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Background. Immune dysregulation is a major factor in the development of severe coronavirus disease 2019 (COVID-19). The 
homeostatic chemokines CCL19 and CCL21 have been implicated as mediators of tissue inflammation, but data on their regulation 
in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is limited. We thus investigated the levels of these 
chemokines in COVID-19 patients.

Methods. Serial blood samples were obtained from patients hospitalized with COVID-19 (n = 414). Circulating CCL19 and 
CCL21 levels during hospitalization and 3-month follow-up were analyzed. In vitro assays and analysis of RNAseq data from 
public repositories were performed to further explore possible regulatory mechanisms.

Results. A consistent increase in circulating levels of CCL19 and CCL21 was observed, with high levels correlating with disease 
severity measures, including respiratory failure, need for intensive care, and 60-day all-cause mortality. High levels of CCL21 at 
admission were associated with persisting impairment of pulmonary function at the 3-month follow-up.

Conclusions. Our findings highlight CCL19 and CCL21 as markers of immune dysregulation in COVID-19. This may reflect 
aberrant regulation triggered by tissue inflammation, as observed in other chronic inflammatory and autoimmune conditions. 
Determination of the source and regulation of these chemokines and their effects on lung tissue is warranted to further clarify 
their role in COVID-19.
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It is increasingly apparent that the induction of overwhelming 
systemic inflammatory responses is associated with severe clin
ical manifestations and unfavorable outcomes in coronavirus 

disease 2019 (COVID-19). While early triggering of immune 
defense mechanisms is crucial for an effective elimination of vi
ral particles in the initial stages of severe acute respiratory syn
drome coronavirus 2 (SARS-CoV-2) infection [1, 2], persistent 
and dysregulated systemic inflammatory responses are detri
mental [3, 4]. Although different forms of immune dysregula
tion involving both the innate and adaptive immune system 
have been reported [5–9], the drivers of the extensive and per
sistent immune activation in severe COVID-19 remain unclear.

Interference with chemokine responses forms the basis of ef
fective immune evasion strategies employed by many viruses. 
Most studies have focused on inflammatory chemokines, which 
are recognized as integral parts of the inflammatory signaling 
cascades triggered by tissue injury and invading pathogens. 
In contrast, the homeostatic chemokines CCL19 and CCL21 
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are constitutively expressed in secondary lymphoid organs. 
There they promote the homing of T cells and dendritic cells 
(DCs) that express the common receptor CCR7 and the more 
recently discovered CCR10 [10]. In addition to this homeostat
ic function, elevated circulating levels of CCL19 and CCL21 are 
found in several acute and chronic inflammatory conditions, 
including autoimmune diseases, atherosclerosis, and various 
infections [11–14]. Moreover, these chemokines have effects 
on vascular smooth muscle cells and extracellular matrix re
modeling [15], and are associated with pulmonary hyperten
sion in systemic sclerosis [16]. These findings suggest a role 
of dysregulated CCL19 and CCL21 signaling in inflammatory 
pulmonary disorders. Studies on CCL19 and CCL21 in 
COVID-19 are limited, but the ectopic cellular expression of 
the ORF7a protein encoded by this virus was found to induce 
secretion of multiple chemokines, including CCL21, in cul
tured HeLa cells [17].

The present study aimed to investigate the association be
tween CCL19/CCL21 and disease severity, 60-day total mortal
ity, and pulmonary sequelae in COVID-19. CCL19 and CCL21 
levels were analyzed in 2 Norwegian prospective cohort studies 
of hospitalized COVID-19 patients spanning 3 waves of the 
COVID-19 pandemic.

