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Abstract

Personal data collected by wearable devices contains rich privacy. It is important to realize

the personal privacy protection for user data without affecting the data collection of wearable

device services. In order to protect users’ personal privacy, a collection scheme based on

local differential privacy is proposed for the collected single attribute numerical stream data.

At first, the stream data points collected by the wearable device are censored to identify the

salient points, and the adaptive Laplacian mechanism is used to add noise to these salient

points according to the assigned privacy budget; then the collector reconstructs and fits the

stream data curve to the noise-added salient points, so as to protect the personal privacy of

the data. This scheme is experimented on the heart rate dataset, and the results show that

when the privacy budget is 0.5 (i.e., at higher privacy protection strength), the mean relative

error is 0.12, which is 57.78% lower than the scheme of Kim et al. With the satisfaction of

user privacy protection, the usability of mean value estimation of wearable device stream

data is improved.

Introduction

Wearable devices are becoming more and more functional, providing people with convenient

services while also recording and collecting various personal activity record data, including

physiological data, activity data and environmental data. These data are available for individu-

als to monitor their own health and also contain a lot of personal and private information,

such as personal heart rate, blood pressure, blood sugar, cholesterol, weight, personal activity

range, habits, etc. Wearable device service providers may share the data with affiliated third-

party companies in exchange for consistent service. Hackers may also directly obtain these

data, so there is a risk of personal privacy leakage, such as exposure to health problems, living

habits and scope of activities. The European Union’s General Data Protection Regulation

(GDPR), implemented since May 2018, emphasizes the need for strong privacy guarantees for

users when collecting and analyzing their usage data. The Personal Information Protection

Law of the People’s Republic of China, implemented from November 1, 2021, also emphasizes

that the collection of personal information should be limited to the minimum extent necessary
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to achieve the purpose of processing and regulates the collection of personal information.

Therefore, the privacy protection of wearable device data collection has received increasingly

serious attention in academic fields [1]. It is of great significance to realize the personal privacy

protection for user data without affecting the data collection of wearable device services.

Wearable devices collect numerical data at a certain collection period, which grows over

time to form a temporal stream dataset. Papageorgiou et al. [2] 2018 investigation results show

that most apps do not strictly follow the law and they will send collected user datasets to part-

ner third parties. To protect privacy, users do not want their real data to leave their devices.

Local differential privacy techniques provide a solution to this problem by adding noise to the

real data on the user side and then sending the noised data to the server side for aggregation.

The main perturbation mechanism of local differential privacy is currently the random

response mechanism [3], and there have been many research studies on local differential pri-

vacy, mainly applied in frequency estimation and mean value estimation. Erlingsson et al.

(2014) [4] of Google proposed the RAPPOR mechanism, Bassily et al. (2015) [5] proposed the

S-Hist algorithm for frequency estimation of categorical data. Duchi et al. (2013) [6, 7] pro-

posed the MeanEst method for mean value estimation of numerical data; Nguyên et al.

(2016) [8] proposed the Harmony algorithm for processing both categorical and numerical

data.

Data collection for wearable devices belongs to the domain of mean value estimation for

temporal stream data. Using local differential privacy techniques, each stream data is assigned

a privacy budget to add noise protection, which leads to bad data usability. Meanwhile, with

the increasing stream data, the privacy budget assigned to each stream data is getting smaller

so that data usability is getting worse. Kellaris et al. (2014) [9] proposed w-event privacy mech-

anism to solve this issue, but there was a waste of privacy budget, which made the data usability

decrease and affected the overall accuracy. Errounda et al. (2021) [10] applied w-event privacy

mechanism on location statistics, but with the same unnecessary utility loss. Fang et al. (2020)

[11] also based on this mechanism and proposed Local Differential Privacy Data Streaming

Protocol (LDPS), adaptively invoked method to handle categorical and numerical data. How-

ever, the resource consumption is too large and not suitable for wearable devices. Wang et al.

(2016) [12] demonstrated that the random response mechanism outperforms the Laplace

mechanism in terms of mean square error. Kim et al. (2018) [13] applied local differential pri-

vacy to one-dimensional attribute heart rate data collection and used the Laplace mechanism

to add noise to salient point data, but the data error was large and usability was not high.

There will be a crucial issue on how to improve the data usability while protecting privacy.

In a nutshell, existing studies on local differential privacy protection for stream data are rel-

atively few and inadequate. It will be the main point of this paper to study how to combine the

ability of Laplace mechanism for stream data processing with the randomness of random

response to improve the usability of data.

In this paper, we propose an improved scheme based on local differential privacy for per-

sonal health data collection, which solves the privacy protection problem of stream data collec-

tion on a single attribute. The scheme combines the Laplace mechanism and the random

response mechanism, which makes the data more usable while protecting privacy. The main

contributions of this paper are as follows:

1. We improve the approach of identifying salient points for stream data and obtain a data set

that is closer to the original stream data curve.

2. In order to solve the problem of large noise that impacts data usability, we modify the noise

addition mechanism by bringing in self-adaptive random values.
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3. We improve the data reconstruction methods, which reduce the reconstruction data errors

and increases the data usability.

The remainder of this paper starts with the Related work. The proposed approach is

described in the section Wearable device data protection based on local differential privacy,

and the experiments are done in the section Experiment and analysis. Finally, we close this

paper with the Conclusion section.

Related work

As technology evolves, data security is facing more and more attacks [14, 15]. The current data

privacy protection technologies for wearable devices are mainly based on cryptography and

perturbation [16].

The cryptography-based schemes are mainly homomorphic encryption and secure multi-

party computation. These kinds of methods have high security but low efficiency. Wang et al.

(2015) [17] used a medical system as an example to constructed a network model, a trust

model and a security model for wearable sensor devices. She proposed a homomorphic

encrypted data aggregation technique based on data segmentation technique which has high

security but slightly high communication load. It is not suitable for wearable devices. Xu et al.

(2020) [18] proposed a data security and privacy protection scheme based on the sanitizable

signatures technology for the security and privacy protection of medical data in smart mobile

medical scenarios. Wei et al. (2020) [19] proposed a group blind signature scheme in smart

grid to accomplish conditional anonymity. Homomorphic encryption (HE) was used to verify

the integrity of power data, which reduced the communication overhead between the control

center and the smart meter, so as to protected the user privacy and consumption data of the

smart grid. Wei et al. (2021) [20] summarized the security and privacy requirements for the

security authentication of the intelligent terminal devices, proposed a privacy-preserving

implicit authentication framework based on cosine similarity and partial homomorphic public

key encryption, which utilized artificial intelligence methodology to sense the users’ behavior

features from the mobile intelligent terminal. Liu et al. (2022) [21] proposed a novel privacy-

preserving Dynamic Searchable Symmetric Encryption (DSSE) scheme for Intelligent IoT

Healthcare (IIoTH) system. They constructed a secure index based on hash chain and realized

trapdoor updates for resisting file injection attacks. They realized fine-grained search over

encrypted personal health record (PHR) files database of attribute-value type, which made

user searching the dynamic healthcare information from IIoTH system to protect the privacy.

