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ABSTRACT

Patients with immune-mediated kidney diseases are at in-
creased risk of severe coronavirus disease 2019 (COVID-19).
The international rollout of COVID-19 vaccines has provided
varying degrees of protection and enabled the understanding of
vaccine efficacy and safety. The immune response to COVID-
19 vaccines is lower in most patients with immune-mediated
kidney diseases; either related to immunosuppression or

comorbidities and complications caused by the underlying
disease. Humoral vaccine response, measured by the presence
of antibodies, is impaired or absent in patients receiving
rituximab, mycophenolate mofetil (MMF), higher doses of
glucocorticoids and likely other immunosuppressants, such
as cyclophosphamide. The timing between the use of these
agents and administration of vaccines is associated with the
level of immune response: with rituximab, vaccine response
can only be expected once B cells start to recover and patients
with transient discontinuation of MMF mount a humoral
response more frequently. The emergence of new COVID-19
variants and waning of vaccine-induced immunity highlight
the value of a booster dose and the need to develop mutant-
proof vaccines. COVID-19 vaccines are safe, exhibiting a very
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low risk of de novo or relapsing immune-mediated kidney
disease. Population-based studies will determine whether this
is causal or coincidental. Such cases respond to standard
management, including the use of immunosuppression. The
Immunonephrology Working Group and European Vasculitis
Society recommend that patients with immune-mediated kid-
ney diseases follow national guidance on vaccination. Booster
doses based on antibody measurements could be considered.

Keywords: IgA nephropathy, immunology, immunosuppres-
sion, rituximab, vasculitis

INTRODUCTION
The ongoing coronavirus disease 2019 (COVID-19)
pandemic has particularly impacted the lives of patients with
immune-mediated kidney diseases. COVID-19 vaccination
programmes have been transformative. However, new
COVID-19 variants such as delta and omicron, waning
immunity post-vaccination leading to the occurrence of
breakthrough infections and a lower/absent humoral response
in those on immunosuppression are of major concern for
those with immune-mediated diseases.

Last year the Immunonephrology Working Group (IWG)
of the European Renal Association (ERA) published guidance
regarding COVID-19 vaccination in patients with immune-
mediated kidney diseases. These recommendations were de-
rived from an understanding of the use of other vaccines in
this population and the experience of COVID-19 vaccines in
the general population [1]. Patients with immune-mediated
diseases, particularly with active disease and/or those receiving
cyclophosphamide, rituximab or higher-dose steroid, are at
greatly increased risk of severe COVID-19 and fatal outcomes
[2–4].

This consensus statement provides an updated overview
of vaccine efficacy in patients with immune-mediated kidney
diseases. The importance of prioritization for vaccination,
booster doses, COVID-19 vaccine safety concerns and equity
of vaccine access are discussed.

Vaccine immunogenicity, efficacy and effectiveness
Immunogenicity refers to the ability of a vaccine to induce

an immune response in a vaccinated individual. It is possible
to establish the immune response to vaccination in two ways:
measurement of the humoral response [spike 1/2 (S1/S2) se-
vere acute respiratory syndrome coronavirus (SARS-CoV-2)/
neutralizing antibody titres] and/or the cellular response.
The latter is not established in routine assessment and

the former may be associated with a considerable financial
cost, precluding routine use for most hospitals. Increasing
evidence demonstrates that factors related to comorbidities or
immunosuppressive therapy impair the protective immunity of
COVID-19 vaccines.

Vaccine efficacy is tested in randomized controlled trials
and defined as the percentage reduction in individuals who
develop a disease (in this case COVID-19) in a vacci-
nated cohort compared with those who are unvaccinated. In
COVID-19, vaccine efficacy incorporates a measure of the
reduction of cases with severe (requiring hospitalization)/fatal
COVID-19 disease, an outcome measure of particular impor-
tance in vulnerable populations.

The effectiveness of a vaccine boils down to how well it
works in the ‘real world’, i.e. does it protect against infection or
reduce the severity of infection. Although vaccine effectiveness
is extensively studied in immunocompromised patients, large
trials in patients with immune-mediated kidney diseases are
lacking.

How do we measure whether the COVID vaccines are
‘working’ in the general population?
Neutralizing SARS-CoV-2 antibodies remain the leading

correlate of protective immunity. The subset of antibody
generated, i.e. immunoglobulin A (IgA), IgM and IgG, is of
importance and the distribution and variation may associate
with factors that influence disease severity [5]. It is noteworthy
that the evolution towardsmore virulent SARS-CoV-2 variants
precludes guaranteed immunity, even in individuals who are
known to have mounted a vaccine response. The currently
available vaccines have been developed against the redundant
alpha variant of SARS-CoV-2 (Table 1).