METHODS

Study Design and Participants

Data from 2 prospective cohort studies were pooled and as
sessed in our study. A flow chart of the study design is provided 
in Figure 1. Cohort 1 was the NOR Solidarity trial 
(NCT04321616), a multicenter, open-label, adaptive random
ized controlled trial evaluating the effect of antiviral agents (hy
droxychloroquine and remdesivir) in COVID-19 patients 
admitted to 23 Norwegian hospitals. Study interventions in 
this trial did not show significant effects on clinical outcomes 
or viral clearance [18, 19]. The study was approved by the 
Committee for Medical Research Ethics Region Southeast 
Norway (approval no. 118684) and the Norwegian Medicines 
Agency (20/04950-23). Cohort 2 was the Norwegian 
SARS-CoV-2 study (NCT04381819), an observational study 
of COVID-19 patients admitted to 5 Norwegian hospitals, con
ducted as part of an International Severe Acute Respiratory and 
Emerging Infection Consortium (ISARIC) WHO Clinical 
Characterization Protocol study [20]. The study was approved 
by the Regional Committees for Medical Research Ethics 
Southeast Norway (106624 and 2019/306). All patients aged 
≥18 years admitted to the hospital with polymerase chain reac
tion (PCR)-confirmed SARS-2-CoV-2 infection were eligible 
for inclusion. Blood samples were obtained from each patient 
within 48 hours of admission and up to 10 days during hospi
talization, as well as at 3-month follow-up in a subset of pa
tients. All participants gave informed consent prior to 

inclusion, either directly or through a legally authorized 
representative.

Patients in cohort 1 were included from March to October 
2020, while patients in cohort 2 were included from March 
2020 to September 2021. The study period thus spanned the 
first 3 waves of the COVID-19 pandemic in Norway: 18 Mar 
2020 to 23 July 2020 (wave 1), 24 July 2020 to 17 February 
2021 (wave 2), and 18 February 2021 to 31 July 2021 
(wave 3) [21]. From February 2021, Alpha SARS-CoV-2 was 
the dominating variant, which was superseded by the Delta var
iant in July 2021 [22, 23].

Intervention and Outcomes

In cohort 1 (n = 162), participants were randomized to either 
(1) local standard of care (SoC); (2) SoC plus oral hydroxy
chloroquine; or (3) SoC plus intravenous remdesivir as de
scribed [18]. Previous studies showed no effects of these 
treatment modalities [18]. Data from the intervention arms 
in cohort 1 were therefore pooled together with samples from 
cohort 2 (n = 252) to examine whether levels of CCL19 and 
CCL21 were associated with disease severity. Severe 
COVID-19 was defined as 1 or more of the following: (1) devel
opment of acute respiratory failure (RF) defined as PO2/FiO2 ra
tio <26.6 kPa (<200 mmHg) during hospitalization; (2) 
requirement for intensive care unit (ICU) support during hos
pitalization; and (3) 60-day postadmission mortality. In addi
tion, for cohort 1, patients were evaluated 3 months after 
inclusion with pulmonary function testing as detailed below.

Blood Sampling Protocol and Biochemical Analyses

Plasma (cohort 1) or serum (cohort 2) was stored at −80°C, and 
thawed < 3 times. For reference, circulating CCL19 and CCL21 
were also analyzed in plasma from 24 age- and sex-matched 
healthy controls (mean age 55 years [SD 12 years]; 55% men).

Plasma and serum levels of CCL19 and CCL21 were mea
sured by enzyme immunoassays using commercially available 
antibodies (R&D Systems). Intra-/interassay coefficients of var
iation were <10%. Comparing within-patient differences in se
rum versus plasma in 16 healthy controls, we observed no 
difference for CCL19 (P = .80) or CCL21 (P = .18).

Three-Month Follow-Up

In total, 257 participants (cohort 1, n = 100; cohort 2, n = 157) 
attended outpatient follow-up that included blood sampling for 
routine clinical biochemistry and biobanking. The timing of 
this 3-month follow-up was different in the 2 cohorts, defined 
by inclusion date in cohort 1, and date of hospital discharge in 
cohort 2. In cohort 1, lung function testing (n = 90), consisting 
of spirometry, and diffusing capacity of the lungs (DLCO) was 
also performed [24]. The predicted percentage of DLCO and 
the lower limit of normal were calculated according to the 
Global Lung Function Initiative Network guidelines [24].
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In Vitro SARS-CoV-2 Stimulation of Dendritic Cells

Human peripheral blood mononuclear cells (PBMC) were iso
lated from buffy coats of healthy donors, differentiated into 
DCs, and stimulated with inactivated SARS-CoV-2 as detailed 
in Supplementary Material.