Hua et al. (2018) [22] applied secure multi-party computation to medical data generated by

wearable devices to achieve fast and secure two-party query computation, which in turn forms

an efficient privacy-preserving scheme for medical pre-diagnosis, but it also requires a large

amount of computing resources.

The perturbation-based schemes are mainly anonymization techniques, centered differen-

tial privacy, and local differential privacy. These schemes have high computational efficiency,

but the data accuracy may be biased. Anonymization techniques mainly provide protection for

data by utilizing the generalization idea [23], where k-anonymity, l-diversity, and t-closeness

are the main models. For example, Liu et al. (2018) [24] proposed a clustering-based k-anon-

ymization method, which assigns similar records to the same equivalence set, making it more

difficult to distinguish between records, and thus data accuracy will be biased. Zhou et al.

(2022) [25] employed a block design technique to obfuscate various health indicators from the

hospitals and the smart wearable devices, and introduced human-in-the-loop (HitL) to enable

a privacy access of the health reports from the smart healthcare platform. Centered differential

privacy is a scheme based on trusted third parties with two implementation mechanisms,

PLOS ONE Local differential privacy protection for wearable device data

PLOS ONE | https://doi.org/10.1371/journal.pone.0272766 August 17, 2022 3 / 22

https://doi.org/10.1371/journal.pone.0272766


namely Laplace mechanism for numerical data and exponential mechanism for non-numerical

one [26]. For example, Yang et al. (2020) [27] proposed a privacy-preserving framework for

student health data on smart wearable devices, improving the centered differential privacy

technique by adding noise with a Laplacian mechanism and filtering the appropriate data for

publication through shielding conditions. It reduces the possibility of an attacker finding

abnormal data so as to infer the user’s privacy information. For that purpose, part of the data is

lost, which affects the overall accuracy.

Local differential privacy is a scheme built on the user side, which mainly uses random

response mechanism to protect the privacy of the data [3]. The current research field is related

to statistical databases and divided into single-valued frequency estimation, multi-valued fre-

quency estimation and mean value estimation. Erlingsson et al. of Google [4] proposed the

RAPPOR mechanism, based on random response with Bloom filter, to count single-valued fre-

quencies with high data usability but high computational cost. Li et al. (2020) [28] proposed

the square wave (SW) approach, where values close to the true values are published with high

probability while values far from the true values are published with low probability, thereby

estimating the distribution of one-dimensional numerical attributes. Duchi et al. [6, 7] also

based on random response mechanism, proposed the MeanEst method for mean value estima-

tion, with high data usability but not applicable to high dimension dataset. Subsequently, Ngu-

yên et al. [8] optimized the scheme of Duchi et al. and proposed the Harmony algorithm for

collecting and analyzing data from smart devices, which can support both frequency and mean

value estimation as well as machine learning tasks with high data usability. Wang et al. (2019)

[29] further proposed the Piecewise Mechanism (PM) for handling frequency and mean value

estimation with a high usability, but computationally complex and difficult to encode. All the

above methods are studies on non-streaming data, i.e., one-dimensional or multi-dimensional

attribute individual data for statistics, and do not involve the study of one-dimensional or

multi-dimensional attribute stream data.

The above privacy protection techniques for wearable device data collection are summa-

rized in Table 1.

Stream data collection for local differential privacy, on the one hand, has been studied in

terms of frequency estimation. Ning Guo (2019) [30] collected data from users’ browsing on

the scenario of web page click ranking with a mixture of centered differential privacy and local

differential privacy. Afrose et al. (2021) [31] proposed local differential privacy for stream data

using RAPPOR technique to obtain frequency estimation. Arcolezi et al. (2021) [32] conducted

a study on temporal data of multidimensional attribute using three state-of-the-art protocols.

Wang et al. (2021) [33] proposed a method to determine the optimal threshold with exponen-

tial mechanism to satisfy the data stream publishing problems. A hierarchical approach was

used to divide the data streams and add proportional noise to the threshold of each layer,

which can satisfy the range query but cannot be refined to an estimate at a certain moment.

Table 1. Classification of privacy protection technology for wearable device data.

Categories Characteristics Technologies Representative Papers

Cryptography-based schemes High security, but low efficiency Homomorphic encryption Wei et al. (2021) [20]

Secure multi-party computation Hua et al. (2018) [22]

Perturbation-based schemes High calculation efficiency, but data accuracy can be biased Anonymization Liu et al. (2018) [24]

Centered differential privacy Yang et al. (2020) [27]

Local differential Privacy Li et al. (2020) [28]

Wang et al. (2019) [29]

https://doi.org/10.1371/journal.pone.0272766.t001
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The above are all frequency estimation or range queries for stream data, and the mean value

estimation for stream data are not studied.

On the other hand, some scholars have studied it in the aspect of mean statistics. Kellaris

et al. [9] proposed w-event privacy mechanism based on centered differential privacy, which

gives a solution to the issue of allocating the privacy budget of stream data. It is divided into

budget absorption (BA) and budget distribution (BD) schemes, where the former reuses the

previously unallocated privacy budget and the latter allocates the privacy budget in an expo-

nentially decreasing manner, but for each sliding window, half of the privacy budget is fixedly

consumed before further allocation of the remaining budget, which leads to the waste of the

privacy budget and makes the data usability decrease and affects the overall accuracy.

Errounda et al. [10] applied w-event privacy mechanism for location statistics based on local

differential privacy and used an approximation strategy to estimate the unperturbed locations,

but similarly may incur unnecessary utility loss. Fang et al. [11] proposed local differential Pri-

vate Streaming Protocol (LDPS), based on local differential privacy with w-event privacy

mechanism. It can adaptively invoke methods to handle categorical and numerical data, but

the resource consumption is too large to be applicable to wearable devices whose resources are

limited.

