rater agreement using
Cohen’s kappa®” as performance measures for each site.

RESULTS

Phenotype definition
The resulting thrombotic event phenotype logic consisted of 11
CQL statements, one for each thrombotic event type, and one for
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Figure 4. Example of phenotype execution. Results shown in the right-most panel.

the disjunction of the other 10. The phenotype definition had 24
value sets containing a total of 834 codes for the various diagnoses,
procedures, labs, and drugs referenced by the phenotype logic. Four
different data sources were used: lab values, procedure orders, diag-
noses, and drug orders, represented by the Observation, Procedure,
Condition, and MedicationRequest FHIR resources, respectively.
During the authoring process, 21 test cases were created to test the
phenotype definition logic. The resulting phenotype definition, in-
cluding criteria logic and value sets, as well as the test cases and
data, are available in the project repository on GitHub (https://
github.com/PheMA/thrombotic-event-phenotype).

Execution and validation
A summary of the phenotype execution and validation process is
shown in figure 6.

Northwestern Medicine

There were 8709 total patients in the NM OMOP database, of
which 378 (4.34%) met the TE confidence Level 1 criteria, and 743
(8.54%) matched the Level 2 criteria. Of the 25 cases and non-cases
randomly selected for review, all were determined by the first re-
viewer to have been correctly identified, and subsequently confirmed
by the secondary reviewer for the 5 random cases and non-cases.
Thus, the reviewers were fully concordant (Cohen’s kappa=1.0)
and all patients were correctly identified (precision and recall both
100%), which shows the phenotype was faithfully converted.

Weill Cornell Medicine
The WCM OMOP database contained a total of 3 543 097 patients,
of which 14826 (0.42%) were identified as cases and 33476
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(0.94%) as non-cases. The 2 primary reviewers were discordant in 6
instances (15%), resulting in kappa = 0.74. These discordances were
resolved by the secondary reviewer, and of the 25 cases, 22 (88%)
were confirmed to match the TE confidence Level 1 criteria, and of
the 25 non-cases, 24 (96%) were confirmed as not matching the
confidence Level 1 criteria. This results in a precision of 95% and a
recall of 84%.

During the CQL to OMOP translation step, cohort members
were misclassified at WCM due to how the OHDSI Web API per-
forms concept searches. Concepts are searched based on prefix
matches, which in a few cases can return unrelated concepts with
matching prefixes. This will be resolved in the next version of the
CQL on OMOP tool.

Mayo Clinic

The Mayo Clinic OMOP database instance contained 52 805 total
patients, of which 155 (0.29%) patients matched the confidence
Level 1 criteria and 292 (0.55%) patients matched the Level 2 crite-
ria. The reviewers were fully concordant (Cohen’s kappa = 1.0). Pre-
cision and recall were both 100%, which again shows the
phenotype was faithfully converted.

DISCUSSION

Our FHIR-based representation of phenotype definitions and
platform-agnostic tool can be used for computable EHR-driven phe-
notyping, and achieves results comparable to other methods. Fur-
thermore, our approach combines elements of the CDM approach
with elements of the generic logic approach, taking advantage of the
benefits of both, while mitigating some of the disadvantages. This
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Figure 5. Experimental architecture. The Thrombotic Event phenotype was authored by PSB at the University of Washington and published to the PheKB reposi-
tory in the proposed FHIR-based format using the Workbench application. LVR used the Workbench at Northwestern Medicine (NM) to automatically execute the
phenotype using an institutional instance of the Workbench API. At Weill Cornell Medicine (WCM), PA used the Workbench application to generate an SQL script
and executed it against the WCM OMOP database manually. The same approach was used at Mayo Clinic by DJS to generate and execute the SQL version of the

phenotype definition.
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Figure 6. Results of the phenotype execution and manual review process.

approach does not require additional data preparation, works across
data platforms, uses established healthcare standards, and uses both
human-readable and computable phenotype representations Addition-
ally, the Workbench integrates into existing clinical informatics re-
search infrastructure without requiring any changes to currently used
tools and can in fact complement them. Table 2 summarizes how the

PhEMA Workbench compares to existing phenotyping methods. Since
many tools exist to generate FHIR-compliant data (eg, scenario builder
(http://clinfhir.com/builder.html) and the CQL Testing Framework),
they can be leveraged to populate the testing environment used to vali-
date phenotype logic. This testing data can be used with publicly avail-
able standards-based testing tools. Furthermore, since the process is
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partially (in the case of WCM and Mayo) or completely (in the case of
NM) automated, the potential for human error is reduced.

Every step of the phenotype authoring process was done using
only FHIR and CQL, which are open standards developed by HL7.
Furthermore, while CQL is data model agnostic, our choice to use
FHIR for representing clinical data elements has several advantages.
First, since FHIR is becoming a de facto CDM, much work has been
done to generate mappings from the FHIR data model to other
widely used data models, such OMOP, i2b2, and others*’; thus, our
phenotypes can be easily translated to various data models using
standardized mappings.

CQL as a logical expression language is highly expressive and is
capable of representing clinically validated phenotype definitions.
Since CQL is a formal language, it also eliminates ambiguity that
may result in variability of implementations. CQL is designed specif-
ically for the clinical domain; thus, it has functionality tailored for
representing clinical logic, such as the full set of temporal operators
defined by Allen’s interval algebra,*' aggregate operators commonly
used for quality measures and decision support, and uncertainty se-
mantics to deal with missing data. Additionally, CQL provides inte-
gration points with external systems such as NLP pipelines or ML
models.