Statistics

Clinical characteristics of the participants were compared using 
Student t test or Mann-Whitney U test depending on variable 
distribution, or by χ2 for continuous and categorical variables, 
respectively (Table 1). CCL19 and CCL21 were transformed 
(log10) for temporal comparisons between groups by linear 
mixed model analysis. Subject was set as random effect, while 

time, RF, ICU admission, and 60-day mortality were set as fixed 
effects (independently and also as interactions). In addition, 
age, sex, estimated glomerular filtration rate and treatment 
modalities (study drug for cohort 1, and dexamethasone for 
cohort 2) were included as independent effects. Data are pre
sented as back-transformed estimated marginal means with 
95% confidence intervals (CI). Post hoc analysis (Sequential 
Sidak test) between groups is reported if the group or group* 
(ie, interaction term) was significant. Similar models were ap
plied to evaluate the effects of randomized treatment and 
DLCO in cohort 1 and wave or dexamethasone use in cohort 2.

Separate linear mixed models for CCL19 and CCL21, with 
time treated as a factor variable, were employed to model the 

Figure 1. Flow chart showing the study population, with clinical data and blood samples collected from 2 cohort studies. Further details of the 2 trials are provided in the 
“Methods” section. Blood samples were collected at 3 time points during hospitalization, and at outpatient follow-up after 3 months. A subset of patients from cohort 1 also 
underwent pulmonary function assessment and chest CT imaging at follow-up. Abbreviations: CT, computed tomography; DLCO, diffusing capacity of the lungs for carbon 
monoxide; PCR, polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

2152 • JID 2022:226 (15 December) • Tveita et al

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiac313#supplementary-data


association between PO2/FiO2 ratio (outcome) and circulating 
levels of CCL19 and CCL21. A random intercept by subject 
was used to control for repeated measures, with each subject 
having between 1 and 3 measured follow-up periods. 
Associations between admission levels of CCL19 and CCL21 
(divided in tertiles) and 60-day mortality were assessed by 
Kaplan-Meier analysis and Cox regression.

Reanalysis of Public RNAseq Datasets

Publicly available RNASeq datasets were identified via a manual 
search of the National Center for Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO) and details on their 
analyses are included in the Supplementary Material.

RESULTS

Baseline Characteristics and Outcomes of the Study Population

A flow chart of the study design is given in Figure 1. 
Demographics and clinical characteristics of the cohorts were 

quite similar (Table 1), except for the use of antiviral agents 
in cohort 1, and dexamethasone use in cohort 2 after introduc
tion as SoC in the management of severe COVID-19 (autumn 
2020). More patients were admitted to ICU in cohort 2. In the 
combined cohort, 110 patients (27%) were admitted to ICU, 
and 125 (31%) patients developed RF the first 10 days after ad
mission (Table 1). Sixty-six patients (22%) with RF did not re
ceive treatment in an ICU.

Initial Temporal Profile of Circulating CCL19 and CCL21 and Relation to 
Respiratory Failure and ICU Admission

As shown in Figure 2A, the levels of both markers were higher 
in COVID-19 patients than in controls, and significantly higher 
in RF patients compared to patients without RF. CCL19 re
mained high in RF patients throughout the observation period, 
while differences in CCL21 were larger at admission and de
creased towards the end of observation. The group effect for 
higher CCL19 in RF patients within cohorts 1 and 2 separately 
was P = .051 and P = .002, respectively. Corresponding values 

Table 1. Baseline Characteristics and Outcomes in 414 Patients Hospitalized for COVID-19 in Norway, Stratified by 2 Large Multicenter Cohorts and 
Combined

Parameter
Cohort 1 Cohort 2 Combined
n = 162 n = 252 n = 414

Age, y 59.7 ± 15.4 57.0 ± 15.3 58.0 ± 15.4

Male sex, No. (%) 103 (64) 159 (63) 262 (63)

Body mass index, kg/m2 28.2 ± 4.6 28.8 ± 5.2 28.5 ± 4.9

Treatment group, No. (%)

SoC 81 (50) 254 (100) 333 (80)

SoC + hydroxychloroquine 43 (27) 0 (0) 43 (10)

SoC + remdesivir 38 (24) 0 (0) 38 (9)