For stream data generated by wearable devices, Kim et al. [13] proposed a new idea to

remove the adjacent data with the same value, or with the same trend, get the salient points

and then use the Laplace mechanism to add noise. Finally, the stream data graph is recon-

structed according to a straight line or curve, which reduces the unnecessary consumption of

privacy budget and increases the usability of the data. Kim et al. (2019) [34] continued their

study in this area by applying the previous method to smart watches and collected data in the

form of histograms and streaming data. Kim et al. (2020) [35] continually improved the opti-

mization of the method for identifying salient points, allowing it to be applied to more possible

stream data scenarios. However, the issue of data usability aspect remains problematic.

In short, the current study on local differential privacy for stream data is not comprehensive

and mainly focuses on frequency estimation. For mean value estimation, the existing solutions

still suffer from excessive resource consumption or poor data usability.

Wearable device data protection based on local differential privacy

Theoretical basis

Local differential privacy. Local differential privacy [36] is an extension of centered dif-

ferential privacy, in which centered differential privacy aggregates users’ data to the service

provider (i.e., a third party) and then allows the service provider to perturb the data before

analyzing and using it; local differential privacy, in contrast, puts the work of perturbing data

at users’ devices, where the users send the perturbed data to the service provider for analysis

and use. A formal definition of local differential privacy [3] is as follows:

Given n users, each user corresponds to one record, given a privacy algorithm M and its

definition domain Dom(M) and value domain Ran(M), if the algorithm M inputs any two rec-

ords t and t0(t, t0 2 Dom(M)) to obtain the same output result t�(t� 2 Ran(M)), satisfying the

following inequality, then M satisfies �-local differential privacy.

Pr½MðtÞ ¼ t�� � e� � Pr½Mðt0Þ ¼ t�� ð1Þ

Where Pr[�] denotes the probability of privacy being disclosed; � is the privacy budget,

which is used to control the ratio of the output probability of algorithm M on two records and

reflects the level of privacy protection that algorithm M can provide. A larger privacy budget
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means higher data usability and lower security. Conversely, a smaller privacy budget means

lower data usability and higher security.

Laplace mechanism. Laplace mechanism [37] is a very classical noise addition method in

centered differential privacy, which can also be applied to local differential privacy. It is

described as follows:

Assuming that each user ui records a numerical attribute value ti, and there are n users in

total. Defining the following random function to add noise to ti.

t�i ¼ ti þ Lapð
Ds
�
Þ ð2Þ

Where t�i is the value with the noise addition and Lap(λ) represents the random variable

that follows the Laplace distribution of scale l l ¼ Ds
�

� �
, i.e., noise. Δs is the difference between

the maximum value and the minimum value in attribute ti. The Laplace mechanism has the

following probability density function: pdf ðxÞ ¼ 1

2l
exp � jxj

l

� �
(the probability density function

of the Laplace distribution with expectation of 0 and variance of 2λ2). Clearly, the estimate t�i is

unbiased, since the injected Laplacian noise Lap Ds
�

� �
in each t�i has zero mean (i.e., expectation

of 0). Unbiasedness means that the mathematical expectation of the estimator is equal to the

true value of the parameter being estimated, and it is a criterion used to evaluate the goodness

of the estimator.

Each user adds a Lap Ds
�

� �
of Laplace noise to the data and sends it to the data collector, who

averages the resulting tuple of data 1

n

Pn
i¼1

t�i
� �

to obtain the statistical value of the attribute

with a probability error of O 1

�
ffiffi
n
p

� �
.

MeanEst method. The idea of the MeanEst method [6] is to perturb a given data value to

one of two fixed values by random response. Assuming a given tuple yi, yi 2 [−1, 1], which rep-

resents the value of an attribute of i users, the value of user one is y1, the value of user two is y2,

and the value of user i is yi.

Pe½y�i ¼ tjyi� ¼

e� � 1

2e� þ 2
� yi þ

1

2
; t ¼

e� þ 1

e� � 1

�
e� � 1

2e� þ 2
� yi þ

1

2
; t ¼ �

e� þ 1

e� � 1

8
>>><

>>>:

ð3Þ

With probability according to Eq (3), they are perturbed to y�i , i.e., perturbed to e�þ1

e� � 1
or

� e�þ1

e� � 1
, where Pe[�] is the perturbation probability and t is the value after perturbation.

The approach of data collection and protection based on local differential

privacy

Overall architecture for wearable device data collection. The overall architecture of data

collection for wearable devices is shown in Fig 1, which is divided into two entities: Device and

Service provider. The device collects data and perturbs it locally, and then sends the perturbed

data to the service provider. The service provider is divided into a data collector and a data

analyzer. The data collector reconstructs the perturbed data and holds it for later use. After all

data are processed, the data analyzer is authorized by the user to conduct statistical analysis.

The service provider performs product optimization and improves the service to the user

based on the collected information.
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The specific process of local differential privacy protection for the stream data generated by

each wearable device is shown in Fig 2. Following the idea provided by Kim et al. [13], it is also

divided into device and service provider.

• Device: The wearable device collects data at a fixed time interval, and collects the data after a

period of time so as to form a curve graph. Before adding noise, the data needs to be pro-

cessed and only part of data is added noise instead of all data for reducing the consumption

of privacy budget. For that purpose, it is necessary to delete the redundant data and identify

which are the salient points, i.e., the points that represent the graph best. After the salient

Fig 1. Overall architecture of data collection for wearable devices.

https://doi.org/10.1371/journal.pone.0272766.g001

Fig 2. Data collection privacy protection process based on local differential privacy.

https://doi.org/10.1371/journal.pone.0272766.g002
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points are identified, noise is added to the salient points by adopting an adaptive Laplace

mechanism and finally the noised data is sent to the service provider.

• Service provider: The service provider receives the noise-added data, reconstructs them in

different ways to reconnect the discrete points, calculates the missing data values, and stores

them for backup after reconstructing. When the data of all devices are processed, the statisti-

cal results are generated.

Privacy protection for wearable device data collection.

1 Data acquisition.

The wearable device collects data at fixed intervals, and records the time stamp ti and the

corresponding data xi each time, 0< i� n, n is the length of the time stream, which eventually

forms the data stream of the device. Assuming that the device is s1, the data it collects is s1 = (t1,

x1), (t2, x2), . . ., (tn, xn). Wearable devices can customize the sampling interval according to the

attribute characteristics because of the different attributes of the data they collect. For example,

heart rate data is collected every minute and blood oxygen data is collected every hour.

Simply connecting the collected time series data can form a graph of the collected health

data.

