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Preface.

Alzheimer disease (AD) is a major cause of age-related dementia. We do not fully understand AD 

etiology and pathogenesis, but oxidative damage is a key component. Brain mostly uses glucose 

for energy, but in AD and amnestic mild cognitive impairment (aMCI) glucose metabolism is 

dramatically decreased, probably due, at least in part, to oxidative damage to enzymes involved 

in glycolysis, the tricarboxylic acid (TCA) cycle, and ATP biosynthesis. Consequently, ATP-

requiring processes for cognitive function are impaired, and synaptic dysfunction and neuronal 

death result, with ensuing thinning of key brain areas. We summarize current research on the 

interplay and sequence of these processes and suggest potential pharmacological interventions to 

retard AD progression.

INTRODUCTION

AD is characterized by an accumulation of senile plaques (SP) [composed mostly of 

fibrillary amyloid beta-peptide (Aβ) and dystrophic neurites] and neurofibrillary tangles 

(NFT) [composed of hyperphosphorylated tau protein] in the brain, leading to dysfunction 

and loss of synapses and eventual neuronal death1,2. Clinically, AD is characterized by 

several features, notably a progressive cognitive decline involving loss of memory and 

higher executive functioning1. Arguably the earliest stage of AD is preclinical AD (PCAD) 

in which persons have normal cognitive status, but upon death and autopsy their brains 

display evidence of substantial AD neuropathology. Amnestic mild cognitive impairment 

(aMCI) is a progressive condition in which there is some degree of memory loss and is 

widely thought to be a prodromal early stage of AD in which AD neuropathology is present, 

albeit to a lesser degree. In contrast to AD patients, however, aMCI individuals can perform 

the activities of daily living. It has been estimated that approximately 15 percent of people 

with aMCI progress to AD annually3.
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AD pathology occurs well before (up to two decades) the onset of clinical symptoms2–4. It 

follows that a) therapy begun when symptoms appear may be too late to be effective; and 

b) understanding key molecular processes in the progression of AD is needed to facilitate 

earlier diagnosis and to develop new interventions to slow or stop its progression.

One important process that becomes dysfunctional in AD and aMCI is metabolism of 

glucose5,6. Glucose is normally the major energy source for the brain and is metabolized 

to ATP via glycolysis, the tricarboxylic acid (TCA) cycle, and the electron transport chain 

(ETC), as shown in Figure 1. Glucose enters the brain from the vasculature through highly 

efficient glucose transporters and requires insulin for optimal cellular utilization7. In AD 

and aMCI, however, brain insulin resistance is present6,7. Indeed, type 2 diabetes (T2DM), 

a key component of which is insulin resistance, is a significant risk factor for developing 

AD7. Given the huge increase in T2DM development worldwide, combined with ageing 

populations, AD is a major and growing problem.

The present article summarizes the role of oxidative damage in aMCI and AD, how it affects 

glucose metabolism, and how it is a key mechanism behind insulin resistance. We review the 

reasons for the failures of certain therapeutic approaches in AD, and suggests possible new 

approaches.

Oxidative Damage is relevant to AD

Oxidative Damage is the damage that is done to biomolecules during oxidative stress (for 

a detailed review and discussion see8). Oxidative stress is a serious imbalance between 

the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

and antioxidant defences8, and has been shown in a wide range of studies to contribute 

significantly to the pathogenesis and progression of AD2,8–19. Diabetes also leads to 

oxidative stress (ref8, also see later discussion), which may make a contribution to its 

propensity to favour AD development9. The term “reactive” is variable: some ROS and RNS 

are highly reactive (e.g., OH•), whereas other are much more selective in their reactions 

(e.g., H2O2, NO•, O2•−). Box 1 lists several biologically-important ROS and RNS.

When certain ROS or RNS react with biomolecules, oxidative or nitrosative damage occurs, 

which can be detected by measuring specific products that result from such damage 

(“biomarkers of oxidative or nitrosative damage”)8. Some of the most commonly used 

biomarkers of oxidative damage to lipids, proteins and nucleic acids are listed in Table 1.

In the brains of subjects with PCAD and AD, levels of oxidative damage to a wide range 

of molecules are increased8–19. For example, levels of protein carbonyls (PC) are elevated 

in AD in brain regions that are rich in amyloid beta-peptide (Aβ)-containing senile plaques 

(Table 1), but at normal levels from brain regions devoid of Aβ-rich plaques19. Even in 

aMCI patients, oxidative damage is already significantly increased: PC are significantly 

elevated in aMCI brain or cerebrospinal fluid (CSF)8,14,20. Increased lipid peroxidation (a 

term explained in Table 1) in AD and aMCI brains or CSF and in PCAD hippocampus is 

further evidenced by rises in the levels of protein-conjugated HNE, F2-isoprostanes, and 

F4-isoprostanes8,11,12,13,15,16,19–23. Elevated levels of 3-nitrotyrosine (3-NT), suggestive of 
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damage by peroxynitrite (Table 1) are also observed in AD18,24 and aMCI25. 8-Hydroxy-

deoxyguanosine (8-OHdG), a biomarker of oxidative damage to DNA (Table 1), is also 

elevated in AD (in both nuclear and mitochondrial DNA)26–28, as is oxidative damage 

to RNA29,30. For example, neuritic plaques (rich in fibrillar Aβ42 and Aβ40) and 

neurofibrillary tangles contain oxidized, glycated, and nitrated proteins. Consequences of 

this increased oxidative and nitrosative damage are likely to include glucose dysmetabolism 

(see section on oxidative damage below) and loss of ion gradients with resulting impaired 

action potentials and Ca2+ dyshomeostasis, because oxidative stress is well known to raise 

intracellular free Ca2+ levels, from which several deleterious consequences can follow8. 

Moreover, oxidative DNA damage can interfere with gene transcription and affect promoter 

function, which can lead to impaired transcription of essential genes and to mutations. 

Oxidative RNA damage can impair protein translation and the damaged RNA can be 

prematurely degraded, further impairing synthesis of essential proteins (Table 1).