In individuals receiving the BioNTech/Pfizer vaccine
(BNT162b2), neutralizing antibodies against all variants of
COVID-19 were reduced over time. This was more marked
against emerging variants of concern, like delta (5.8-fold) and
beta (4.9-fold) [6]. Further analyses among haemodialysis pa-
tients revealed suboptimal neutralizing antibody levels among
infection-naïve individuals receiving a viral-vector vaccine
compared with BNT162b2, while two doses of either vaccine
could consolidate the response following infection [7–12].

The threshold of neutralizing antibodies to predict
protection from infection or severe COVID-19 is unknown.
Follow-up data of individuals receiving the Moderna vaccine
(mRNA-1273)—the vaccine eliciting the strongest response—
indicated that half-life estimates of live-virus neutralization
range between 68 and 202 days [13]. Using data from pivotal

Table 1. Vaccine platforms and intended use (for mRNA vaccines according to EMA and FDA)

Vaccine name Vaccine type Manufacturer Intended use

BNT162B2 mRNA Pfizer/BioNTech ≥5 years
mRNA-1273 mRNA Moderna ≥18 years
ChaAdOx1 nCoV-19 Vectored Oxford-AstraZeneca ≥18 years
Ad26.COV2.S Vectored Janssen/Johnson & Johnson ≥18 years
Gam-COVID-Vac/Sputnik V Vectored Gamaleya Not WHO certified
NVX-CoV2373 Recombinant nanoparticle Novavax ≥18 years
CoronaVac Inactivated Sinovac Biotech ≥18 years
BBIBP-CorV Inactivated Sinopharm ≥18 years
BBV152 COVAXIN Inactivated Bharat Biotech ≥18 years
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vaccination trials (prior to the emergence of the delta variant)
and convalescent cohorts, prediction models suggest that the
neutralization level for 50% protection against COVID-19 is
20% of the mean convalescent level. Fifty percent protection
from severe disease is predicted at 3% [14].

Waning immunity has increased the number of break-
through infections, leading to an increase in COVID-19 cases.
An Israeli study serially investigated IgG antibody levels and
neutralizing antibody titres after two doses of BNT162b2. Both
decreased over time; the antibody levels by a factor of 18.3 and
the neutralizing titre by 3.9 from the peak (observed between
day 4 and 30 after the second dose). Factors associated with
lower neutralizing antibody titres were male sex, older age and
immunosuppression. Immunosuppression was the factor with
the greatest impact [15].

Over a 20-day period in July 2021, a population-based
analysis from the Israeli Ministry of Health database was
carried out. It included 4 791 398 individuals from the general
population who were double-vaccinated with BNT162b2
between January and June 2021. A consistently increased risk
of contracting COVID-19 (rate ratio 1.6–1.7) was reported
among all age groups in those vaccinated at an earlier time
point. Furthermore, the proportion of severe disease increased
in those undergoing earlier vaccination (rate ratio 1.8–2.2).
Most reported infections involved the delta variant [16].
Administering a third ‘booster’ dose of BNT162b2 resulted
in a lower rate of confirmed COVID-19 in the booster group
(reduced by a factor of 11.3) from 12 days after vaccination.
Severe COVID-19 was reduced by almost 20-fold [17].

What about the omicron variant and vaccination?
Preliminary reports investigating neutralizing antibody

levels against the omicron variant indicate a reduction in
neutralization efficacy following two doses of the BNT162b2
COVID-19 vaccine, measured 165 days after administration
of the second dose. Additionally, a third dose is required to
achieve significant neutralizing antibodies against this variant
in the general population [18, 19]. It is unclear whether a third
dose will provide longer-term immunity. There is evidence of
a marked reduction in vaccine effectiveness. Immunity from
natural infection with omicron, i.e. without vaccination, seems
to offer superior protection than two vaccine doses but is
inferior to three doses [20, 21].

What do we know about vaccine immunogenicity
and effectiveness in immune-mediated kidney diseases?
Despite being at higher risk of severe COVID-19, patients

with chronic kidney disease (CKD) and patients on immuno-
suppressive drugs were excluded from most trials, thus the
efficacy of vaccines in this vulnerable population has remained
uncertain [22]. Currently only observational studies measure
immunogenicity of vaccination in these patients as humoral
response and/or cellular immunity [23].

Patients with immune-mediated glomerular diseases and
vasculitis on therapy showed a poor immune response to the
first dose of either the BNT162b2 or Oxford/AstraZeneca vac-
cine (ChAdOx1), with only 28.6% of patients demonstrating

detectable humoral or T cell responses. Seroconversion and T
cell response rates increased to 59.4 and 82.6%, respectively,
after the second dose [24]. In agreement with data demon-
strating that rituximab severely reduces antibody response to
H1N1 influenza vaccine [25], rituximab-treated patients with
no measurable peripheral B cells did not develop antibodies
after two doses of either mRNA-1273 or BNT162b2 vaccine.
Antibody responses were induced once B cells repopulated,
and furthermore, a robust T cell response could be mounted
even in the absence of circulating B cells, measured at amedian
of 3 weeks from the second vaccination [26].