Dexamethasone 2 (1) 134 (53)a 136 (33)

Oxygen therapy 91 (56) 194 (77)a 285 (69)

Comorbidities, No. (%)

Chronic cardiac disease 24 (15) 47 (19) 71 (17)

Hypertension 51 (32) 84 (35) 135 (34)

Chronic pulmonary disease 31 (20) 67 (27) 98 (24)

Obesity 43 (29) 70 (28) 113 (28)

Diabetes 27 (17) 58 (25) 85 (22)

Current smoker 5 (4) 16 (7) 21 (6)

Outcomes, No. (%)

ICU admission 31 (19) 79 (31)a 110 (27)

Respiratory failure 50 (31) 75 (30) 125 (31)

Deceased at 60 days 8 (5) 29 (12) 37 (9)

PO2/FiO2 ratio at admission, kPa 42.4 (32.4, 49.6) 40.0 (28.1, 48.3) 41.3 (30.0, 49.3)

Laboratory analysis at admission

Hemoglobin, g/dL 13.2 ± 1.5 12.9 ± 1.8 13.0 ± 1.7

C-reactive protein, mg/L 70 (35, 136) 53 (24, 117) 62 (29, 125)

Ferritin, µg/L 612 (358, 1111) 617 (297, 1146) 615 (322, 1127)

White blood cell count, × 109/L 6.5 ± 2.8 6.9 ± 3.2 6.7 ± 3.1

Neutrophils, × 109/L 4.8 ± 2.7 5.3 ± 3.1 5.1 ± 3.0

Lymphocytes, × 109/L 1.2 ± 0.53 1.1 ± 0.5 1.1 ± 0.5

eGFR, mL/min/1.73m2 87 ± 25 90 ± 29 89 ± 27

Continuous data are given as mean ± SD or median (25th, 75th) percentile.  

Abbreviations: eGFR, estimated glomerular filtration rate; ICU, intensive care unit; SoC, standard of care.  
aP< .05 between cohorts 1 and 2.
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for CCL21 were P = .022 and P = .020, respectively. Mixed 
models regression with PO2/FiO2 ratio as dependent and 
CCL19 or CCL21 and time as covariates revealed a negative 
correlation with CCL21 (estimate, −0.16; t = −6.1; P < .001), 
with a less robust association for CCL19 (estimate, −0.06; 
t = −2.3; P = .019).

A similar pattern was observed for ICU admission 
(Figure 2B), with CCL19 and CCL21 remaining elevated 
throughout the observation period in those admitted to ICU. 
The overall group effect from the mixed models for higher 
CCL19 in patients admitted to ICU within cohorts 1 and 2 
was P < .001 and P < .001, respectively. Corresponding values 
for CCL21 were P = .001 and P = .024, respectively.

The dynamics of oropharyngeal SARS-CoV-2 viral load in 
cohort 1 has previously been reported [18]. Baseline levels of 
SARS-CoV-2 in oropharynx did not correlate with baseline lev
els of CCL19 (r = −0.00; P = .94) or CCL21 (r = 0.13; P = .18).

High CCL19 and CCL21 Levels Are Associated With 60-Day Mortality

In the combined cohort, 37 patients died within 60 days of hos
pital admission (Table 1). Kaplan-Meier analysis of admission 
levels showed that patients in the upper tertile of CCL19 and 
CCL21 were at increased risk of death within 60 days 

(Figure 3A). Evaluated as continuous variables, a 1 SD increase 
in CCL21 was associated with a 2.46 (95% CI, 1.76–3.42; 
P < .001) times higher risk of death, while the association with 
60-day mortality was not significant for CCL19 (hazard ratio 
[HR], 1.27; 95% CI, .91–1.76; P = .15). For CCL21, the increased 
risk of death was present both in patients treated with (HR, 1.93; 
P = .004) and without dexamethasone (HR, 3.30; P = .001).

Evaluation of the temporal profile during the first 10 days af
ter inclusion revealed that patients who died had higher levels 
of CCL19 and CCL21, with the largest differences at the end of 
the observation period (Figure 3B).