Learning and memory deficits, decreased higher executive function, and diminished 

reasoning ability characterize AD patients, whereas memory deficits are a hallmark of 

aMCI. In both conditions, these altered functions largely originate from synaptic dysfunction 

relating to altered synaptic proteomes31,32. Aβ42 oligomers contribute to this synaptic 

dysfunction, impairing learning and memory31. Aβ42 oligomers also cause oxidative 

damage to synaptic membranes12,16, and there seems to be an intimate relationship 

between this oligomer-induced oxidative damage and synaptic dysfunction. Indeed, the 

first pathological insults to neurons in AD and aMCI occur at pre- and post-synaptic 

membranes1,3. Interestingly, large oligomers of Aβ42, which would have difficulty 

solubilizing in the neuronal lipid bilayer, seem relatively non-toxic, whereas small oligomers 

of Aβ42 (for example, dimers or trimers that easily enter lipid bilayers) appear highly 

toxic to synapses33. These considerations support the notion that lipid peroxidation, and 

perhaps other forms of oxidative damage in synaptic membranes, accounts for the loss 

of long-term potentiation (LTP) and other synaptic functions involved in learning and 

memory12,15,16,20–22,34,35.

Dysfunctional glucose metabolism in AD

The brain is an energy-demanding organ and relies heavily on efficient ATP production via 

glycolysis, the TCA cycle and oxidative phosphorylation (Fig. 1)7. Yet glucose metabolism 

in AD and aMCI brains is significantly impaired5–7,9,38. What causes this loss of glucose 

utilization?

Contribution of oxidative damage

Research from our laboratories11,12,34 and many others2,4,8,10 has shown that inefficient 

glucose utilization (and thus impaired ATP production) and oxidative damage are intimately 

related. A major contributor to inefficient glucose utilization may well be oxidative 

modification, which almost always leads to decreased activity of enzymes involved in 

glucose metabolism (Figure 1).

The techniques of redox proteomics34 allowed specific oxidatively or nitrosatively modified 

proteins (that is, PC-, protein bound HNE-, and/or 3-NT-modified proteins) to be identified 
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in brain from subjects with late-stage AD, aMCI and PCAD20,24,34,35. For example, redox 

proteomics of AD brain tissue revealed that in affected brain areas, oxidative modification 

of the glycolytic enzymes aldolase, triosephosphate isomerase (TPI), glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), phosphoglycerate mutase (PGM1), and α-enolase 

occurs12,34. In addition, oxidative modifications to aconitase, a key iron-sulfur containing 

enzyme in the TCA cycle, creatine kinase (an enzyme which helps neurons to maintain 

ATP levels) and ATP synthase in brain mitochondria, help to explain decreased glucose 

metabolism and consequent decreased ATP production in the brains of people with aMCI 

and AD12,25,34. Oxidative damage to mitochondrial DNA27,28 might also contribute to 

impaired energy production, and there has been a suggestion that defects in sirtuin 3 (SIRT 

3) contribute to oxidative damage in AD mitochondria37. Indeed, mitochondrial dysfunction 

and insulin resistance are intimately related7,38.

The consequences of this decreased ATP production in AD and aMCI are profound. For 

example, decreased ATP will diminish the neuron’s ability to maintain ionic gradients, 

hindering production and propagation of action potentials and therefore neurotransmission. 

Moreover, loss of ion gradients can allow extracellular Ca2+ to enter, which can further raise 

intracellular free Ca2+ levels, stimulating Ca2+-dependent endonuclease, phospholipase, and 

proteinase activities8, contributing to synaptic dysfunction and eventual neuronal death. 

Excess Ca2+ can saturate the ability of endoplasmic reticulum (ER) and mitochondria 

to buffer and cycle Ca2+, causing swelling of the latter with consequent opening of the 

mitochondrial permeability transition pore, leading to release of cytochrome c and apoptosis 

inducing factor-1, provoking neuronal apoptotic death39. Excess intra-neuronal free Ca2+ 

can also cause loss of fidelity of microtubule assembly40, with consequent decreased 

anterograde and retrograde transport of mitochondria and neurotransmitter vesicles, starving 

presynaptic terminals of energy and decreasing neurotransmission. This in turn leads to 

synaptic dysfunction, neuronal death, and ultimately to cognitive dysfunction.

mTOR Activation and AD

Brain insulin resistance is common in AD7,38,41. One of the mechanisms by which insulin 

resistance can develop is by activation of the mechanistic target of rapamycin (sometimes 

called the mammalian target of rapamycin), usually abbreviated to mTOR. mTOR is a 

highly integrated complex of many proteins41,42, and exists in two functionally distinct 

forms, mTORC1 and mTORC2. Activated mTORC1 is intimately involved in regulation of 

protein synthesis, autophagy, mitochondrial function, lipogenesis, ketogenesis, and insulin 

signaling, and is crucially linked to glucose metabolism, where it becomes activated by 

growth factors, amino acids, and high cellular energy status41,42 (Fig 2).

Inhibition of autophagy following activation of mTOR in AD (Fig 2) causes accumulation 

of aggregated, misfolded proteins and damaged organelles, particularly mitochondria, which 

can lead to inhibition of normal cellular processes. This significant mediator of neuronal 

death is present in the early stages of AD, and evidence of impaired autophagy is also found 

in aMCI brain and PCAD brains41–43. Insulin resistance is another detrimental consequence 

of mTOR activation in aMCI and AD brain41 (Fig 2). These mTOR-mediated events may 

help explain the observation that type 2 diabetes (T2DM) is a significant risk factor for 
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development of AD7,41. In addition to mTOR activation, insulin resistance can also result in 

neuronal glucose deficiency, with consequent decreased glucose metabolism, impaired ATP 

production, and dysfunction and/or death7,42

Glycation and brain oxidative damage

When reducing sugars react with the side chain amino groups of lysine residues on proteins, 

several processes occur that eventually generate advanced glycation end products (AGEs). 

AGE formation involves not only direct reaction of these residues with the sugars but also 

oxidative damage to the proteins: the combination of these reactions is often referred to 

as glycoxidation (reviewed in8,44). AGEs are ligands for receptors for AGEs (RAGE)44–47. 