2 Identification of salient points.

The salient points are the one that represent the curve trend best, so it is necessary to use

the nature of the derivative, i.e., a positive (negative) derivative means a straight line up

(down) and a derivative of 0 stands for a straight line level, so as to achieve the purpose of iden-

tifying the salient points. The equation for calculating the derivative of each data point is as fol-

lows:

di ¼
xi � xi� 1

ti � ti� 1

ð4Þ

Where di denotes the derivative of point i, points (ti−1, xi−1), (ti, xi) are two adjacent points, ti
denotes the moment i, xi denotes the data value collected at moment i, and ti−1 and xi−1

likewise.

Identifying salient points is a process of removing redundancy from existing data points. It

will represent the entire curve with a smaller number of points so as to reduce the consump-

tion of privacy budget. In short, there are three types of redundant data points, the first is the

points with equal data within consecutive timestamps, the second is the points with a consis-

tent trend within a period of time, and the third is the points with frequent fluctuations in cer-

tain time periods. The first two types are discriminated by using derivatives of zero and

derivatives of the same sign, respectively, while the last type specifies the maximum interval

time as a threshold for judgment.

First, after obtaining the derivatives of all data points, we find and remove the data points

with zero derivatives (indicating that the data values of the two points are equal). Second, on

this basis, we traverse the remaining data points from the beginning, keeping the first point

and regarding this point as the starting point, where the derivatives of adjacent data points

with the same sign indicate the same trend between them, then we continue to traverse back-

ward until we encounter the turning point (the first point when the sign of the derivatives of

adjacent data points is opposite, and the time interval from the starting point is greater than

threshold α). Third, we keep the turning point and delete the intermediate data points from

the starting point to this point, and repeat the above steps with the turning point as the new

starting point. Until we traverse to the last point, which is taken as the last turning point,

repeating the previous steps. Finally, the remaining points are the salient points.
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Algorithm 1 gives the pseudo-code for identifying salient points. Given the stream data,

first, we calculate the derivatives of the two adjacent points, remove all the points with 0 deriv-

atives, and store the points that are not deleted in list1 (lines 1–9). Second, we process the

remaining points, traverse list1 from front to back. If the derivatives of the adjacent data points

have the same sign (i.e., same positive or negative), we delete the former and continue to com-

pare the latter with the next data point. If the derivatives of adjacent data points are opposite,

and the time interval (tint) between the former point and the starting point (i.e., tcur and tsta
respectively) is greater than α, the former is kept and the latter is compared with the next data

point. Repeat the previous steps until the list1 is traversed, and the retained points together

with the starting and ending points are the salient points, which are stored in list2 (lines 10–

22).

Algorithm 1 Identification of salient points
Input: (t1, x1), (t2, x2), . . ., (tn, xn), α
Output: (t1, x1), (ta, xa), . . ., (tn, xn)
1: i = 1, (t0, x0) = (0, 0);
2: for 1: n do // Traversing stream data
3: di ¼

xi � xi� 1

ti � ti� 1
;

4: if di = 0 then
5: Delete (ti, xi);
6: else
7: (ti, xi) 2 list1
8: enf if
9: end for
10: (t0, x0) 2 list2, j = 2, p = count(list1), tsta = 0;
11: for j: p do // Traversing list1
12: tint = tcur − tsta;
13: if (dj > 0&&dj+1 > 0) k (dj < 0&&dj+1 < 0) then
14: Delete (tj, xj);
15: else if tint � α then
16: Delete (tj, xj);
17: else
18: (tj, xj) 2 list2;
19: tsta = tcur;
20: end if
21: (tn, xn) 2 list2
22: end for

3 Adding noise to data.

In this study, we multiply the original Laplacian mechanism of Dwork et al. [37] by an

adaptive random value ri, which is called the adaptive Laplacian mechanism, and we use it to

add noise to the salient points, shown in Eqs (5), (6) & (7).

First, given the tuple xi, we normalize it to the tuple yi, yi 2 [−1, 1], according to Eq (5).

yi ¼
xi � xmean

xmax � xmin
ð5Þ

Where xi is the value corresponding to moment i, xmin, xmax, xmean are the minimum, maxi-

mum and mean values of the data set respectively, and yi is the value corresponding to xi after

normalizing to [−1, 1].

Then, the random value ri corresponding to each moment is calculated according to Eq (6).

The random value refers to the idea of random response in MeanEst algorithm of Duchi et al

[6], and the normalized value yi at moment i is transformed into the corresponding value ri
according to the perturbation probability. Since the numerical size of the random value ri
depends on the size of xi at this moment, we call it an adaptive random value.
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Finally, according to Eq (7), the xi at each moment is noise-added.

ri ¼
e� � 1

2e� þ 2
� yi þ

1

2
ð6Þ

x�i ¼ xi þ ri � Lapð
Ds
�i
Þ ð7Þ

Where ri is the random value, � is the privacy budget, yi is the value corresponding to xi nor-

malized to [−1, 1], x�i is the value after noise addition, xi is the value recorded at this moment,

Δs is the difference between the maximum and minimum values in the tuple xi, and �i is the

privacy budget assigned at this moment.

Since the random value ri (0� ri� 1) is calculated based on the normalized data xi, it is per-

turbation adaptive for the given data. The multiplication by the Laplace function adaptively

reduces the size of the added perturbation noise value and increases the usability of the data.

Proof: The random value 0� ri� 1.

Let f ð�Þ ¼ e� � 1

2e�þ2
, ri ¼ f ð�Þ � yi þ 1

2
, �� 0. Since f 0 ð�Þ ¼ 4e�

ð2e�þ2Þ2
> 0 and f(0) = 0, so f(�)� 0

and monotonically increasing. Since lim�!þ1f ð�Þ ¼ lim�!þ1
e� � 1

2e�þ2
¼ 1

2
, so 0 � f ð�Þ � 1

2
. And

since yi 2 [−1, 1], f(�) takes the maximum value 1

2
, it is known that the range of ri is [0, 1], i.e., 0

� ri� 1.

According to the Laplace mechanism, the data after noise addition by using the Laplace

function is unbiased, and the values after adding noise to the data by Eq (7) above are also

unbiased (i.e., each x�i is unbiased).

Proof: Since the mathematical expectation of the inserted noise Lap Ds
�i

� �
is zero and ri is a

constant, Eðx�i Þ ¼ E xi þ ri � Lap Ds
�i

� �� �
¼ xi þ ri � 0 ¼ xi, where the mathematical expectation

of the estimator is equal to the true value of the estimated parameter, so it is unbiased.