What if patients have an inadequate or low humoral
response? Among 140 patients receiving immunosuppression
for rheumatic and glomerular diseases and following two
vaccine doses, T cell and humoral responses were found in
82.6 and 59.3%, respectively [24]. It is unclear why, in spite
of immunosuppression, a T cell immune response was more
common. Uncertainty still exists regarding protection against
severe disease forms in those mounting a cellular immune
response; both humoral and cellular immune responses con-
tribute to viral clearance and might be necessary to overcome
infection, but protection against developing COVID-19 seems
to be largely mediated by an antibody response rather than via
cellular immunity [27]. Further studies are needed to define the
amount of protection afforded by T cell responses to COVID-
19 vaccines.

Little is known about COVID-19 severity in those with
immune-mediated kidney diseases after vaccination because
this has not been studied in detail [28]. We can draw from
experience in other cohorts. Symptomatic COVID-19 was
reported among 15 of 16 breakthrough infections in patients
with systemic rheumatic diseases. Among these, two with
interstitial lung disease who were treated with rituximab died
and six were hospitalized [29]. Despite impaired humoral
vaccine responses, initial evidence based on 65 cases among
2151 solid organ transplant recipients found an 80% reduction
in symptomatic COVID-19 following vaccination [30]. A
larger investigation from the UK found only a 20% mortality
reduction among 4147 COVID-19 cases following vaccination
in transplanted patients and a protective effect was only
observed after ChAdOx1 (31% reduction) and not after
BNT162b2 (3%). Lung transplant recipients and age>50 years
were the strongest predictors of mortality. Several caveats need
to be considered, as no baseline information about recipients
of ChAdOx1 and BNT162b2was given, including the degree of
kidney function impairment, age, transplant type and density
of immunosuppression [31]. Following vaccination, the risk
of contracting COVID-19 in transplant recipients is ∼80-fold
higher than for the general population and associated with a
485-fold higher risk of hospitalization and death [32]. Limited
evidence exists focussing on kidney transplant recipients. The
risk of SARS-CoV-2 infections in vaccinated individuals seems
to be lower, while the disease course was reported to be
comparable to the pre-vaccine era [33].

Post hoc analysis of the coronavirus efficacy phase 3mRNA-
1273 vaccine trial found that patients with a 50% post-
vaccination neutralization titre of 10, 100 or 1000 exhibited 78,
91 or 96% vaccine efficacy, respectively [34]. The higher the
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Table 2. Risk factors for developing severe COVID-19 disease

Variables Low risk Intermediate risk High risk

Age (years) ≤65 65–≤75 ≥75
CKD eGFR ≥60 mL/min/1.73 m2 and/or

no/low-grade proteinuria
eGFR ≥30 mL/min/1.73 m2 and
<60 ml/min/1.73 m2 and/or
proteinuria <3.5 g/day

eGFR <30 mL/min/1.73 m2

and/or proteinuria ≥3.5 g/day

Chronic lung disease No No Yes
Hypertension/CVD No Yes Yes
Diabetes mellitus No No Yes
Disease activity Remission/low activity - Moderate/high/severe
Immunosuppression Monotherapy

(non-glucocorticoid-based IS and no
RTX, CYC or MMF

- Any use of glucocorticoids, RTX,
or CYC, multiple IS therapies

Vaccine response (humoral) Yes (with high antibody titres) Yes (with low antibody titres) No
Previous COVID-19 severity Mild Moderate Severe
Previous severe infections (especially
viral)

No No Yes

Risk stratification might help prioritize the need for booster vaccinations. Some of these are based on no/very limited evidence, mainly due to a lack of good studies focusing on patients
with immune-mediated kidney diseases. For example, we don’t know if patients with nephrotic-range proteinuria have a higher risk of contracting severe COVID-19. Similarly, a severe
disease course might protect from future severe COVID-19, but it seems plausible that these patients will not mount very effective protection (i.e. antibodies) because they usually have
more comorbidities and might have received medication impairing immune response. CVD, cardiovascular disease; CYC, cyclophosphamide; IS, immunosuppression; RTX, rituximab

antibody response, the better the protection against con-
tracting COVID-19. Thus if patients with immune-mediated
kidney diseases mount any humoral response, they should be
afforded a degree of protection.