Glycoxidation is highly relevant to AD, in part because Aβ extracellular fibrillar aggregates 

have characteristics of AGEs and bind to RAGE in neurons and brain endothelial cells. 

AGE and Aβ binding to RAGE leads to further oxidative stress that contributes to neuronal 

death and vascular dementia in AD45–48. Glycation may slow the conversion of Aβ to 

fibrils, keeping them longer in the toxic oligomeric forms48. Vascular dysfunction worsens 

cognitive defects in AD49.

Proteostasis Abnormalities in AD

The proteostasis network consists of autophagy (all types), the ubiquitin-proteasome system 

(UPS) and the unfolded-protein response (UPR) in the ER43,50–54 (Fig 3). One might 

predict that as a consequence of decreased autophagy in AD (see above), the UPS would 

become hyperactivated to compensate for decreased removal of damaged proteins. In fact, 

proteasome activity seems to be decreased in AD50–52,. In addition, a crucial part of the UPS 

is oxidatively damaged and dysfunctional in both aMCI and AD brain, namely, ubiquitin 

carboxyl-terminal hydrolase L-1 (UCH L1)34,55–57. UCHL1 removes (one residue at a time 

from the carboxyl terminal) the polymeric ubiquitin chains that have been added to the 

damaged proteins by ubiquitin ligases, so that the protein can enter the 19S cap of the 26S 

proteasome. In aMCI and AD brains, the failure of oxidatively damaged UCH L1 to perform 

its function in aMCI and AD brains leads to accumulation of ubiquitinylated proteins, 

decreased proteasome function, and subsequent accumulation of damaged, aggregated 

proteins55. This UCH L1 dysfunction synergizes with dysfunctional autophagy, ER stress 

(described below), and other impairments of the proteostasis network (Fig 3) to contribute 

to the cellular detritus in neurons, hastening their demise. In the presence of excessive 

oxidative stress, the two 19S caps can be separated from the 26S proteasome, leaving the 

20S proteasome capable of degradation of certain oxidatively damaged proteins without 

the involvement of ubiquitin50. One implication of the ability of the 20S proteasome to 

degrade oxidatively modified proteins independent of the 19S components of the 26S 

proteasome is that the involvement of UCH L1 is not needed, and, as noted above, this 

critical enzyme is oxidatively dysfunctional in AD. This could be regarded as an attempt 

to rescue dysfunctional proteostasis. Unfortunately, degradation of oxidatively modified 

proteins is still compromised in AD brain as the 20S proteasome enzymatic activities are 

dysfunctional51,52 (including inhibition by Aβ), resulting in accumulation of oxidatively 

modified, often misfolded and dysfunctional proteins.
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In response to abnormal elevated levels of misfolded proteins and/or free Ca2+ in the ER 

lumen, the unfolded protein response (UPR) is engaged53,54,58. This consists of activation 

of one or more of three stress transducers that lead to rapid responses designed to repair the 

defective mechanisms that caused the cellular dysfunction: protein kinase R-like ER kinase 

(PERK), inositol-requiring enzyme 1alpha (IRE1), and activating transcription factor-6 

alpha and beta (ATF6). Each stress sensor induces one or more down-stream response 

mechanisms that are designed to lower ER stress (Fig. 3). Normally, these three stress 

sensors are inactive due to interaction with binding immunoglobulin protein (BiP, also called 

glucose regulated protein 78 (Grp78)), which, when removed, initiates activation of the 

stress response. Addition of oligomeric Aβ to neurons leads to large elevations in Ca2+ with 

consequent oxidative stress and ER stress-dependent neuronal death.

Inhibition of autophagy, oxidative stress, and mitochondrial function loss also activate the 

UPR, and as noted above, all of these alterations are observed in AD34,41–43,53,54,58 (Fig 

3). For PERK, receptor Tyr-kinase activity phosphorylates eIF2α, which leads to decreased 

protein translation and causes elevated rates of translation of normally poorly translated 

mRNAs, among which is ATF4. This, in turn, leads to decreased redox homeostasis 

and elevated apoptosis. ATF6-transduced ER stress response involves inducing transport 

of the ATF6 precursor protein to the Golgi apparatus, where a shorter form of ATF6 

is produced. This then translocates to the nucleus where expression of X-box binding 

protein (XBP1) occurs. In the case of IRE1, transduced ER stress results in dimerization 

and formation of a transmembrane kinase – Receptor Tyr Kinase (RTK), which in turn 

results in: a) RNA degradation by regulated IRE1-dependent decay (RIDD); b) XBP1-

mediated alternative mRNA splicing that leads to ER-associated degradation (ERAD) and 

increased lipid metabolism, which can lead to elevated levels of the lipid peroxidation 

product, 4-hydroxynonenal (HNE); and c) tumor necrosis factor receptor-associated factor 2 

(TRAF2)-mediated inflammatory or pro-apoptotic gene induction, including nuclear factor 

kappa-light chain enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase (JNK). 

In AD brain, markers of ER stress are elevated and correlate with progression of this 

disorder53,54,58.

Thus, three key components of the proteostasis network are dysfunctional in aMCI and AD 

brains. This dysfunction contributes to neuronal damage and death by several mechanisms, 

including ER stress and the accumulation of oxidatively damaged proteins, which in 

the normal brain are usually degraded by the UPS and autophagy to keep their levels 

low8,50,53,55.