Algorithm 2 gives the pseudo-code to compute the adaptive random values, taking the pre-

viously determined salient points, i.e., list2, as data input. This set of data is normalized to [−1,

1], and then the random values are calculated sequentially and stored in list3.

Algorithm 2 Adaptive random values
Input: x1, x2, . . ., xp � xi 2 [xmin, xmax]
Output: r1, r2, . . ., rp ri 2 [0, 1]
1: Find the minimum, maximum and mean values from list2;
2: for i: p do
3: yi ¼

xi � xmean
xmax � xmin

;

4: ri ¼ e� � 1

2e�þ2
� yi þ 1

2
;

5: ri 2 list3;
6: end for

Algorithm 3 gives the pseudo-code for the noise addition with the adaptive Laplacian mech-

anism. The total privacy budget is �, and the privacy budget is equally divided for the remain-

ing p salient points, i.e., the privacy budget for each data is �i ¼
�

p. Input the processed data,

list2 with list3 and the privacy budget �i, and apply the adaptive Laplace algorithm to each orig-

inal data in turn to add noise and store it in list4.

Algorithm 3 Adaptive Laplacian mechanism
Input: (t1, x1), (ta, xa), . . ., (tn, xn)r1, ra, . . ., rn �1, �a, . . ., �n
Output: ðt1; x�1Þ; ðta; x

�
aÞ; . . . ; ðtn; x�nÞ

1: for i: p do

2: x�i ¼ xi þ ri � Lap Ds
�i

� �
;
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3: x�i 2 list4;
4: end for

4 Data reconstruction.

The data collector receives noisy data from each user and reconstructs the data for each of

these users separately to calculate the mean value at each moment. The essence of reconstruc-

tion is to concatenate discrete data points to calculate the value of missing data points. Differ-

ent connection methods have different data errors, so this study uses three different

reconstruction methods to determine which method has the lowest error and improves data

usability. These three approaches are linear, pchip and spline [38].

Linear is the simplest way to connect the discrete points by straight lines directly in

sequence, and the missing data are found on the function of the corresponding straight line.

The reconstructed curve looks very unsmooth in general. The expression of the function for

each subinterval is as follows:

LðxÞ ¼ yk þ ðx � xkÞ
ykþ1 � yk
xkþ1 � xk

x 2 ½xk; xkþ1�; k ¼ 1; 2; . . . ; n � 1

ð8Þ

Where (xk, yk), (xk+1, yk+1) are adjacent discrete points, which are known points, and the miss-

ing y value data between the two points are completed according to the function of each

subinterval.

Pchip is called piecewise cubic Hermite interpolating polynomial, which needs to satisfy the

first-order derivative continuous and monotonically varying in each interval, i.e., the first-

order derivative value of each point is set as the weighted harmonic mean of the slopes of the

left and right sides of the cut line. This makes the curve smooth and conformal at the same

time. Suppose there are two points (x0, y0), (x1, y1), x0 < x1 and assume that the first order

derivatives exist and are d0 and d1 respectively. let h ¼ x1 � x0; s ¼ x � x0; d ¼
y1 � y0

x1 � x0
. The func-

tion of pchip and first order derivatives are shown below.

PðxÞ ¼
h3 � 3hs2 þ 2s3

h3
y0 þ

3hs2 � 2s3

h3
y1 þ

sðs � hÞ2

h2
d0 þ

s2ðs � hÞ
h2

d1

¼ y0 þ sd0 þ
s2ð3d � 2d0 � d1Þ

h
þ
s3ðd0 � 2dþ d1Þ

h2

ð9Þ

P0 ðxÞ ¼ d0 þ
2sð3d � 2d0 � d1Þ

h
þ

3s2ðd0 � 2dþ d1Þ

h2
ð10Þ

Spline is called cubic spline interpolation, which has the same function with pchip, i.e., Eq (9),

but it is more strict and requires the second order derivative to be continuous, where the sec-

ond order derivative is shown in Eq (11). Therefore, spline is smoother than pchip, but not

necessarily shape preserving.

P00 ðxÞ ¼
ð6h � 12sÞdþ ð6s � 2hÞd1 þ ð6s � 4hÞd0

h2
ð11Þ

5 Data collection and analysis.

The data collector completes the data collection by forming a data set based on the collec-

tion cycle for reconstructing the curve. The data analyst analyzes the resulting data set, calcu-

lating the mean value of all devices at each moment, and generating statistics that are

aggregated and analyzed to improve the product and optimize the user experience.
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The related information is shown in Table 2. The original dataset of all devices is D, the

dataset of one device is di, the dataset of all devices after adding noise is D�, and the recon-

structed dataset of one device is denoted by d�i .

We aggregate the data of all devices (d�
1
� d�w) at each moment (t1 * tn) and calculate the

mean value corresponding to moment ti as the estimated value of this moment using Eq (12),

i.e., AVGest(xi). According to this method, the estimated values corresponding to all moments

are calculated.

AVGestðxiÞ ¼
1

w
�
Xd
�
w

d�
1

x�i ð12Þ

Where w denotes that there are w devices collecting data, and x�i denotes the value after adding

noise at moment ti. The expected error of the mean is O n
�
ffiffi
w
p

� �
, where n denotes the number of

attributes that need to be noised (corresponding to the number of salient points in this study),

� denotes the privacy budget, w denotes the number of users (corresponding to the number of

devices in this study). The error is proportional to the size of n, so the larger n is, the higher

error will be.

Evaluation indicators for the privacy protection of wearable device data

In order to determine the most suitable reconstruction method and to evaluate the experimen-

tal results of our scheme and the reference scheme, Mean Relative Error (MRE) and Root

Mean Square Error (RMSE) are used as evaluation indicators in this study.

MRE ¼
1

n
�
Xn

i¼1

jAVGactualðxiÞ � AVGestðxiÞj
AVGactualðxiÞ

ð13Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
Xn

i¼1

ðAVGactualðxiÞ � AVGestðxiÞÞ
2

s

ð14Þ

Where n denotes the length of the stream data, i denotes the i-th moment, xi denotes the value

collected at the i-th moment, AVGactual(xi) is the mean value of the corresponding actual data

at ti, and AVGest(xi) is the mean value of the corresponding estimated data at ti.
These two indicators are the standard to measure the change range of a variable, for exam-

ple, in the same amount of data, as the privacy budget keeps increasing and the error varies

with it. Among them, RMSE is more sensitive to higher error values because each error is cal-

culated as a square.