Intrahospital Temporal Profile of CCL19 and CCL21 in Relation to Treatment 
and COVID-19 Waves

As shown in Figure 4A, no temporal differences in CCL19 or 
CCL21 were observed according to treatment with hydroxy
chloroquine, remdesivir, or SoC within cohort 1 (Figure 4A). 
Dexamethasone use within cohort 2 (Figure 4B) was associated 
with lower levels of CCL19 and a decrease in CCL21 compared 
to patients who did not receive glucocorticoid treatment. No 
overall group effects were observed regarding COVID-19 
waves and temporal profile of CCL19 or CCL21, but both 
chemokines showed an interaction between wave and time 
(P < .001; Figure 4C). For CCL21 the interaction was driven 
by higher levels at admission in patients hospitalized during 
the third wave of the pandemic.

Figure 2. Intrahospital temporal profile of CCL19 and CCL21 in patients hospital
ized with COVID-19 (n = 414) according to (A) respiratory failure (n = 125) or (B) ICU 
admission (n = 110) during the first 10 days after inclusion. Data is shown as esti
mated marginal means and 95% CI. The P values reflect the group (outcome) effect 
from the linear mixed models with subject as random effect, and time and respira
tory failure or ICU admission as fixed effects (also as interaction) in addition to age, 
sex, estimated glomerular filtration rate, and treatment modalities. Shaded areas 
show reference value range from healthy controls. * P < .05, ** P < .01, *** P < 
.001 between groups. Abbreviations: BL, baseline; ICU, intensive care unit.

Figure 3. CCL19 and CCL21 and 60-day mortality in patients hospitalized with 
COVID-19 (n = 414). A, Kaplan-Meier analysis 60-day mortality (n = 37) according 
to tertiles (T) of CCL19 (T1 ≤ 1.27 ng/mL, T2 1.28–2.09 ng/mL, T3 > 2.10 ng/mL) 
and CCL21 (T1 ≤ 1.41 ng/mL, T2 1.42–2.44 ng/mL, T3 > 2.45 ng/mL). B, Temporal 
profile of CCL19 and CCL21 during the first 10 days after inclusion according to 
60-day mortality. Data in B is shown as estimated marginal means and 95% CI. 
The P values reflect the group (outcome) effect from the linear mixed models wi
th subject as random effect, and time and mortality as fixed effects (also as inter
action) in addition to age, sex, estimated glomerular filtration rate, and treatment 
modalities. Shaded areas show reference value range from healthy controls. * P < 
.05, ** P < .01, *** P < .001 between groups. Abbreviation: BL, baseline.
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A High Admission Level of CCL21 Is Associated With Impaired Lung 
Function After 3 Months

At 3-month follow-up, CCL19 and CCL21 levels in the 257 pa
tients assayed were comparable to those of healthy controls 
(Supplementary Figure 1). However, for the 90 patients who 
performed pulmonary testing, a high baseline level of CCL21 

during hospitalization was associated with impaired DLCO at 
3-month follow-up (Figure 4D).

Effect of Inactivated SARS-CoV-2 on the Release of CCL21 and CCL19 in 
Dendritic Cells

Previous data have suggested that SARS-CoV-2 may trigger im
munomodulatory signaling responses in monocyte-derived 
cells [25]. To determine whether the presence of 
SARS-CoV-2 particles themselves could induce secretion of 
homoeostatic chemokines, in vitro differentiated monocyte- 
derived dendritic cells (moDC) were cultured in the presence 
of inactivated SARS-CoV-2 virus. Whereas there was a signifi
cant increase in the release of CCL21 in the presence of viral 
particles (Figure 5A), CCL19 secretion from moDC was low 
and was not significantly affected by the presence of 
SARS-CoV-2 (Figure 5B).

Reanalysis of CCR7/CCL19/CCL21 mRNA Expression From Public RNAseq 
Data Repositories

To obtain further insight into the regulation of homeostatic 
chemokines in COVID-19, we reanalyzed the expression 
of CCL19, CCL21, CCR7, and CCR10 in lung tissue and pe
ripheral blood specimens isolated from COVID-19 patients 
in RNAseq datasets deposited in public repositories 
(Supplementary Table 1).