The efficacy of vaccines in patients with immune-mediated
kidney diseases remains unclear. A suboptimal strategy to
better define vaccine efficacy in vulnerable populations could
be the enrolment of fewer participants in a study that sets a pri-
mary endpoint at a higher risk. In addition to vaccine rollout,
we also suggest the prioritization of vulnerable populations
in future studies. Reduced protection for many patients with
immune-mediated kidney diseases is expected, but vaccination
is strongly recommended and patients should be prioritized,
according to national guidance, for the administration of
primary and booster doses.

Notably, due to the time lag of medical publishing, current
data mostly relate to previous SARS-CoV-2 variants, so
relevance to the currently highly prevalent omicron variant
remains uncertain. Thus, shielding and distancing remain the
most important means of protection, especially in vulnerable
patients with doubtful vaccine responses.

Outcomes in those with immune-mediated kidney
diseases and COVID-19 infection
Information about COVID-19-related outcomes in patients

with immune-mediated kidney diseases remains limited to
small reports, thus necessitating extrapolation from other,
similar populations.

Patients on maintenance haemodialysis or with CKD,
mainly due to diabetes or hypertension, exhibit high mortality
rates of up to 30% [35, 36]. Proposed risk factors associated
with severe COVID-19 outcomes are summarized in Table 2.
A first analysis of the International Registry of COVID
Infection in Glomerulonephritis (IRoc-GN) focussing on
immune-mediated kidney diseases found 6 fatalities among
40 patients (15%); these patients were older, had more severe
kidney impairment and received immunosuppression more

frequently than the survivors [37]. A follow-up was recruited
until April 2021 and analysed 125 patients (63 hospitalized,
62 outpatients). After adjustment for confounders [e.g. pre-
COVID-19 estimated glomerular filtration rate (eGFR)], the
rates of mortality and acute kidney injury (AKI) were similar
to those in the earlier analysis, highlighting the impact of co-
morbidities in patients with immune-mediated diseases [38].

High mortality rates were observed in a UK cohort
including 65 patients with vasculitis, 55 of which had a
diagnosis of anti-neutrophil cytoplasmic antibody (ANCA)-
associated vasculitis (AAV). Overall, 91% were hospitalized
and 28% died. Severe COVID-19 disease was more common
among patients on background glucocorticoid therapy and
with concurrent respiratory diseases [39]. Analysis of the
COVID-19 Global Rheumatology Alliance Registry included
1157 patients with connective tissue diseases or vasculitis and
reported a 13%mortality rate. Independent predictors of death
were age, CKD, higher disease activity and the use of rituximab
and glucocorticoids [2]. Glucocorticoid use at higher doses
(≥ 10 mg/day) was not only associated with severe disease and
COVID-19-related death, but also with increased likelihood
of a positive SARS-CoV-2 test. Table 3 illustrates the risks of
different immunosuppressants [2–4, 40–44].

Themortality differences seen between the IRoc-GN (15%),
the Global Rheumatology Alliance Registry (13%) and those
with AAV from the UK cohort (28%) might be explained by
a number of factors, including the age of the populations, the
incidence of kidney involvement, immunosuppressive therapy
and duration. Disease-specific effects are also likely and no
information is available about immunosuppression dosing,
which may also be relevant.

Medication, timing and importance of vaccination
in those with immune-mediated kidney diseases
Despite the need to extrapolate from other populations,

there is little doubt that these data point towards
disease- and treatment-related associations with severe

COVID-19 vaccination in immune-mediated kidney disease patients 1403



Table 3. Immunosuppressants and the risk of severe COVID-19 outcomes in patients with either immune-mediated diseases or transplantation

Drugs Risk of severe COVID-19 (including death) outcomes

Steroids ≥10 mg/day [OR 1.76 (95% CI 1.06–2.96)] [4]
1–10 mg/day [OR 1.69 (95% CI 1.11–2.57)] [2]
≥10 mg/day [OR 1.93 (95% CI 1.11–3.36)] (international registry/CTD and vasculitis) [2]
≥10 mg/day [OR 2.8 (95% CI 1.36–5.79)] [international registry (AAV)] [3]
Chronic corticosteroids [OR 1.89 (95% CI 1.43–2.49)] (transplant/autoimmunity) [41]
corticosteroids [OR 1.97 (95% CI 1.09–3.54)] (rheumatic diseases) [42]

Mycophenolic acid RR 3.94 (95% CI 1.59–9.74) (liver transplantation) [43]
OR 6.6 (95% CI 1.47–29.62 (rheumatic diseases) [42]

Azathioprine OR 1.10 (95% CI 0.54–2.24) [international registry (AAV)] [3]

Calcineurin inhibitors HR 0.55 (95% CI 0.31–0.99) (tacrolimus, liver transplant) [44]
OR 1.19 (95% CI 0.65–2.20) (CNIs, transplant/autoimmunity) [41]