We use the MRE to measure the usability of the data, where a smaller value indicates a

smaller error and higher usability. RMSE is used to measure thebias of data, where a smaller

value indicates less bias in the data.

Table 2. Related information summary.

Descriptions Notations

Raw dataset for all devices D = {d1, d2, . . ., dw}

Single device datasets di = ((t1, x1), (t2, x2), . . ., (tn, xn)) i 2 [1, w]

Noise added dataset for all devices D� ¼ fd�
1
; d�

2
; . . . ; d�wg

Single device reconstructed datasets d�i ¼ ððt1; x
�
1
Þ; ðt2; x�2Þ; . . . ; ðtn; x�nÞÞ i 2 [1, w]

https://doi.org/10.1371/journal.pone.0272766.t002
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Experiment and analysis

Experimental dataset

In this study, experiments are conducted under the real dataset, the PAMAP2 dataset [13, 39].

The dataset contains 9 testers’ tested data under 18 activity items. We select 8 testers’ heart rate

data as the data for this experiment (the other one has incomplete data), while the testers are

numbered from 101 to 108. Every tester’s data of heart rate is collected once per minute, and

3000 heart rate data are collected in total for each tester. So the total data is 24K (8�3000). Con-

sidering the power of the wearable device and the user’s personal reasons, the user usually not

use the wearable device for 50 hours (i.e., 50 hours to collect 3000 records). Meanwhile, in

order to maintain the overall characteristics of the dataset, we condense the data of each tester

to the amount of 10 hours of collection in a day, i.e., we take the first record of every five of

3000 records which will be condensed to 600 records. The heart rate data of the testers are

shown in Table 3.

We replicate each tester’s data to form total datasets of 120K, 240K, 360K, 480K and 600K

so as to explore the impact of data sizes on data usability.

Experimental methods

We adopt the controlled variable method in this experiment, and we get the experimental data

from different reconstruction methods (linear, pchip, spline), different privacy budgets � (0.5,

1, 2) and different data sizes (120K, 240K, 360K, 480K, 600K). Firstly, we compare the esti-

mated values with the actual values according to different reconstruction methods. Secondly,

the two indicators of MRE and RMSE are calculated (Eqs 13 & 14) to determine the recon-

struction method with the lowest error. Finally, we use the lowest error reconstruction method

for experiments and compare it with the reference schemes. Then we calculate the two indica-

tors of MRE and RMSE so as to judge the performance of our scheme.

Our scheme first identifies the salient points (parameter α is set to 30), adds noise, and

reconstructs the data for each user respectively. Then, we aggregate the data of all users accord-

ing to the reconstruction curve and calculate the mean value at each moment. Finally, we com-

pare it with the mean value of each moment before noise addition for all users and calculate

the two indicators of MRE and RMSE. To reduce occasional errors, we repeat the experiment

several times to take the average value as the experimental results.

Our experiments are run on a Windows 10 machine using Python 3.9 and MATLAB 2020b

with 16G RAM and AMD Ryzen 5 5600H CPU.

Experimental results and discussion

Impact of privacy budgets and data sizes between actual and estimated values. In

order to study the relationship between privacy budget sizes and actual and estimated values,

we select a dataset with data size of 600K, privacy budget � is taken as 0.5, 1, and 2, respectively,

and the linear, pchip, and spline methods are in turn taken for reconstructing the curve. We

compare the scheme of Kim et al. [13] (the same below) and calculate the mean value for each

moment. The results are shown in Fig 3.

Table 3. Dataset summary.

Dataset number 101 102 103 104 105 106 107 108

Number of instances 600 600 600 600 600 600 600 600

Value range 78*120 74*107 68*94 57*121 70*101 60*104 60*99 66*104

https://doi.org/10.1371/journal.pone.0272766.t003
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From the above figure, we can see that the estimated value matches the actual value more

and more as the privacy budget � keeps increasing, regardless of the noise addition method as

well as the reconstruction method. This is because the size of the privacy budget is inversely

related to the size of the noise. The smaller privacy budget is, the higher degree of privacy pro-

tection will be, and therefore the noise added will be larger, which is reflected from the graph

that the estimated value is more deviated from the actual value. Conversely, the larger privacy

budget is, the lower degree of privacy protection will be, and therefore the noise added will be

smaller, which means the estimated value is closer to the actual value. From the three different

reconstruction methods, the data graphs reconstructed by linear method are not smooth,

while pchip and spline methods are obviously smooth, as well as the gap between the actual

and estimated values varies.

Fig 3. Actual and estimated values of mean heart rate with increasing privacy budget for different reconstruction methods. (a)

linear, (b) pchip and (c) spline.

https://doi.org/10.1371/journal.pone.0272766.g003
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In order to study the impact of data sizes on actual and estimated values, we first unify the

privacy budget to 2, and the datasets are taken to be 120K, 360K, and 600K respectively. Then

we choose linear, pchip and spline methods in turn to reconstruct the curve and calculate the

mean value at each moment. The results are shown in Fig 4.

From the Fig 4, we can see that the estimated value matches the actual value with increasing

amount of data, regardless of the noise-addition scheme and the reconstruction method. This

is because the expected error of both Kim et al.’s scheme and our scheme is Oð n
�
ffiffi
w
p Þ(n denotes

the number of attributes to be noise-added, in this study denotes the number of salient points,

� denotes the privacy budget, and w denotes the number of users), which decreases as the

Fig 4. Actual and estimated values of mean heart rate with increasing data size for different reconstruction methods. (a) linear, (b) pchip

and (c) spline.

https://doi.org/10.1371/journal.pone.0272766.g004
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number of users increases, i.e., the estimated value is closer to the actual value as the amount

of data increasing. Similarly, the data characteristics under these three reconstructions are the

same as the experiments under different privacy budgets above.

Impact of different reconstruction methods on MRE and RMSE. For the purpose of

studying the impact of different reconstruction methods on MRE and RMSE, we need to con-

duct experiments on privacy budget and data size separately, i.e., under the same dataset

(600K) or uniform privacy budget (� = 2), so as to find out which method has the smallest

error under different reconstruction methods. This experiment uses our scheme for the noise

addition, and the experimental results are shown in Fig 5.

As we can see from Fig 5, the MRE and RMSE of the reconstruction with the linear and

pchip methods are both lower than that of spline method, and the reconstruction error with

the spline method is slightly larger (reconstruction curves are shown in the third column of

Fig 5. Errors under different reconstruction methods. (a) MRE under different privacy budgets, (b) RMSE under different privacy budgets, (c)

MRE under different data sizes and (d) RMSE under different data sizes.

https://doi.org/10.1371/journal.pone.0272766.g005
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Figs 3 or 4). Among them, the difference between the indicator values of linear and pchip is

very small, and the specific data are shown in Tables 4 and 5.