In the first autopsy study (L1) [26], CCL19 and CCL21 
mRNA expression levels were modestly increased in lung tissue 
from COVID-19 patients compared to healthy controls, with 
particularly high CCL21 expression levels in biopsies contain
ing arterial tissue (Figure 6A). The second autopsy study (L2) 
[27] showed higher CCL21 mRNA levels in the lungs of pa
tients with high SARS CoV-2 viral load within the lung paren
chyma, with lower expression of CCR7 and CCR10 in this 
subset (Figure 6B). A third autopsy study (L3) detected no dif
ferences in CCR7 and CCL21 expression levels compared to 
healthy lungs [28].

Figure 4. Intrahospital temporal profile of CCL19 and CCL21 according to (A) treat
ment with hydroxychloroquine (n = 43) and remdesivir (n = 38) as compared with their 
respective SoC (n = 81) in cohort 1 (NOR Solidarity trial); (B) dexamethasone treat
ment; (C ) COVID-19 wave; and (D) DLCO below or above LLN at 3-month follow-up. 
Data is shown as estimated marginal means and 95% CI. The P value indicates group 
effect, and the bold P value indicates the interaction term between time and group 
from the linear mixed models with subject as random effect, and time and mortality 
as fixed effects (also as interaction) in addition to age, sex, and estimated glomerular 
filtration rate. Shaded areas show reference value range from healthy controls. 
*P < .01, ***P < .001 between groups; †P < .05, ††P < .01 versus wave 3. Abbrevia
tions: DLCO, diffusing capacity of the lungs for carbon monoxide; LLN, lower limit of 
normal; HCQ, hydroxychloroquine; REM, remdesivir; SoC, standard of care.

Figure 5. In vitro secretion of homeostatic chemokines in SARS-CoV-2–exposed 
monocyte-derived dendritic cells. Quantitation of secreted CCL21 (A) and CCL19 (B) 
in cultures of monocyte-derived dendritic cells after exposure to inactivated SA
RS-CoV-2 viral particles (0.001 or 0.01 multiplicity of infection [MOI]) for 6 and 2
4 hours. Results are shown as mean ± SD (n = 3 per treatment condition). *P < 
.05, independent samples t test.
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In studies comparing mRNA expression in PBMCs and whole 
blood isolated from patients and healthy controls, CCL19 and 
CCL21 were not detectable or showed very low mRNA counts 
(Supplementary Table 1, studies PB1-3, WB1–5). CCR7 in 
PBMCs was lower, while CCR10 tended to be higher in 
COVID-19 patients compared to controls in study PB1 
(Figure 6C) [29]. In another PBMC study (PB2) [30], there was 
no change in CCR7 expression, while CCR10 was increased in 
COVID-19 (Supplementary Table 1). In the third PBMC study 
(PB3) [31] CCR7 expression levels were higher at recovery com
pared to earlier stages of the disease (Supplementary Table 1). In 
leukocytes from whole blood, CCR7 was lower in COVID-19 pa
tients compared to controls in one study (WB1) [32] but showed 
no signs of differential regulation in 4 other studies (WB2–5) 
(Figure 6D) [33–36]. Two studies (WB3, WB5) [34, 36] reported 
increased CCR10 levels in COVID-19 patients compared to 
healthy controls, also compared to patients infected with seasonal 
coronavirus or with bacterial pneumonia (Figure 6D).

DISCUSSION

Combining data from 2 independent Norwegian multicenter 
cohorts, we here report high circulating levels of CCL19 and 

CCL21 on hospital admission and during the in-hospital course 
of 414 patients with COVID-19, with similar results within 
each cohort. High levels of both chemokines were associated 
with adverse outcomes, that is, the degree of RF, need for 
ICU support, and 60-day all-cause mortality. Finally, high 
CCL21 on admission correlated with persistent impairment 
of pulmonary function at 3-month follow-up. Our findings 
suggest the homeostatic chemokines, particularly CCL21, 
could be involved in the pathogenesis of COVID-19–related 
pulmonary pathology and might provide independent prog
nostic information in hospitalized COVID-19 patients.