CD20-depleting agents OR 3.72 (95% CI 1.21–11.48) (international registry/CTD and vasculitis) [2]
OR 2.15 (95% CI 1.15–4.01) [international registry (AAV)] [3]
OR 4.21 (95% CI 1.61–10.98 (rheumatic diseases) [42]
Effect size 3.26 (95% CI 1.66–6.40) (rheumatic diseases) [40]

Belimumab OR 1.07 (95% CI 0.21–5.37) (international registry/CTD and vasculitis) [2]

Alkylating agents (i.e. cyclophosphamide) OR 4.30 (95% CI 1.10–16.75) [international registry (AAV)] [3]

Complement inhibitors No data

All information provided here is based on observational and retrospective data. The association between higher doses of steroids and risk to develop severe COVID-19 was confirmed
not only in autoimmunity or transplantation, but most investigations found only a modest and non-significant increased risk when patients received a steroid dose <10 mg/day. Multiple
independent investigations found an association between rituximab use and severe COVID-19. In addition, a combination of different strategies might also portend a higher risk (as
seen in transplantation). Notably, the ‘international registry’ [2] included a similar set of patients. For specific references see the Supplementary data, online Appendix. CNI, calcineurin
inhibitor; CTD, connective tissue disease; OR, odds ratio; CI, confidence interval; RR, relative risk.

COVID-19 and emphasize the increased risk of patients
on immunosuppressive drugs contracting COVID-19.
Vaccinating this vulnerable patient cohort is extremely
important. Moreover, treatment of severe COVID-19 with
higher glucocorticoid doses might not lead to the same
benefit seen in the general population with severe COVID-19
[45]. Dedicated trials specifically focussing on patients with
immune-mediated diseases are essential.

Different factors also impact the measured COVID-19
vaccine response. Patients on immunosuppression, especially
those receiving B cell–depleting agents, glucocorticoids and
MMF have impaired humoral response rates. Furthermore,
treatment-related impacts, specific disease-associated factors,
demographics and comorbidities might influence not only the
initial humoral vaccine response rate, but also the longevity of
antibody response.

Patients with heavy proteinuria and urinary immunoglob-
ulin loss may exhibit substantial loss of anti-spike protein
antibodies in the urine, increasing their risk of infection [46].
Additionally, there may be an impact of immunosuppression
(induction or maintenance) on antibody titres. A series of
four patients with AAV found that 1 month after rituximab
administration (twopatients also received cyclophosphamide),
SARS-CoV-2 antibody titre levels decreased by 42–78% [47].
More data will provide better guidance, but it seems that in
patients with immune-mediated kidney diseases, additional
booster doses might be considered. This is likely to be based
on SARS-CoV-2 antibody kinetics data from trials, because
measurement of neutralizing antibodies is not routine in
clinical practice.

The timing of vaccination relative to treatment of the
underlying condition creates a dilemma. Control of immune-

mediated kidney disease usually takes priority. Adaptive strate-
gies for maintenance therapy might be employed, especially if
the number of cases with COVID-19 is high and patients are at
particular risk of contracting severe COVID-19. Weighing the
risks and benefits in this scenario is important and rituximab
might be postponed or replaced by other immunosuppressive
agents to allow for vaccine response.

Several independent investigations have indicated that
despite the blunted humoral response to vaccination following
rituximab [48], the cellular response might be intact [24,
26, 49–51]. This has been challenged by the RituxiVac study
[52], which reported a weaker cellular than humoral response
following B cell depletion. Notably, in the RituxVac study, a
whole-blood interferon (IFN) release assay was used, whereas
most other studies have used peripheral blood mononuclear
cells and spot count assays. Important independent predictors
of humoral vaccine response were time elapsed since the
last infusion, the presence of circulating CD19+ B cells
[48, 52] and a CD4+ lymphocyte count >653 cells/μL
[52]. Specifically, a minimum of 10 B cells/μL in peripheral
circulation were required to mount a humoral response [53].
A third homologous vaccine administration did not induce a
humoral response (in 15/16 patients) except in 1 patient who
had a recurrence of B cells and detectable antibodies following
a third dose [54].