In summary, oxidative and/or nitrosative damage to multiple proteins, including synaptic 

proteins is very likely to contribute to the memory problems and other cognitive deficits, 

reduced ATP availability in neurons, and decreased clearance of abnormal proteins34, 

creating a “perfect storm” (or sTORm perhaps!) of detrimental cognitive effects in 

AD9,34,35,41,42.
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Down Syndrome and AD

Further evidence for a key role of oxidative damage in AD comes from studies of Down 

syndrome (DS). The varied phenotypes of DS result from full or partial triplication of 

chromosome 21, the most common human chromosomal disorder59. There are several genes 

associated with AD and oxidative stress on chromosome 21, including amyloid precursor 

protein (APP), from which Aβ arises, and beta-secretase-2, one of the proteinases that act 

on APP to form Aβ. One striking characteristic of people with DS is that at approximately 

40–50 years of age, AD-like dementia often appears59,60. It is likely that both a dose effect 

of triplication of APP and gene-environment interactions play a role59,60. Other proteins 

encoded on chromosome 21 may be involved59, such as Cu/Zn-superoxide dismutase (which 

is an important antioxidant enzyme normally, but can be deleterious if excess is present8) 

and Bach1 (transcriptional inhibitor of heme oxygenase-1, HO-1). HO-1 is an important 

cellular antioxidant system that degrades free heme (a pro-oxidant)8 and interference with its 

action can contribute to oxidative stress8,61,62.

Increased oxidative damage occurs early in DS development, as evidenced by the fact 

that neurons obtained from aborted fetuses with DS show evidence of increased oxidative 

damage63 as does amniotic fluid from mothers carrying fetuses with DS64. These 

observations are consistent with the notion that oxidative damage contributes significantly 

to pathogenesis and progression of DS42,64. Redox proteomics has identified several 

oxidatively damaged proteins (including ceruloplasmin, transferrin, retinol-binding protein 

4, apolipoprotein Al, complement C9, and collagen α−1Vchain) in amniotic fluid that 

correlate with the various phenotypes presented in individuals with DS, suggesting that 

oxidative stress contributes to these phenotypes64. Other biomarkers of increased oxidative 

damage in the brains of persons with DS and persons with DS with AD neuropathology (DS 

with AD) include elevated levels of HNE and PC15,42; the increases are greater in people 

with DS with AD62,65,66. Moreover, redox proteomics identified brain proteins oxidatively 

modified by PC and HNE that are similar to those in AD42,65. These oxidatively modified, 

and likely dysfunctional, proteins include ones associated with altered glucose metabolism, 

mTOR signaling (including inhibited autophagy and increased insulin resistance), and 

the proteostasis network42,61,62,65,66. All of these events will impair brain function and 

development in DS.

Proteins encoded on chromosome 21, excess levels of Aβ and of hyperphosphorylated 

tau protein42 constitute a vicious cycle for neuronal damage in DS. Elevated oxidative 

stress and mTOR activation with consequent inhibited autophagy that results in elevated 

levels of neuronal detritus are observed, and AD-like senile plaques form. Among the non-

degraded moieties is Aβ itself, whose accumulation leads to more oxidative damage, RAGE 

activation, and activation of mTOR, continuing the vicious cycle. Hyperphosphorylated 

tau leads to destabilization of microtubules, affecting mitochondrial trafficking thus 

leading to presynaptic energy deficits. Consequent loss of ion gradients in presynaptic 

membranes that is secondary to loss of mitochondrial anterograde transport down axons, 

with consequent damaging Ca2+-related changes (discussed earlier), occurs12,24,34,42. Tau 

hyperphosphorylation also facilitates deposition of neurofibrillary tangles similar to those 

in AD brain. Furthermore, activated mTOR-mediated phosphorylation of IRS-1 (via 
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phosphorylated p70S6K; Fig 2) leads to insulin resistance in DS, contributing to glucose 

hypometabolism. It is conceivable that mTOR-mediated alteration of insulin signaling 

due to IRS-1 inhibition, coupled to glucose hypometabolism, could lead to elevated tau 

phosphorylation, causing NFT formation and neuronal death7,36,42.

To summarize, the genetic abnormalities underlying DS drive mechanisms similar to those 

in AD, providing insights not only into DS but also into aMCI and AD and also suggesting 

novel therapeutic targets and approaches67. Indeed, ongoing investigations of the temporal 

changes in damaged brain proteins associated with glucose metabolism, the proteostasis 

network, and glutamate metabolism (the latter changes related to the functioning of the TCA 

cycle) are likely to provide insights into the molecular bases for conversion of DS into DS 

with AD.

Early detection is important

As mentioned earlier, brain pathology in patients who will eventually develop AD probably 

begins at least two decades before clinical symptoms appear2,4. Therefore, identifying who 

is at risk of developing AD and early detection of the disease are essential to allow potential 

disease-modifying treatments to be administered before substantial neuronal dysfunction and 

death have occurred.

Simple blood tests to detect early development of AD pathology would be the ‘Holy Grail’ 

and there has been some progress towards this goal. A recent study68 measured plasma 

amyloid-β biomarkers by immunoprecipitation coupled with mass spectrometric analysis. 

Plasma from hundreds of well-characterized controls, aMCI, and AD patients from Japan 

and Australia was examined. The results demonstrated, with very high confidence (over 94% 

of samples tested), that amyloid β-biomarkers in plasma can correctly discriminate among 

control, aMCI, and AD subjects. This study raises hopes that this far less invasive approach 

(compared to lumbar puncture to obtain CSF) will allow physicians and scientists to both 

treat patients earlier in the progression of this disorder than is currently possible and gain 

insights into molecular processes involved in the etiology and progression of AD. Exosomal 

biomarkers might be another promising approach in DS with AD69.

CSF biomarkers have also been proposed but not yet validated, but these are less desirable 

than plasma biomarkers because extracting CSF is more invasive2,70; using biomarkers 

detected through retinal imaging has also been proposed2,71,72. Another approach underway 

to address this need for predictive biomarkers in AD involves the Dominantly Inherited 

Alzheimer Network (DIAN)73: persons carrying one of several dominantly-inherited genes 

that cause familial AD agreed to provide fluids and tissue, and undergo neuroimaging to 

detect AD pathology. The combined data allowed researchers to gain insights into factors 

and biomarkers that might predict onset of AD pathology and clinical symptoms. The results 

of studies using DIAN should be extremely helpful in AD treatment and AD research. 

Indeed, a recent neuroimaging study using DIAN shows that preferential degradation 

of cognitive networks differentiates AD from normal aging74. Other valuable networks 

contributing to our understanding of the above events have been AIBL (the Australian 
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Imaging Biomarkers and Lifestyle study)2 and ADNI (the Alzheimer Disease Neuroimaging 

Initiative)75, as well as cohorts of people with DS67,69.