In both calculations of the indicators, the linear method is slightly better than the pchip

one. The reason is that noise added data deviates from the original value and the reconstruc-

tion curve with the spline method is more smoothly. It will deviate from the actual value a bit

further compared with that of linear method, so its error is larger than the other two. The

reconstruction with pchip method is partial to linear method, so from the results, the errors

are similar to the linear method.

Therefore, the reconstruction with the linear method is the one with the least error in this

study.

Impact of privacy budgets on MRE and RMSE. We select a dataset with a data size of

600K and privacy budgets � of 0.5, 1, 2 for the experiments and calculate the MRE and RMSE

in order to study the impact of privacy budgets on the two evaluation indicators. The recon-

struction uses the linear method and compares with the schemes of Dwork et al. [37] and Kim

et al. [13] (the same below). The results are shown in Fig 6.

In Fig 6, we can see that, for the results of the two indicators calculation, the error of Dwork

et al.’s scheme is much larger than Kim et al.’s and our scheme. Moreover, the error of our

scheme is lower than Kim et al.’s scheme in both indicators, which means that the data usabil-

ity and data bias of our scheme are better than those of comparison schemes. As the privacy

budget increases, both MRE and RMSE of three solutions become smaller and smaller. The

reason is that the privacy budget essentially represents the degree of protection of user privacy,

which has been explained in the previous section on “the relationship between privacy budget

sizes and actual and estimated values” and will not be repeated here. Table 6 shows the specific

data of the above MRE under different privacy budgets (Fig 6(a)), where the decline rate is the

reduction of MRE for our scheme compared to Kim et al.’s scheme (the same below).

It can be seen that our scheme reduces the MRE by 57.78% compared to Kim et al.’s scheme

at a privacy budget of 0.5, i.e., a higher privacy protection strength, suggesting that the usability

of our data is better than the former one by over a half.

So far, we can conclude from these two indicators that the scheme of our work is better

than Kim et al.’s scheme under different privacy budgets.

Impact of data sizes on MRE and RMSE. We unify the privacy budget to 2 and take the

datasets of 120K, 240K, 360K, 480K, 600K and then calculate the MRE and RMSE in order to

Table 4. Errors under different privacy budgets.

MRE MRE MRE RMSE RMSE RMSE

Privacy budget 0.5 1 2 0.5 1 2

Linear 0.1292 0.0662 0.0383 13.2004 6.7997 4.5037

Pchip 0.1383 0.0717 0.0416 14.4537 7.3646 4.8847

Spline 0.1635 0.0799 0.0466 18.0156 8.1994 5.3600

https://doi.org/10.1371/journal.pone.0272766.t004

Table 5. Errors under different data sizes.

MRE MRE MRE RMSE RMSE RMSE

Data Size 120K 360K 600K 120K 360K 600K

Linear 0.0863 0.0537 0.0383 9.6957 5.5881 4.5037

Pchip 0.0936 0.0575 0.0416 10.3896 5.9640 4.8847

Spline 0.1033 0.0621 0.0466 11.2769 6.5701 5.3600

https://doi.org/10.1371/journal.pone.0272766.t005
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study the impact of data sizes on the two evaluation indicators. This experiment results are

shown in Fig 7.

In Fig 7, we can see that, in the calculation of these two indicators, the error of Dwork

et al.’s scheme is much larger than Kim et al.’s scheme and our scheme, and the error of our

scheme is lower than Kim et al.’s scheme in both indicators, indicating that the data usability

and data bias of our scheme are better than those of comparison schemes. With increasing

data size, both MRE and RMSE of the three schemes become smaller and smaller. Because the

two error indicators are inversely related to the 1/2 power of the number of users, which is

explained in “the impact of data sizes on actual and estimated values” and will not be repeated

here. Table 7 shows the specific data of MRE (Fig 7(a)) for the different data sizes mentioned

above.

It can be seen from the table that under different data sizes, our scheme has at least 41.49%

lower MRE than Kim et al.’s scheme, suggesting that our scheme outperforms the former one

by at least 41.49% in terms of usability.

Therefore, from the perspective of the two evaluation indicators, the effectiveness of our

scheme is still better than Kim et al.’s scheme under different data sizes.

Conclusion

The privacy protection of personal health data needs to balance security and usability, and

how to improve data usability while protecting user privacy is the key to mining data value. In

Fig 6. Errors under different privacy budgets. (a) MRE of three algorithms and (b) RMSE of three algorithms.

https://doi.org/10.1371/journal.pone.0272766.g006

Table 6. MRE under different privacy budgets.

Privacy budget Dwork et al. Kim et al. Our solution Decline rate

0.5 20.9119 0.3060 0.1292 57.78%

1 10.9796 0.1391 0.0662 52.41%

2 5.1945 0.0759 0.0383 49.54%

https://doi.org/10.1371/journal.pone.0272766.t006
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this paper, we propose a protection scheme for numerical stream data with single attribute

based on local differential privacy. Firstly, the device censors the collected stream data to iden-

tify a few salient points, and adopts an adaptive Laplace mechanism to add noise to these

salient points; secondly, the service provider reconstructs the noisy data in various ways and

selects an error minimization scheme. The experimental results show that using our scheme to

protect the privacy of one-dimensional attribute stream data of wearable devices can improve

the usability of data by at least 41.49% compared to the scheme of Kim et al.

Our proposal is only for one-dimensional attributes, so we will further study the privacy

protection of stream data for multi-dimensional attributes in the future.
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Table 7. MRE under different data sizes.

Data Size Dwork et al. Kim et al. Our solution Decline rate

120K 11.7679 0.1475 0.0863 41.49%

240K 8.3694 0.1408 0.0610 56.68%

360K 6.8099 0.1232 0.0537 56.41%

480K 5.8002 0.1047 0.0434 58.55%

600K 5.1945 0.0759 0.0383 49.54%

https://doi.org/10.1371/journal.pone.0272766.t007

Fig 7. Errors under different data sizes. (a) MRE of three algorithms and (b) RMSE of three algorithms.

https://doi.org/10.1371/journal.pone.0272766.g007

PLOS ONE Local differential privacy protection for wearable device data

PLOS ONE | https://doi.org/10.1371/journal.pone.0272766 August 17, 2022 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0272766.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0272766.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0272766.s003
https://doi.org/10.1371/journal.pone.0272766.t007
https://doi.org/10.1371/journal.pone.0272766.g007
https://doi.org/10.1371/journal.pone.0272766


Author Contributions

Conceptualization: Zhangbing Li, Baichuan Wang, Jinsheng Li, Yi Hua, Shaobo Zhang.