In patients with AAV with a low risk of relapse, main-
tenance therapy with rituximab might be postponed, al-
lowing reconstitution of CD19+ B cells, or therapy might
be switched to other immunosuppressants. The American
College of Rheumatology guidance on COVID-19 vaccination
recommends withholding MMF for 1 week when the disease
is stable [55]. This strategy was tested in a prospective
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Table 4. Different drugs and the impact on humoral and cellular immune vaccine response: a summary of the level of evidence and factors influencing it

Drugs
Humoral-immune vaccine
response

Cellular-immune vaccine
response Clinical perspective Factors influencing response

Steroids S1/S2 SARS-CoV-2/
neutralizing antibody
response ↓/↓

→/↓ (limited evidence) T cell response might be
impaired with higher doses;
overall low evidence

Dose-dependent reduced
antibody response; impaired
cellular response might be
dose dependent

Mycophenolic acid S1/S2 SARS-CoV-2/
neutralizing antibody
response ↓/↓

→ (limited evidence) Antibody response
significantly reduced by
MMF; unclear evidence
related to cellular immune
response

Reduced doses associated
with response in KTR;
transient hold of MMF after
vaccine administration
(1 week)

Azathioprine S1/S2 SARS-CoV-2/
neutralizing antibody
response →/→

→ (limited evidence) Humoral response seems to
be preserved; no information
on cellular response

–

Calcineurin inhibitors S1/S2 SARS-CoV-2/
neutralizing antibody
response ↓/↓, in IMKD
limited evidence (→)

T cell response impaired
(limited evidence)

Humoral response in KTR
significantly reduced and
cellular response in IMKD

Presumably a dose-dependent
weakened antibody response
(time from transplantation to
vaccination improves
response)

CD20-depleting agents S1/S2 SARS-CoV-2/
neutralizing antibody
response ↓/↓

Controversial evidence, T cell
response →, ↓

No or only marginal humoral
response when rituximab is
administered 6 months before
vaccination

Presence of CD19 cells,
timing (>6 months) and
higher CD4 T lymphocytes
predict response

Belimumab S1/S2 SARS-CoV-2/
neutralizing antibody
response →↓/→↓

– A reduced antibody response
and lower seroconversion rate
should be expected

–

Alkylating agents (i.e.
cyclophosphamide)

S1/S2 SARS-CoV-2/
neutralizing antibody
response (probably ↓/↓)

(probably impaired) No concrete recommendation
possible based on current
evidence

–

Complement inhibitors S1/S2 SARS-CoV-2/
neutralizing antibody
response (probably →/→)

(probably unaffected) No concrete recommendation
possible based on current
evidence

–

IMKD, immune-mediated kidney disease; KTR, kidney transplant recipient.

single-centre study where peri-vaccination, 24 patients with-
held MMF and 171 continued therapy. A higher proportion
of patients in the group that withheld MMF developed a
humoral response [56]. There are insufficient data on other
treatments, but for most agents, a reduced response can be
expected (Table 4).

Vaccine strategy: primary multiple dose or two plus
booster doses?
With the emergence of the omicron variant, a two primary

dose regimen of either COVID-19 vaccine was deemed insuffi-
cient to prevent infection [57]. Thus everybody should receive
three doses (‘primary’ vaccination strategy) of a COVID-19
vaccine. Evidence supports this approach for mRNA vaccines
[18, 58] and a recent press release also reported effectiveness for
ChAdOx1. A fourth vaccine dose for the immunosuppressed
patient population is suggested in most countries and for
those ˃60 years of age in Israel. In patients with an ongoing
immunosuppression burden and a high likelihood of impaired
vaccine response (Table 4), the administration of a fourth
vaccine appears important.

The choice of vaccine to boost the immune system is
mostly limited by national recommendations. The Evaluating

COVID-19 Vaccine Boosters trial in the UK randomized
patients to seven different vaccines after an initial reg-
imen of ChAdOx1 and BNT162b2 (two administrations
each). The strongest reactivity was reported for a booster
dose with mRNA-1273 after both primary strategies and
for the viral-vectored vaccines [ChAdOx1 or Johnson &
Johnson/Janssen (Ad26.COV2.S)] after BNT162b2 [59], the
latter highlighting the potential role of heterologous vaccine
administration.

In solid organ transplant patients, a fourth dose was offered
to patients with a weak (n = 5) or no humoral response
(n = 31). BNT162b2 was administered at a median time of 65
days after the third vaccine dose. The number of participants
with detectable antibodies increased from 5 to 18 1 month
after administration of the fourth dose. Notably, in those with
a weak response after three doses, the antibody concentration
increased 100-fold following the fourth vaccine dose, but
with only a modest increase of the neutralizing antibody
titres [60].

In immune-mediated inflammatory disease patients, 66
patients with no response to two vaccine doses received a third
dose. A humoral and cellular response was reported in half
of the patients. Importantly, there was a significant difference
between patients not receiving rituximab and rituximab users
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(78.8% versus 18.2% and 80% versus 21.9%) [61]. This was
confirmed in a small study that focussed on patients with AAV.
Rituximab users had significantly lower anti-S1 IgG antibody
and delta variant neutralization levels in comparison to non-
users [62].