Using a different approach, oxidative stress was found to be elevated in mitochondria 

isolated from peripheral lymphocytes of people with aMCI and AD76, results that potentially 

could be part of a putative panel of biomarkers to identify development of aMCI or AD prior 

to appearance of symptoms. Given the involvement of oxidative stress in the progression and 

pathogenesis of AD, it is possible that unless AD therapies (such as antioxidants) are used 

much earlier in AD than the onset of symptoms, they will have limited effectiveness and 

may be totally unsuccessful. So let us move on to consider the value of antioxidants.

Antioxidant Interventions in AD

Vitamin E

The key role of oxidative damage in the pathology of aMCI, PCAD and AD suggests that 

inhibiting it should have therapeutic benefit8,11. Consistent with this view, many preclinical 

models of aMCI and AD, such as neuronal cell cultures or transgenic mice, have shown 

significant protective effects of antioxidant treatment (e.g. refs 2, 8, 77–79). It is therefore 

surprising that the results of clinical trials in aMCI and AD involving antioxidant therapies 

(such as vitamin E) have been largely disappointing2,8,70,78,80.

The trials that have been conducted using vitamin E are worth examining, since they may 

have lessons relevant to the use of other antioxidants. Following a report of success of 

high-dose vitamin E in keeping late-stage AD patients out of long-term care facilities longer 

than patients on a placebo81, other studies with vitamin E have been less impressive70,78,80. 

So, what went wrong? Although vitamin E administration has been observed to decrease 

oxidative damage levels in brain in vivo in some studies82, administering extra vitamin E 

has not proved particularly effective as an antioxidant in humans in vivo8. If administered 

vitamin E does not decrease oxidative damage in the brain significantly, then it will not be 

effective against MCI or AD. One reason is that transport of extra vitamin E into brain is 

limited83.

The most important biological form of vitamin E is RRR-alpha(α)-tocopherol, the major 

form found in the brain. However, three other tocopherols (β, γ, ξ) are known, with frequent 

suggestions (although limited evidence) that they may be important antioxidants in vivo8. 

Although α-tocopherol is efficient in trapping lipid peroxyl radicals, gamma-tocopherol 

appears more efficient at scavenging RNS species84. Because both elevated oxidative and 

nitrosative stress occur in AD (see above), clinical trials of vitamin E in AD should perhaps 

have included both of these forms of tocopherol.

Polyphenols

Some so-called antioxidant molecules (for example, polyphenols such as resveratrol or 

quercetin) are able to enter the brain to a limited extent85. In preclinical models, such 

molecules have shown promise in treatment of AD77. One mechanism by which polyphenols 

could exert protective properties is by generation of a hormetic response to their use85–88. 

In other words, they generate a mild oxidative stress that the body tries to mitigate by 
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upregulating protective genes. This often leads to rises in the levels of antioxidants such 

as GSH and HO-1, mediated by activation of the transcription factor Nrf-2, (nuclear factor 

erythroid 2-related factor 2)8,89.

How does this system work? Nrf2 is widely expressed in animal tissues but most of it 

is kept in an inactive form, largely in the cytosol, by binding to the Keap1 (Kelch-like 

erythroid cell-derived protein with CNC-homology associated protein 1) protein, which also 

promotes its rapid degradation by the proteasome8,89. Many xenobiotics induce oxidative 

stress and are, or can form, electrophiles, agents that react with sites of high electron 

density on proteins, DNA, or lipids (an example being unsaturated aldehydes such as HNE 

formed during lipid peroxidation; Table 1). An increase in oxidative/electrophilic stress 

can activate protein kinases that phosphorylate cytoplasmic Nrf2, causing it to fall away 

from Keap1. The Nrf2 then migrates into the nucleus and binds to an antioxidant response 

element to initiate gene transcription. In addition, Keap1 is rich in cysteine residues and its 

direct modification by reactive oxygen / nitrogen species and electrophiles, including α,β-

unsaturated aldehydes, and dietary xenobiotics such as sulphoraphane or curcumin can also 

stop the proteasomal degradation of Nrf2 and cause it to accumulate89. Indeed, impairment 

of Nrf2 function worsened cognitive defects in a mouse model of AD90, suggesting the 

importance of the Nrf2 system in AD. In vivo use of polyphenols (especially curcumin) in 

some mouse models of AD has been successful77,87, but this has not (yet) been translated to 

usefulness in human AD2,70,87,88.

However, one must be prudent when using polyphenols as “antioxidant” therapeutic agents. 

If their beneficial effects actually rely on a mild pro-oxidant action that triggers hormesis, 

too many of these molecules in the brain would likely aggravate oxidative stress rather 

than ameliorate it. There can be other problems. For example, the polyphenol curcumin, 

found in turmeric, has been widely used in preclinical studies, several of which suggest 

that its antioxidant properties, ability to promote Aβ clearance, and other actions may be 

a potential treatment for AD2,87,88. But, curcumin is actually a poor antioxidant in vitro8 

and readily breaks down, for example in cell culture91, to a range of biologically active 

products. Curcumin can bind to many proteins and membranes, sometimes disguising in 

in vitro assays the effects of potential new drugs that might eventually prove useful for 

AD or other disorders89. The true value of curcumin in AD therapy remains unclear70. 

Brain penetrant antioxidant and cytoprotective agents without pro-oxidant effects, such as 

ergothioneine, may be a promising approach92,93. Other approaches include the use of 

different agents, such as triterpenoids, that can activate Nrf294, although they (and other 

agents that act via Nrf2) should be used with caution because too much Nrf2 activation can 

be deleterious89,95. Mitochondrially-targeted antioxidants, to reduce mitochondrial oxidative 

damage in AD94,96, might also prove useful.

Deuterated lipids

Lipid peroxidation involves abstraction of labile hydrogen atoms from unsaturated fatty acid 

side chains (Table 1). Chains in which labile hydrogen atoms are replaced by deuterium 

atoms are more resistant to peroxidation. This is because abstraction of deuterium by ROS is 

harder, since the C-D bond is much stronger than the C-H bond. Deuterated lipids have been 
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claimed to be effective in some preclinical models of AD97, but more research is needed to 

establish their true value.

