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The vaccine candidate CVnCoV (CUREVAC) showed surpris-
ingly low efficacy in a recent phase 3 trial compared with other 
messenger RNA (mRNA) vaccines. Here we show that the low 
efficacy follows from the dose used and the presence of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vari-
ants and is predicted by the neutralizing antibody response in-
duced by the vaccine.

A recent study analyzed the relationship between neutralizing 
antibody response and protection from severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) infection across 
8 vaccine platforms [1]. The efficacy results from a phase 2b/3 
trial of a ninth vaccine candidate, CVnCoV (CUREVAC), was 
announced on 16 June 2021 [2]. The low efficacy of this new 
messenger RNA (mRNA) vaccine, which showed only 48.2% 
protection from symptomatic SARS-CoV-2 infection [3], was 
surprising given the high efficacy of 2 previous mRNA-based 
vaccines [4, 5]. A number of factors have been suggested to 
play a role in the low efficacy in the CVnCoV study, particularly 
around the dose and immunogenicity of the vaccine (which 
uses an unmodified mRNA construct [6, 7]) and the potential 
role of infection with SARS-CoV-2 variants (which were the 
dominant strains observed in the CVnCoV trial) [2].

In the recent randomised control trials, the CVnCoV vaccine 
was administered in a 2 dose regimen with 4 weeks between 
doses [3], which is very similar to the BNT162b2 and mRNA-
1273 vaccine trials, where 2 dose regimens were also used with 
3 and 4 week spacing, respectively [4, 5]. However, each dose of 
the CVnCoV vaccine contained 12 μg of unmodified mRNA, 
compared with 30 μg and 100 μg of nucleoside-modified mRNA 
in the BNT162b2 and mRNA-1273, respectively. To investigate 

the potential effects of dose and immunogenicity in the CVnCoV 
construct we extracted data on in vitro neutralization titer for 
3 reported mRNA vaccines, CVnCoV [7], mRNA-1273 [8], and 
BNT162b2 [9]. To allow comparison of neutralization levels be-
tween studies, we normalized to the average convalescent titer 
in the same study (recognizing that convalescent groups were 
not standardized between studies). Figure 1A compares dose 
and neutralization levels across the 3 vaccines and suggests that 
the lower neutralization in the CVnCoV study is consistent with 
the neutralization observed when lower doses of mRNA-1273 
[8] and BNT162b2 [9] were administered.

Another factor suggested to affect the observed vaccine ef-
ficacy was the circulating SARS-CoV-2 variant viruses en-
countered during the CVnCoV trial. In the primary phase 3 
studies used for licensure of the other 8 vaccines, the ances-
tral virus (which matches the spike protein used as the vac-
cine immunogen) was the dominant strain in circulation [1]. 
However, more recent nonrandomized studies have suggested 
a reduced efficacy of some of these vaccines against SARS-
CoV2 variants [10]. In vitro studies have shown that many 
SARS-CoV-2 variants show a significant reduction in neutrali-
zation titer compared to the ancestral virus, and that this effect 
is observed using serum from both convalescent and vaccin-
ated subjects [11]. In the CVnCoV phase 3 trial the infecting 
virus was composed almost entirely of a variety of circulating 
SARS-CoV-2 variants. For example, the alpha (B.1.1.7) and 
gamma (P.1) variants represented about 53% of infections in 
the CVnCoV trial and has been shown in a comprehensive 
meta-analysis to have a 1.6- and 3.5-fold drop in neutralizing 
titer compared to the ancestral virus for another mRNA vac-
cine, respectively [11]. Similarly, the beta (B.1.351) and delta 
(B.1.617.2) variants have been shown to have an 8.8-fold and 
3.9-fold drop in neutralizing titer, respectively [11].

To visualize the potential effects of reduced neutralizing level 
on vaccine efficacy, Figure 1B plots the in vitro neutralizing titer 
(normalized to the mean convalescent sera) against the ancestral 
virus observed in the CVnCoV phase 1/2 study [7] along with 
the observed efficacy in the phase 3 trial. It also shows the pre-
dicted effects of the drop in neutralization titer for the different 
variants listed above [11]. The observed efficacy against variants 
appears consistent with the initial level of neutralization against 
the ancestral virus and the expected drop in neutralization titer 
to variants (as reported for other mRNA vaccines).

This analysis suggests that both a lower dose than the other 
mRNA vaccines (Figure 1A), as well as the effects of SARS-
CoV-2 variants in reducing the neutralizing ability of vaccine-
induced serological responses (Figure 1B), were significant 
contributors to the low efficacy observed in the CVnCoV study.
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Figure 1.  Potency, immunogenicity, and protection from SARS-CoV-2 infection. A, Relationship between immunization dose (x-axis) and in vitro neutralization titer (ex-
pressed as a fold-change over convalescent serum in the same study) (y-axis) is shown for three mRNA-based vaccines, CVnCoV [7], mRNA-1273 [8], and BNT162b2 [9]. 
Neutralization level of the 12 μg dose of CVnCoV was not significantly different from that of the 10 μg BNT162b2 dose (P = .76, t test). B, Previously reported relationship 
between neutralization level (normalized to the mean convalescent titer in the same study) and protection from symptomatic SARS-CoV-2 infection is shown in red [1], along 
with the neutralization and efficacy data from studies of 7 vaccines and convalescent subjects (light-gray points and error bars), which were used to fit this model. Observed 
mean neutralization level against ancestral SARS-CoV-2 virus in vitro (black) [7], as well as the predicted drop in neutralization level (indicated by arrow and colored points 
and whiskers) against the alpha, beta, delta and gamma variants [11] are plotted against the protective efficacy observed in the CVnCoV trial [2]. Abbreviations: SARS-CoV-2, 
severe acute respiratory syndrome coronavirus 2.
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