In a clinical trial, kidney transplant recipients with no
humoral response after two doses of mRNA vaccine were ran-
domized to receive BNT162b2/mRNA-1273 or Ad26.COV2.S
as their third dose. The number of participants with a humoral
vaccine response appeared higher in the Ad26.COV2.S group
(42% versus 35%, not significant). Subanalysis of the group
receiving another mRNA vaccine after the failure of two initial
doses of either mRNA-1273 or BNT162b2 was not provided
[63].

What about the timing between infection and adminis-
tration of booster doses? With the ongoing omicron surge,
we suggest booster administration is important because pro-
tection from prior infections seems incomplete. Notably, a
significantly lower risk of breakthrough infections after prior
infection and COVID-19 vaccination was reported fromQatar
[64]. The risk of a severe or fatal disease course in reinfected
individuals was reduced by 90% in a small population-based
analysis [65]. Prior infection might convey some protection
from severe disease in healthy individuals; it is not clear if this
translates to immunocompromised individuals. Regardless,
emerging variants of concern with a high potential of re-
infection mean booster vaccination is advised even after a
recent SARS-CoV-2 infection.

What do we know about paediatric patients
and vaccination?
Information regarding vaccine efficacy in children with

immune-mediated kidney disease is limited. The clinical
course of COVID-19 in most children with/without CKD
is mild [66], but severe cases and children with a life-
threatening multisystem inflammatory syndrome (MIS-C)
have been reported [67]. However, an international survey
among 113 children receiving immunosuppression (47% kid-
ney transplant recipients) indicated mortality in 4 (3.5%) and
ventilatory support in 6 (5%) [68]. Risk factors associated
with a more severe illness in adults; active disease, higher
doses of glucocorticoids, use of MMF or rituximab are also
evident in the paediatric population [69]. This emphasizes
that vaccination in children with immune-mediated kidney
diseases must also be prioritized. Thus far the only vaccine
approved by the Centers for Disease Control and European
Medicines Agency (EMA) for use in children (ages 5–17 years)
is BNT162b2. Two doses of 30 μg BNT162b2 21 days apart
in 12 to 15-year-old participants elicited higher neutralizing
antibody titres relative to 16 to 25-year-old participants, with
a vaccine efficacy of 100% and an acceptable safety profile
[70]. In a dose-finding study, a dose of 10 μg BNT162b2 was
found to elicit similar neutralizing antibody titres compared
with 30 μg BNT162b2 in 16 to 25-year-old participants.
Vaccine efficacy of 90.7%was reported, with no serious adverse
events identified [71]. Information about booster doses is not
currently available.

Safety of COVID-19 vaccines in immune-mediated
kidney diseases
Systemic and localized adverse events have been as-

sessed by questionnaires in most studies involving pa-
tients with autoimmune diseases. Side-effect profiles appear
similar between patients with autoimmune diseases and
healthy controls. This was observed for different vaccine
platforms [72].

Another concern for patients and physicians is the risk
of de novo and relapsing/flaring glomerulonephritis following
COVID-19 vaccination. Cases of temporal association of
glomerular diseases with vaccination have been reported, but
it is unclear if the administration of vaccines has provoked
the onset of autoimmunity as a ‘second hit’ or whether there
is a true association. Large population-based investigations
are necessary to prove causation. A single-centre study
focused on IgA nephropathy found that among 89 patients
with a pre-existing disease no disease flare was recorded
[73]. The EMA is closely monitoring the occurrence of
glomerulonephritis and nephrotic syndrome. A total of 89
cases were reported by 31 July 2021 after the administration of
918 million doses of BNT162b2 worldwide. Reporting bias
may underestimate the risk. Table 5 summarizes cases reported
in themedical literature. IgAnephropathy andminimal change
disease (MCD) are the leading disease entities occurring de
novo or relapsing/flaring after vaccination. Notably the onset
or relapse of MCD following certain vaccination has been
described prior to the COVID-19 era [74]. Table 5 includes
cases reported until the end of December 2021 and includes 45
cases of IgA nephropathy, 36 cases of MCD, 20 of AAV, 11 of
membranous nephropathy, 7 of anti-GBM-disease and acute
interstitial nephritis, 5 of focal segmental glomerulosclerosis,
3 with lupus nephritis, 2 of IgA vasculitis and 1 each of
proliferative GN, IgG4-related disease and scleroderma renal
crisis.

Most immune-mediated kidney diseases relapsed/flared
or were diagnosed after the second dose of the COVID-
19 vaccine, with the exception of MCD, which was usually
found after the first dose. An analysis of the World Health
Organization (WHO)VigiBase revealed that BNT162b2might
be associated with MCD, while IgA nephropathy was more
frequently reported after vaccination with mRNA-1273 [75].
These findings warrant confirmation in independent cohorts,
but the benefits of vaccination far outweigh this small,
theoretical risk.