Other interventions

Intranasal insulin

Craft and co-workers investigated insulin resistance in AD7,38 and reported improved 

cognition in early AD patients and decreased levels of neurotoxic Aβ42 following a short-

term treatment with intranasal insulin98. The results differed according to gender and apoE 

genotype98. This potentially important intervention to slow or halt the progress of AD 

requires an understanding of the molecular basis of the improvement. Recently, intranasal 

treatment of a 3 X Tg mice model of AD with insulin showed a significant reduction of brain 

nitrosative stress, tau phosphorylation, and Aβ oligomers coupled to improved cognition, 

and these effects were dependent on the activity of biliverdin reductase-A (BVR-A)99,100. 

BVR-A, in addition to being a reductase, is a kinase that can phosphorylate insulin receptor 

substrate-1100. BVR-A is nitrosatively modified and dysfunctional in AD and MCI brain100, 

and its impairment promotes insulin resistance101. Further studies of the molecular processes 

involved in cognitive improvement in AD and MCI by intranasal insulin treatment likely 

will be driven by the results of an ongoing multicenter clinical trial using intranasal insulin.

Alternative energy sources?

In certain circumstances the brain can use ketone bodies (acetoacetate and β-

hydroxybutyrate) as metabolic fuel102. Thus it has been suggested that a ketogenic diet 

might have some beneficial effect in aMCI and mild-to-moderate AD, because brain ketone 

body metabolism seems unchanged in AD102. Its value is uncertain as yet70. Studies on 

human ApoE gene-targeted female replacement mice show that apoE status appears to 

influence brain glucose and ketone metabolism, with the apoE4 allele being the most 

deleterious for the former103.

Diet and Lifestyle

An additional consideration when considering the effectiveness (or lack of it) of antioxidants 

is that, though aMCI and AD are strongly associated with oxidative damage, they are highly 

complex disorders, and processes other than oxidative damage are likely to contribute to 

their pathogenesis and progression. For example, APP is processed in several ways by 

proteinases, so in addition to Aβ42 oligomers, the soluble β-secretase fragment and parts of 

the C-terminal fragments of APP are reportedly neurotoxic104,105. Consequently, therapeutic 

approaches for aMCI and AD probably need to be multifactorial. Toward this end, studies 

involving aged beagle dogs, which accumulate Aβ42 and Aβ40 brain deposits with an 

amino acid sequence identical to that of humans, have proven illustrative. The study found 

that aged beagles (12 years old) placed on a high antioxidant diet, given environmental 

enrichment to produce more cognitive stimulation (resulting in more synapse formation), 

and provided exercise for three years (exercise leads to elevation of brain-derived nerve 

growth factor, among other benefits106), had an error rate on behavioral tests, brain Aβ42 

levels, and brain oxidative damage similar to 4 year-old dogs107. If this promising result is 

translatable to humans, then at a certain age (for example age 40, to account for pathology of 
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AD being present for at least two decades prior to appearance of clinical symptoms of aMCI 

or AD4), or ideally throughout a lifetime, persons should eat a diet high in antioxidants, 

develop new intellectual tasks (such as learning a new language, learning to play a new 

musical instrument, etc.), and undertake a reasonable degree of exercise. Several studies 

have indicated that these approaches can yield results2,108,109. A recent study is the Finnish 

Geriatic Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). This 

was a two year intervention consisting of diet, exercise, cognitive training and management 

of metabolic and vascular risk factors. Positive effects on cognition were reported108,110 

even in subjects with the apoE4 allele110. By contrast, single interventions (for example, 

decreasing vascular risk, as in the preDIVA trial, or administering nutritional supplements) 

seem in general to be less effective70,109,111.

Indirect Antioxidants

A final consideration of this topic is potential treatment of aMCI and AD with indirect 

antioxidants8, agents that can decrease oxidative stress but not by direct antioxidant 

mechanisms. Polyphenols may be one example, acting as mild pro-oxidants (see above). 

Another example is the intersection of oxidative stress, glucose metabolism, and statins, 

such as atorvastatin, as promising agents to decrease damage in aMCI and AD brains112.

The enzyme heme oxygenase 1 (HO-1) oxidizes heme (a pro-oxidant)8 to produce 

biliverdin, which is reduced by a biliverdin reductase-A (BVR-A) enzyme to bilirubin (a 

scavenger of ROS/RNS8,101). Both HO-1 and BVR-A are oxidatively damaged in aMCI 

and AD brain100. Moreover, oxidative modification of BVR-A in brain promotes insulin 

resistance in a triple transgenic mouse model of this disorder101, providing a further 

connection between oxidative damage and glucose dysmetabolism in brain.

Many statins, including atorvastatin, do not penetrate the blood-brain barrier (BBB) 

significantly, yet atorvastatin use is associated with lowered risk of developing AD113,114. 

Atorvastatin given to aged beagle dogs protected against oxidation of BVR-A and this statin 

increased HO-1 levels, whereas oxidative damage levels in brain were lowered114. These 

studies suggest that following atorvastatin use, some moiety in the periphery is able to 

penetrate the BBB to target the HO-1–BVR-A system or other systems to protect brain. It 

also suggests that atorvastatin, although not a direct antioxidant and not able to cross the 

BBB, leads to antioxidant-like effects in brain100. There is also growing interest in agents 

(which may include polyphenols), that affect the gut microbiome to exert neuroprotection, 

but that is beyond the scope of this review.

Concluding remarks

The evidence for oxidative damage being a critical component of the pathology and 

progression of AD is compelling8,11,115. Glucose metabolism, a key source of energy for 

the brain, is defective in PCAD, aMCI and AD. This defect likely results in significant 

part from oxidative damage to key proteins in glycolysis, the TCA cycle and ATP synthase. 

Other proteins are also oxidatively damaged, such as BVR-A, UCHL-1, and the proteasome. 

Decreased ATP results in numerous changes in brain function, such as impaired maintenance 
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of membrane potentials, and increased intracellular Ca2+ levels leading to detrimental 

downstream effects on cell function and survival.