High levels of inflammatory cytokines and chemokines and 
associations with poor outcomes have consistently been report
ed in hospitalized COVID-19 patients [37], but data on the ho
meostatic chemokines are scarce. In agreement with our 
findings, CCL21 was upregulated in patients with thrombotic 
complications and ranked third as a predictor of mortality 
amongst 71 cytokines/chemokines assayed [3]. Elevated 
CCL19 and CCL21 levels in COVID-19 patients could reflect 
several scenarios: (1) a general increase in homeostatic chemo
kine secretion in spleen/secondary lymphoid tissue, possibly 
accentuated by ongoing systemic inflammation or induced by 
viral antigens; (2) impaired chemokine clearance due to 

Figure 6. Regulation of CCR7, CCR10, CCL19, and CCL21 in public RNAseq analysis data of tissues from COVID-19 patients. A, Differences in CCL19 and CCL21 mRNA 
expression in lung tissue from COVID-19 patients (n = 19) and controls (n = 3). Source data GSE163529. B, mRNA expression in relation to virus load (VL) in COVID-19 patients 
(GSE150316, n = 15). C, mRNA expression of CCR7 and CCR10 in peripheral blood mononuclear cells isolated from COVID-19 patients (n = 16) grouped by clinical disease 
severity (moderate, severe disease, and requiring ICU treatment) and age-/sex-matched healthy controls. Source dataset GSE152418. D, Whole blood leukocytes isolated 
from patients with COVID-19 (COV19), seasonal coronavirus infection (COV; n = 19), influenza (Inf; n = 17), bacterial pneumonia (Bact; n = 20) and matched healthy controls 
(n = 19). Source dataset GSE161731. Normalized gene expression quantified as transcripts per million (TPM). A and B, P values are from the group and group*tissue location 
effects from the mixed model analysis (see description of statistics in Supplementary Material). C and D, P values are from the Kruskal-Wallis test with asterisks reflecting the 
results of the post hoc test. *P < .05, **P < .01, ***P < .001; #P < .01 versus other groups.
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decreased turnover, for example, via CCR10 that has been 
found upregulated in PBMCs in COVID-19 patients [29, 30]; 
or (3) increased/ectopic secretion within nonlymphoid tissue 
(eg, lung). The lack of expression of CCL19 and CCL21 in 
PBMCs points to affected organs or associated lymphoid tissue 
as likely sources of increased circulating levels in our 
COVID-19 cohorts. Supporting a link between pulmonary 
CCL21 production and impaired lung function, a recent pre
print report demonstrated the formation of perivascular foci 
with strong expression of CCL21 in lung tissue from patients 
with severe COVID-19 [38]. These areas showed high expres
sion of fibrosis-associated markers, and accumulation of im
mune cell aggregates with features consistent with tertiary 
lymphoid structures. CCL19 expression was also elevated in 
these areas [38].

In agreement with a report showing an early rise in CCL21 
[3], peak levels of CCL19 and CCL21 in our study were ob
served in samples collected within the first 48 hours of hospital 
admission, suggesting early perturbations in homeostatic che
mokines during infection, possibly related to delayed viral 
clearance or high viral load. Interestingly, in the patients who 
died within 60 days, the largest difference in CCL21 levels com
pared with those who survived was seen at the last blood sample 
taken 7 to 10 days after admission, indicating persistent and in
creasing CCL21 activation in these patients. Reanalysis of pub
licly available gene expression datasets revealed indications of 
differential regulation of CCL21 expression in pulmonary tis
sue, while CCR7 and CCR10 receptor levels appeared un
changed. In the material from Desai et al [27], higher CCL21 
mRNA levels were seen in lungs of patients with high SARS 
CoV-2 viral load within the lung parenchyma. While we in 
the present study found no correlation between circulating 
CCL19 and CCL21 levels and SARS-CoV-2 viral load in oro
pharyngeal/nasal samples at hospital admission, the upper air
way viral load does not necessarily reflect levels of ongoing viral 
shedding within the lung parenchyma, given considerable to
pographical differences in viral shedding [39]. Hence, the pos
sibility of a direct role of SARS-CoV-2 in eliciting CCL19 and 
CCL21 signaling remains unresolved.

