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Viral evolution was evaluated in 47 immunocompromised 
patients treated with sotrovimab. Sequencing of SARS-CoV- 
2 following therapy was successful in 16. Mutations associated 
with sotrovimab resistance were documented in 6; viral 
replication continued after 30 days in 5. Combination antibody 
therapy may be required to avoid acquired resistance in 
immunocompromised patients.
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Sotrovimab is a monoclonal antibody that neutralizes severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by 
binding to a highly conserved epitope in the receptor-binding 
domain of sarbecoviruses. It was one of the few approved 
monoclonals that retained activity against the Omicron BA.1 
variant of concern (VOC) [1]. While its activity against 
Omicron BA.2 is limited, emerging data suggest it may again 
be useful to treat the most recent Omicron subvariants 
BA.2.12.1, BA.4, and BA.5 [2, 3].

Immunocompromised patients are at an increased risk for a 
severe outcome of coronavirus disease 2019 (COVID-19) even 

after full vaccination against SARS-CoV-2. Indeed, the vaccina-
tion response is often reduced and can be completely absent in 
patients with combined T-cell and B-cell dysfunction [4, 5]. 
Furthermore, prolonged viral replication and evolution have 
been described in the immunocompromised host [6, 7]. Given 
the risk for a poor outcome, monoclonal antibody–based ther-
apy is frequently used to treat these patients. Viral evolution to-
ward resistance against these monoclonal antibodies can arise 
when viral replication is not sufficiently contained, and this 
risk may be more pronounced during antibody monotherapy. 
Recently, the selection of mutations in the spike protein of the 
Delta VOC in 4 of 100 patients treated with sotrovimab was re-
ported, and all 4 were immunocompromised [8]. Specifically, 
mutations were found at positions 337 and 340, known to re-
duce susceptibility to sotrovimab [9]. We studied viral evolution 
in 47 immunocompromised patients treated with sotrovimab 
for an infection with the Omicron VOC.

METHODS

Sotrovimab became available on 26 January 2022 at the Erasmus 
University Medical Center, Rotterdam. It was used to treat im-
munocompromised patients infected with the SARS-CoV-2 
Omicron VOC in the outpatient and inpatient settings. Before 
treatment, patients were screened for the presence of 
SARS-CoV-2 antibodies using the LIAISON SARS-CoV-2 
TrimericS immunoglobulin G (IgG) assay (DiaSorin). A 
SARS-CoV-2 polymerase chain reaction (PCR) test was per-
formed at baseline and weekly thereafter, and after discharge 
until the PCR cycle threshold (Ct) value was ≥30 [10]. 
Baseline and follow-up samples with a Ct value <30 were se-
quenced on the Nanopore platform. Successful sequencing 
was defined as at least 90% of the genome covered with at least 
30 times coverage. Only descriptive statistics were used. The 
Erasmus University Medical Center Institutional Review 
Board approved the study.

RESULTS

Of the 47 patients treated, 24 (51%) were male, the median age 
was 63 years (interquartile range [IQR], 51–67), and 31 (66%) 
had undergone an organ transplantation. Seventeen patients 
(36%) received triple immunosuppressive therapy (mycophe-
nolic acid, calcineurin inhibitors, and corticosteroids) as antire-
jection drugs after solid organ transplant; 10 patients (21%) 
received anti-CD20 agents and thus B cell–depleting therapy. 
Thirty-two of 47 (68%) patients were hospitalized for their 
COVID-19 infection and were treated with sotrovimab on 
the COVID ward. Information on IgG spike antibody titers 
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in the 30 days preceding sotrovimab therapy was available for 
36 patients. Spike antibodies were negative in 22 (61%) and 
very low (1–300 BAU/mL) in 9 (25%). These low or negative 
antibody titers were observed despite a history of at least 2 mes-
senger RNA vaccinations in 30 of 36 (83%) patients and 3 vac-
cinations or more in 24 of 36 (66%) patients. See 
Supplementary Data 1 (Supplementary Table 1) for more de-
tails on the baseline characteristics.