Small oligomers of Aβ42 solubilize in the membrane to promote oxidative damage, such 

as lipid peroxidation. This produces reactive aldehydes (Table 1) that bind to critical brain 

proteins to change their conformation and to lower their activity in aMCI and AD brain. 

Presynaptic membranes are particularly vulnerable to such oxidative damage, leading to 

diminished learning and memory and ultimately dementia. Subsequent neuronal death also 

contributes to the clinical presentation and pathology observed in aMCI and AD. Clinical 

trials in both conditions using antioxidants have been disappointing, but better design of 

such trials combined with the use of appropriate biomarkers of disease progression and 

of oxidative damage8 (to ensure that the antioxidants are actually decreasing it) offers 

hope2,8,92. As AD neuropathology begins at least two decades before symptoms appear, 

increased efforts to discover biochemical (e.g., plasma) and/or imaging biomarkers for the 

presymptomatic presence of AD are essential. Given the expected large increase in AD 

cases as the world’s population of aged individuals grows and diabetes becomes more 

frequent, better therapeutic approaches to preserve and/or improve glucose utilization, 

decrease oxidative damage and protect the brain against neuropathological changes will 

be needed.

The overall hypothesis presented in this review for the pathogenesis and progression of 

AD is that Aβ42 oligomer-induced oxidative stress impairs glucose metabolism, leading to 

synaptic dysfunction and eventual neuronal death (demonstrated by thinning of key brain 

areas), ultimately causing aMCI, PCAD, and AD. A recent paper is highly consistent with 

sequence of events116. The authors employed various imaging modalities using subjects 

from the DIAN network (see above) who had been regularly scanned from as long as 22 

years prior, to 3 years after, the onset of symptoms, using 11C-PiB (a PET ligand that 

detects Aβ aggregates), 18FDG (to determine glucose metabolism), and MRI (to determine 

thickness of various brain regions). The authors demonstrated that the first detectable 

pathological change in asymptomatic persons in the DIAN network is deposition of Aβ 
aggregates (which would imply membrane-resident oligomers that would lead to oxidative 

damage), followed by decreased glucose metabolism, and finally thinning of key brain 

areas116. Continued studies interrogating this sequence of changes should lead to greater 

understanding of the pathogenesis and progression of AD and better means to monitor 

therapeutic efficacy of promising new agents directed against production of Aβ, oxidative 

stress, impaired glucose metabolism, and neuronal death. Other cohorts such as AIBL and 

ADNI will also continue to contribute valuable insights in this context2,75,117. This is an 

era of exciting new developments in aMCI and AD research and potential therapeutic 

modalities. We both look forward to contributing to this future.
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Glossary:

Reactive Oxygen Species (ROS)
Oxygen-containing species that contain unpaired electrons (which makes them free radicals) 

or from which free radicals are easily derived.

Reactive nitrogen species (RNS)
Nitrogen-containing species that are free radicals or moieties from which free radicals are 

easily derived.

Higher executive functioning
Cognitive processes that include planning, reasoning, and problem solving that in humans 

largely involve the prefrontal cortex, with connections to other brain areas.

Redox proteomics
A method for identification of oxidatively modified proteins that most often involves protein 

separation and digestion, mass spectrometric utilization to sequence the amino acids of the 

resulting peptides, and protein identification and informatics.

Proteostasis
Sometimes called protein quality control, is a term encompassing three different cellular 

processes (the ubiquitin proteasomal system, autophagy and the endoplasmic reticulum 

resident unfolded-protein response) used to degrade aggregated, damaged proteins, or 

sometimes cellular organelles.

Autophagy
One of the components of the proteostasis network, and involves formation of a double 

membrane (autophagosome) that surrounds the aggregated, damaged protein or organelle, 

transport of the autophagosome to and fusion with a lysosome, exposing the contents of the 

autophagosome to proteolysis and degradation.
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Box 1.

Some biologically important ROS and RNS.

For a detailed discussion see8, from which this box is adapted.

ROS Free Radicals ROS Non-radicals

Superoxide, O2•−
Hydrogen peroxide, H2O2

Hydroxyl, OH• Hypochlorous acid, HOCl

Peroxyl, RO2
• Singlet oxygen, O2

1 Δg

Alkoxyl, RO• Organic peroxides, ROOH

Singlet O2 1∑g+ Peroxynitrite, ONOO−

Peroxynitrous acid, ONOOH

RNS Free Radicals RNS Non-radicals

Nitric Oxide, NO• Nitrous acid, HNO2

Nitrogen dioxide, NO2
• Nitrosyl cation, NO+

Nitrate, NO3
• Nitrosyl anion, NO−

Peroxynitrite, ONOO−

Peroxynitrous acid, ONOOH

Note that NO•, ONOO− and ONOOH are classified as both RNS and ROS
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Figure 1. Schematic diagrams of the biochemistry of glucose catabolism and ATP synthesis and 
their oxidative dysfunction in AD and aMCI brains
Glycolysis, the tricarboxylic acid (TCA) cycle, and the electron transport chain (ETC), the 

latter localized on the inner mitochondrial membrane, work together to catabolize glucose 

and drive ATP synthesis via the ATP synthase complex. Complexes I to IV of the ETC 

are shown. Also shown is ATP Synthase, whose α-chain is oxidatively modified in brains 

of subjects with AD. Briefly, this figure shows that glucose is converted to pyruvate in 

glycolysis. Pyruvate is converted to acetyl coenzyme A, which enters the TCA cycle, 

and resulting reducing equivalents (NADH and FADH2) from glycolysis and the TCA 

cycle enter the mitochondrial ETC. (The inner mitochondrial membrane is impermeable to 

NADH, so the Malate-Aspartate shuttle leads to NADH synthesis in the matrix via NADH 

in the cytosol) to reduce oxygen to water, leading to production of a mitochondrial proton 

gradient in the Intermembrane Space that drives ATP synthesis. Reactions catalyzed by 

specific enzymes or enzyme complexes identified by redox proteomics or other techniques 

to be oxidatively damaged (and likely thereby dysfunctional) in AD brain (and most also in 

aMCI brains)12,22,24–26,34,35,115 are indicated as dashed lines in the Figure.