Strong, systemic immune responses manifested by increased 
inflammatory cytokine and chemokine levels are commonly 
observed in severe cases of acute viral diseases. In severe dengue 
fever, a secreted form of the viral nonstructural antigen NS1 
potentially triggers key aspects of the pathogenesis of severe 
disease manifestations (dengue hemorrhagic fever) [40]. By 
triggering leukocyte inflammatory responses and interfering 
with the integrity of endothelial glycocalyx, NS1 released by in
fected cells may explain both the endothelial dysfunction and 
the systemic inflammatory response observed in severe dengue 
[41]. Understanding of the impact of SARS-CoV-2 antigens on 
host cells is still evolving, but in vitro studies have identified a 
multitude of interactions of potential relevance to clinical 

disease manifestations [42], including disruption of endothelial 
barrier function [43] and aberrations in immune signaling 
[44, 45]. Conceivably, persistence or high levels of particular vi
ral antigens in affected tissues could directly impact the patho
physiology of severe disease manifestation in COVID-19. Of 
particular relevance to the present work, the ORF7a protein 
of SARS-CoV-2 has been reported to induce the expression 
of CCL19 and CCL21 in HeLa cells [17]. In our experiments, 
PBMC-derived DCs exposed to inactivated SARS-CoV-2 viral 
particles produced significant amounts of CCL21 but not 
CCL19. Transcriptional changes involving alterations in cyto
kine release have been observed in monocytes/macrophages 
exposed to SARS-CoV-2 particles [25]. Although the physio
logical relevance of these findings remains uncertain, the 
SARS-CoV-2 virus may trigger distinct inflammatory signal
ing in monocyte-derived cells that potentially could impact 
the ensuing immune response. Moreover, our findings 
may suggest that CCL21 could be directly induced by 
SARS-CoV-2 and not only be a secondary phenomenon to a 
general state of systemic inflammation, potentially contribut
ing to the formation of lymphoid and inflammatory tissue 
within the lungs.

Current knowledge about the direct impact of dexametha
sone treatment on the CCR7/CCL19/CCL21 axis is limited. 
Herein we found that dexamethasone use within cohort 2 
was associated with lower levels of CCL19 and CCL21 as com
pared with nonusers. However, the study was not designed to 
evaluate the effects of dexamethasone on these markers, and 
the data should be interpreted with caution. Regarding hydrox
ychloroquine/remdesivir, we found no effects on CCL19/ 
CCL21 levels. There are no published data to suggest a direct 
impact of these agents on homeostatic chemokine signaling, al
though such effects cannot be excluded. It is possible that the 
inclusion of more targeted immunomodulatory agents in 
COVID-19 treatment will provide more clarity regarding 
CCL19/CCL21 regulation. Levels of these chemokines have, 
to the best of our knowledge, not been reported in published 
results from clinical trials. The Janus kinase (JAK) pathway in
hibitor baricitinib has been approved for use in patients hospi
talized with severe COVID-19. Other JAK inhibitors have been 
shown to inhibit CCR7/CCL19-mediated migration of DCs 
[46, 47]. It would therefore be of interest to examine if JAK in
hibitors such as baricitinib affect the levels and/or function of 
CCL19/CCL21 in COVID-19.

The present study has some limitations. As mentioned 
above, the present study was not designed to evaluate the effects 
of therapeutics used in COVID-19 management, and the im
pact of such interventions on chemokine levels therefore can
not be excluded. The regulation of secretion of CCL19 and 
CCL21 under inflammatory conditions is largely unknown. 
Moreover, the cellular source(s) of CCl19/CCL21 in severe 
COVID-19 are still uncertain.
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In summary, we report a striking increase in the circulating 
levels of the homeostatic chemokines CCL19 and CCL21 in 
hospitalized COVID-19 patients, with high levels correlating 
with progression to severe pulmonary disease, need for ICU 
support, and 60-day mortality. Furthermore, high admission 
levels of CCL21 were associated with prolonged impaired pul
monary function 3 months after hospital discharge. Given the 
key role of these chemokines in lymphoid tissue homeostasis 
and regulation of adaptive immune responses, potentially pro
moting lymphoid tissue within the SARS-CoV-2 infected lungs, 
these findings warrant further investigations to determine the 
drivers, source, and functional impact of increased levels of 
CCL19 and CCL21 in COVID-19.
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