Sequencing was performed in 45 of the 47 patients; however, 
it was not successful in 14 (31%) patients due to low viral loads. 
Sequencing was not performed in 2 due to a negative PCR test 
in 1 patient and a very low viral load in the other. Sequencing 
before and after treatment with sotrovimab was successful in 16 
patients. Furthermore, 10 patients only had a sequencing result 
prior to sotrovimab treatment, and 5 patients only had a se-
quencing result after sotrovimab treatment. Twenty-five pa-
tients were infected with the Omicron BA.1 subtype and 6 
with the BA.2 subtype. Key spike mutations were detected on 
positions 337 and 340 (known to confer in vitro resistance to 
sotrovimab) in 6 of 16 (38%) patients with successful sequenc-
ing before and after sotrovimab (Figure 1). These mutations 
were found in 4 of 25 (16%) BA.1-infected patients and in 2 
of the 7 (29%) infected with BA.2. In a third BA.2-infected pa-
tient, a D796Y mutation was found, but its impact on the neu-
tralizing effect of sotrovimab is unknown. For more detailed 
information on the performance of sequencing and the charac-
teristics of patients with spike mutations, see Supplementary 

Data 2 (Supplementary Tables 2 and 3) and Supplementary 
Figure 1.

The median time to a Ct value ≥30 was 15 days (IQR, 8–22; 
range, 3–149). In contrast, the median time to a Ct value ≥30 in 
patients with a spike mutation was 50 days (IQR, 14–67). In 5 of 
7 (71%) patients with spike mutations, low Ct values persisted 
37, 63, 64, 76, and 149 days after treatment with sotrovimab 
(Figure 1).

DISCUSSION

Following treatment with sotrovimab, spike mutations associ-
ated with reduced in vitro susceptibility were detected in 6 of 
47 patients overall and in 6 of 16 in whom sequencing was suc-
cessful after therapy [9]. Furthermore, 4 patients infected with 
BA.1 and 1 patient infected with BA.2 continued to have a high 
viral load more than 4 weeks after treatment with sotrovimab. 
In all 4 patients who were infected with BA.1 and had a pro-
longed infection, mutations were found at position 337 or 340.

Our observations show that prolonged viral replication can 
be explained by treatment-related viral evolution toward resis-
tance. This also illustrates that immunocompromised patients 
who are unable to clear SARS-CoV-2 despite antiviral therapy 
could serve as a source of new variants. These patients should 
be closely followed until viral clearance is documented whenev-
er possible. Research is urgently needed to evaluate the value of 
direct-acting antivirals in this patient group. Similar to the 

Figure 1. Follow-up of viral load in immunocompromised patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant. Ct value 
of patients treated with sotrovimab with a baseline real-time polymerase chain reaction (RT-PCR) and at least 1 follow-up RT-PCR available. The y-axis indicates the day of 
sotrovimab infusion. The x-axis represents the time before/after sotrovimab infusion. Red dots represent a Ct value <30. Green dots represent a Ct value >30. Black dots 
represent the death of a patient. Yellow dots represent a sequence showing new spike mutations compared with the baseline sequence. Omicron sublineage and type of spike 
mutation are reported. The blue bars represent the period of follow-up, which started on the date of the first positive SARS-CoV-2 test and lasted until the last SARS-CoV-2 PCR 
at the Erasmus Medical Center (MC) or until death. In several patients, no dots are at the start of follow-up meaning that the first SARS-CoV-2 PCR test was not performed at 
Erasmus MC or that the test was performed on a device that did not report Ct values. A, Patients for whom not all pre- and post-treatment PCR sequencing was successful. 
B, Patients for whom all pre- and post-treatments PCR sequencing was successful. Five patients were lost to follow-up. Abbreviation: Ct, cycle threshold.
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treatment of human immunodeficiency virus, combination 
antiviral therapy might be required to reduce the risk for resis-
tance. However, even when tixagevimab/cilgavimab combina-
tion therapy is used, only 1 of these antibodies retains in 
vitro activity against BA.2 and BA.4/5 variants. Therefore, 
monitoring treatment response with sequencing is recom-
mended when available. An alternative treatment option may 
be very high titer convalescent plasma that was harvested 
from donors with a history of Omicron infection who also 
are fully vaccinated and boostered, considering the polyclonal 
nature of convalescent plasma [11, 12].
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