The use of standards enables decoupling of both technical and
conceptual components of EHR phenotyping, which is a widely
used strategy in the technology industry to increase scalability, reli-
ability, and extensibility.”>** For example, the CQL engine focuses
on logic execution, and delegates to a data provider module to col-
lect the relevant data; thus, additional modules and execution tar-
gets can be developed for different data sources without requiring
logic to be rewritten. Different CQL libraries can be assembled in a
modular way, allowing for code reuse and easy localization, with
site-specific logic contained in a library that can be used as a “drop-
in” replacement for more general libraries.

Using a phenotype representation based on published standards
decouples phenotype authoring and execution. The phenotype au-
thor (informatician or research data analyst) only requires knowl-
edge of documented standards to define the phenotype. No
knowledge of the data model where the phenotype definition will be
executed is required, nor is access to the data. This means that
knowledge artifacts developed by third parties can be executed while
maintaining patient privacy, analogous to the model to data ap-
proach used for evaluating machine learning models on healthcare
data.®?

While graphical tools for phenotype authoring do exist, for ex-
ample, OHDSI Atlas, the i2b2 query interface, and others,! they
have limitations the PhAEMA Workbench attempts to address (sum-
marized in Table 2). First, the phenotype definitions produced by
these tools do not conform to any healthcare standard. Thus, future
changes to how their phenotype definitions are structured could re-
sult in unintentional breaking of existing phenotype definitions if
not carefully managed. Also, while these definitions can be shared
between implementations of the same system, they cannot be shared
between systems (ie, they are not cross-platform), except with some
recent custom translators which still may lose some information
during translation due to the differences of granularity and opera-
tions supported by the CDMs.** Furthermore, the expressivity of
the phenotype definitions supported by these tools may be limited.
Even directly using SQL to generate cohorts may not be as conve-
nient as using CQL, since SQL lacks clinical operators such as those
used to determine patient age (eg, current age or age at date of clini-
cal observation), as well as terminology operators to check whether

coded values are part of specific code systems or value sets. Addi-
tionally, SQL is very tightly coupled to the data model against which
it is executed, which means code is not reusable across databases
with different schemas.

Local customization is an important part of EHR-driven pheno-
typing, as variations in local guidelines and clinical practice can eas-
ily result in differences in the downstream observational datasets.*®
The PhEMA Workbench supports local customization by allowing
users to directly view and edit logic before execution, as well as
swap out value sets for ones that are more appropriate for the local
context, all while remaining fully standards compliant. Various
methods exist to author CQL source code, but only one integrates
with a testing environment (the Atom CQL plugin [https://atom.io/
packages/language-cql]) and, to our knowledge, no other tool inte-
grates with a phenotype repository or has the ability to assemble
value sets from various sources.

Current limitations are as follows. First, we only tested a single
phenotype definition, and did not support NLP or machine learning
phenotype definitions. Although the TE phenotype we selected
includes multiple data elements and temporality, it does not exhaus-
tively demonstrate other complex logic such as medication exposure
periods. We have begun to address this limitation by developing a
repository of more complex definitions, which we intend to evaluate
using the Workbench in the future.** Additionally, while we demon-
strated cross-platform authoring and execution, we only tested a sin-
gle execution target (OMOP), although we previously demonstrated
that cross-platform execution is possible.”” Our support for FHIR as
our standard data model is based on the core FHIR specification,
and does not currently support specific profiles or extensions. As a
result, the FHIR resources and fields we chose to use may not ex-
actly match data in other FHIR data repositories relying on profiles
and extensions. Additionally, we do not communicate our data
model computationally to other systems using an FHIR implementa-
tion guide.

The CQL language also only supports structured data elements
out of the box, but the PAEMA collaborators have developed NLP

4647 to be integrated into the Workbench architecture.

integrations,
There is also an upfront cost involved in implementing a CQL en-
gine for a new data source, which may be prohibitive if engineering

resources are not available.

CONCLUSION

We demonstrate that a fully FHIR-based phenotype representation
is feasible and enables the decoupling of authoring and execution,
leading to several advantages. If such an approach is broadly
adopted, it may increase the velocity of biomedical generation by in-
creasing semantic interoperability of phenotype definitions, and fa-
cilitating high-throughput cohort identification—reducing the
potential for human error.

Our representation of a clinician-developed phenotype defini-
tion, executed against 3 OMOP data repositories, achieved results
comparable to other methods. Additionally, our modular architec-
ture consisting of existing open-source tools, including the newly de-
veloped PhAEMA Workbench, can provide an effective and efficient
phenotyping environment across institutions. The Workbench com-
plements existing tools, and requires no changes to existing systems,
giving end-users additional options without added restrictions.

In the future, we intend to use the PhAEMA Workbench in clinical
studies, and are planning to extend the capabilities of the system to
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include NLP (using CQL4NLP*”) and more sophisticated machine
learning models. We are also planning to continue improving the
Workbench user interface, for which we have a user-centered design
study currently underway to ensure usefulness for diverse end users
of the tool.
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