Another important question is the re-administration of a
COVID-19 vaccine after provoking the onset or relapse/flare of
immune-mediated kidney disease. Three case reports indicate
that a rechallenge with either the same vaccine (mRNA-1273
or CoronaVac) or a switch from BNT162b2 to mRNA-1273
induced worsening proteinuria and led to the occurrence of
AKI in one case with MCD [76–78]. Data on heterologous
vaccine strategies are not available.

With the initiation of appropriate management, most
disease onset or relapse/flare of immune-mediated kidney
disease can be successfully treated in a standard manner.
However, outcome data are, short-term, based on the limited
follow-up duration.
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Equity of access to vaccination
The impact of the COVID-19 pandemic has provided harsh

lessons about societal inequalities disproportionally affecting
themost vulnerable individuals and groups by interacting with
and exacerbating every existing social inequality in chronic
disease and the social determinants for health. These side
effects are greater in low- and middle-income countries. In
nephrology, we have seen amplification of inequity of access
to trials, treatments and vaccinations.

Equity of access includes children. Vaccination of children
was only seriously considered when it became evident that
they may spread COVID-19 to the adult workforce. The
presumption of a milder COVID-19 illness in children only
partially applies to those with immune-mediated kidney
diseases and/or CKD. We strongly recommend that access to
COVID-19 vaccines be prioritized for children with (immune-
mediated) kidney disease.

Equitable global access to and fair distribution of
vaccination poses a challenge. Political and economic
constraints may limit access to the country that produces
it or can afford to pay. Several initiatives are in progress
to overcome this, including the COVID-19 Vaccines
Global Access (COVAX) Facility, which aims to accelerate
the development of COVID-19 vaccines and ensure
equitable distribution/availability in low- and middle-income
countries (https://www.gavi.org/vaccineswork/gavi-ceo-dr-
seth-berkley-explains-covax-pillar). While it is evident that
equitable access is paramount, it is less clear whether these or
similar schemes will succeed in achieving this ambition [79].

CONCLUSION AND OUTLOOK
The systematic rollout of COVID-19 vaccines has in real-time
enhanced our understanding of vaccine response in healthy
individuals and those with comorbidities, especially those
receiving immunosuppression. Several immunosuppressants
impair vaccine response and the absence of humoral immunity
following rituximab is particularly concerning. Maintenance
therapy strategies are adopted to provide a ‘window of poten-
tial’ to mount an antibody response. A transient withdrawal of
MMF has increased vaccine response rates in patients with au-
toimmune diseases [56] and might be an option when a short-
term suspension of immunosuppression is considered safe.

Patients with immune-mediated kidney diseases should be
prioritized to receive booster doses according to national im-
plementation as early as possible, as reduced vaccine response
is anticipated in many cases. Reported side effects (including
recurrence of disease or de novo glomerulonephritis) are rare
and large population-based investigations are necessary to
provide evidence of a true association [80]. The benefits of
COVID-19 vaccines clearly outweigh the potential risks.

Vaccines need to be ‘updated’ based on the emergence
of variants of concern and mutations in the spike protein.
Monoclonal antibody treatment has shown high efficacy in
preventing severe diseases and patients who do not mount a
vaccine responsemight become eligible to receive a prophylac-
tic dose. As a caveat, the efficacy of these treatments may differ
with omicron and newer variants. Such strategies are currently

under investigation [i.e. sotrovimab arm of PROphylaxis for
paTiEnts at Risk of COVID-19 infecTion -V (NCT04870333)].
Limited experience using monoclonal antibodies in patients
with immune-mediated diseases exists, but efficacy is apparent
in the case series [81].

In a single-centre study, monthly casirivimab plus imde-
vimab (REGEN-COV) was offered to kidney transplant re-
cipients who did not mount an antibody response after three
vaccine doses. A total of 88 of 119 patients received at least
two infusions and none of these patients contracted COVID-
19. Of the 31 patients without monoclonal antibody therapy, 5
were diagnosed with COVID-19 (delta variant) and 2 required
intensive care unit management [82]. With the emergence of
omicron, preliminary reports suggest that only sotrovimab
exerts adequate potency compared with other variants [83].

Concerted efforts must be made to fully vaccinate house-
hold relations and close contacts (such as care givers) of
patients with immune-mediated kidney disease. BNT162b2
and to a lesser degree ChAdOx1 nCoV-19 reduce transmission
with protection waning over time [84], and booster dose ad-
ministrations are necessary. Almost 2 years into the pandemic,
vaccine apathy is evident. People should be encouraged to have
all three vaccinations, not least because there is an increasing
likelihood that return to pre-pandemic levels of social activity
is imminent.
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