Butterfield and Halliwell Page 23

Nat Rev Neurosci. Author manuscript; available in PMC 2022 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abbreviations:

G-6-P, glucose-6-phosphate; F-6-P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; 

DHAP, dihydroxyacetone phosphate; G-3-P, glyceraldehyde-3-phosphate; 1,3-BPG, 

1,3-bisphosphoglycerate; 3-PG, 3-phosphoglycerate; 2-PG, 2-phosphoglycerate; PEP, 

phosphoenolpyruvate; acetyl-CoA, acetyl coenzyme A; α-KG, α-ketoglutarate; succinyl-

CoA, succinyl-coenzyme A; OAA, oxaloacetate.
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Figure 2. Schematic representation of biochemical events associated with insulin binding to 
its receptor, leading to activation of mTORC1 with subsequent inhibition of autophagy and 
development of insulin resistance
After insulin (INS) binds to the insulin receptor (IR) on neuronal membranes, the IR 

dimerizes and auto-phosphorylation on tyrosine residues occurs. The insulin receptor 

substrate-1 (IRS-1) recognizes IR phosphotyrosine residues and binds to the IR, which 

in turn leads to phosphorylation of IRS-1 on tyrosine residues 612 and 632 with 

resultant activation of IRS-1. Activated IRS-1 leads to phosphorylation and activation of 

two pathways for the insulin signaling cascade, one of which is the PI3/Akt pathway. 

Phosphorylated PI3K leads to phosphorylation and activation of Akt, which leads to 

phosphorylation of Ser-2448 of the mechanistic target of rapamycin complex 1 (mTORC1), 

the latter becoming activated as a kinase7,41,42,62. Activated mTORC1 kinase has several key 

downstream effects (two of which are shown in the figure) that impair neuronal survival (and 

are thus relevant to AD). There are (a) inhibition of autophagy; and (b) phosphorylation of 

the protein, p70S6K, which then becomes a kinase, one of whose substrates is Ser-307 of 

IRS-1. Once phosphorylated on Ser-307, IRS-1 function ceases, leading to and becoming a 

marker for insulin resistance34,41,62.

Modified with permission from Ref. 62.
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Figure 3. Schematic drawings of the three components of the proteostasis network in brain cells.
A: The Ubiquitin Proteasomal System (UPS). Damaged proteins are polyubiquitinylated by 

the Ubiquitin Ligase Enzymes, E1, E2, E3. E1 requires ATP for its function. An initial 

ubiquitin (Ub) molecule is bound to the damaged protein or organelle by this process and 

is repeated to form a polyubiquitinylated chain. Polyubiquitinylated damaged proteins are 

destined for degradation by the 26S proteasome, but prior to entering the 19S cap, these 

proteins must be de-ubiquitinylated, one ubiquitin residue at a time by the enzyme, ubiquitin 

carboxyl-terminal hydrolase L-1 (UCH L1). The de-ubiquitinylated, damaged protein is 

degraded by the proteinases in the 20S portion of the 26S proteasome, and small peptides 

are ejected by the bottom 19S portion of the 26S proteasome to become degraded by soluble 

peptidases to individual amino acids for reuse55–57.

B: Autophagic Degradation of Aggregated Proteins or Organelles. The process starts 

with formation of a double membrane enveloping the aggregated, damaged protein or 
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organelle, to form an autophagosome. This is transported to the lysosome, where membrane 

fusion leads to formation of the autophagolysosome. Endocytosis of the contents of 

the autophagosome into the acidic interior of the lysosome leads to their proteolytic 

degradation, with peptides, amino acids, and other biomolecules being ejected from the 

autophagolysosome for reuse43.

C: The Unfolded Protein Response (UPR) Associated with ER Stress. Following an 

elevation in the levels of misfolded proteins and/or Ca2+ in the ER lumen, the UPR is 

usually engaged. This consists of activation of one or more of three stress transducers: 

protein kinase R-like ER kinase (PERK), inositol-requiring enzyme 1alpha (IRE1), and 

activating transcription factor-6 alpha and beta (ATF6). Activation of each stress sensor is 

accompanied by removal from the stress sensor of binding immunoglobulin protein (BiP, 

also known as glucose regulated protein 78, Grp78), which when bound inactivates each of 

the three stress transducers. Each activated stress sensor induces one or more down-stream 

response mechanisms. In the figure, up arrows denote increased process or level, whereas 

down arrows denote decreased process or level. For PERK, receptor Tyr-kinase activity 

phosphorylates eIF2α that leads to decreased protein translation, which causes elevated rates 

of translation of normally poorly translated mRNAs, among which is ATF4. This, in turn, 

leads to decreased redox homeostasis and elevated apoptosis.

ATF6 transduces ER stress by inducing transport of the ATF6 precursor protein to the Golgi 

apparatus, where the shorter ATF6 is produced. The latter translocates to the nucleus leading 

to expression of X-box binding protein (XBP1).

In the case of IRE1, transduced ER stress results in dimerization and formation of a 

transmembrane kinase – Receptor Tyr Kinase (RTK), which in turn results in: a) RNA 

degradation by regulated IRE1-dependent decay (RIDD); b) XBP1-mediated alternative 

mRNA splicing that leads to ER-associated degradation (ERAD) and increased lipid 

metabolism (from which elevated levels of the lipid peroxidation product, 4-hydroxynonenal 

(HNE) can arise); and c) tumor necrosis factor receptor-associated factor 2 (TRAF2)-

mediated inflammatory or pro-apoptotic gene induction, particularly those of nuclear factor 

kappa-light chain enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase 

(JNK). The endoplasmic reticulum (ER)-resident component of the proteostasis network, 

particularly the UPR, is impaired in aMCI and AD brain, due to accumulation of abnormal 

proteins and alterations in Ca2+ homeostasis53–55,58. In AD brain, markers of ER stress are 

elevated and correlate with progression of the disease53–55,58.

Modified with permission from Ref. 58.
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