Data curation: Zhangbing Li, Baichuan Wang.

Methodology: Zhangbing Li, Baichuan Wang.

Software: Zhangbing Li, Baichuan Wang.

Supervision: Zhangbing Li, Baichuan Wang, Jinsheng Li, Yi Hua, Shaobo Zhang.

Validation: Zhangbing Li, Baichuan Wang.

Writing – original draft: Zhangbing Li, Baichuan Wang.

Writing – review & editing: Zhangbing Li, Baichuan Wang, Jinsheng Li, Yi Hua, Shaobo

Zhang.

References
1. Liu Q, Li T, Yu Y, Cai Z, Zhou T. Data Security and Privacy Preserving Techniques for Wearable

Devices: A Survey. Journal of Computer Research and Development. 2018; 55(1):16.

2. Papageorgiou A, Strigkos M, Politou E, Alepis E, Solanas A, Patsakis C. Security and Privacy Analysis

of Mobile Health Applications: The Alarming State of Practice. IEEE Access. 2018; 6:9390–9403.

https://doi.org/10.1109/ACCESS.2018.2799522

3. Ye Q, Meng X, Zhu M, Huo Z. Survey on Local Differential Privacy. Journal of Software. 2018; 29(7):25.

4. Erlingsson U, Pihur V, Korolova A. RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal

Response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security. CCS’14. New York, NY, USA: Association for Computing Machinery; 2014. p. 1054–1067.

Available from: https://doi.org/10.1145/2660267.2660348.

5. Bassily R, Smith A. Local, Private, Efficient Protocols for Succinct Histograms. In: Proceedings of the

Forty-Seventh Annual ACM Symposium on Theory of Computing. STOC’15. New York, NY, USA:

Association for Computing Machinery; 2015. p. 127–135. Available from: https://doi.org/10.1145/

2746539.2746632.

6. Duchi JC, Jordan MI, Wainwright MJ. Local Privacy and Statistical Minimax Rates. In: 2013 IEEE 54th

Annual Symposium on Foundations of Computer Science; 2013. p. 429–438.

7. Duchi JC, Jordan MI, Wainwright MJ. Privacy Aware Learning. J ACM. 2014; 61(6). Available from:

https://doi.org/10.1145/2666468.

8. Nguyên TT, Xiao X, Yang Y, Hui SC, Shin H, Shin J. Collecting and analyzing data from smart device

users with local differential privacy. arXiv preprint arXiv:160605053. 2016.

9. Kellaris G, Papadopoulos S, Xiao X, Papadias D. Differentially Private Event Sequences over Infinite

Streams. Proc VLDB Endow. 2014; 7(12):1155–1166. Available from: https://doi.org/10.14778/

2732977.2732989.

10. Errounda FZ, Liu Y. Collective location statistics release with local differential privacy. Future Genera-

tion Computer Systems. 2021; 124:174–186. Available from: https://www.sciencedirect.com/science/

article/pii/S0167739X21001709.

11. Fang X, Zeng Q, Yang G. Local Differential Privacy for Data Streams. In: Yu S, Mueller P, Qian J, edi-

tors. Security and Privacy in Digital Economy. Singapore: Springer Singapore; 2020. p. 143–160.

12. Wang Y, Wu X, Hu D. Using Randomized Response for Differential Privacy Preserving Data Collection.

In: EDBT/ICDT Workshops. vol. 1558; 2016. p. 0090–6778.

13. Kim JW, Jang B, Yoo H. Privacy-preserving aggregation of personal health data streams. PLOS ONE.

2018; 13(11):1–15. Available from: https://doi.org/10.1371/journal.pone.0207639. PMID: 30496200

14. Xu G, Dong W, Xing J, Lei W, Liu J, Gong L, et al. Delay-CJ: A novel cryptojacking covert attack method

based on delayed strategy and its detection. Digital Communications and Networks. 2022. Available

from: https://www.sciencedirect.com/science/article/pii/S2352864822000864.

15. Xu G, Bai H, Xing J, Luo T, Xiong NN, Cheng X, et al. SG-PBFT: A secure and highly efficient distributed

blockchain PBFT consensus algorithm for intelligent Internet of vehicles. Journal of Parallel and Distrib-

uted Computing. 2022; 164:1–11. Available from: https://www.sciencedirect.com/science/article/pii/

S0743731522000363.

PLOS ONE Local differential privacy protection for wearable device data

PLOS ONE | https://doi.org/10.1371/journal.pone.0272766 August 17, 2022 20 / 22

https://doi.org/10.1109/ACCESS.2018.2799522
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2746539.2746632
https://doi.org/10.1145/2746539.2746632
https://doi.org/10.1145/2666468
https://doi.org/10.14778/2732977.2732989
https://doi.org/10.14778/2732977.2732989
https://www.sciencedirect.com/science/article/pii/S0167739X21001709
https://www.sciencedirect.com/science/article/pii/S0167739X21001709
https://doi.org/10.1371/journal.pone.0207639
http://www.ncbi.nlm.nih.gov/pubmed/30496200
https://www.sciencedirect.com/science/article/pii/S2352864822000864
https://www.sciencedirect.com/science/article/pii/S0743731522000363
https://www.sciencedirect.com/science/article/pii/S0743731522000363
https://doi.org/10.1371/journal.pone.0272766


16. Liu J, Meng X. Survey on Privacy-Preserving Machine Learning. Journal of Computer Research and

Development. 2020; 057(002):346–362.

17. Wang X, Zhang Z. Data division scheme based on homomorphic encryption in WSNs for health care.

Journal of medical systems. 2015; 39(12):1–7. https://doi.org/10.1007/s10916-015-0340-1 PMID:

26490146

18. Xu Z, Luo M, Kumar N, Vijayakumar P, Li L. Privacy-Protection Scheme Based on Sanitizable Signature

for Smart Mobile Medical Scenarios. Wireless Communications and Mobile Computing. 2020; 2020:1–

10.

19. Kong W, Shen J, Vijayakumar P, Cho Y, Chang V. A practical group blind signature scheme for privacy

protection in smart grid. Journal of Parallel and Distributed Computing. 2020; 136:29–39. Available

from: https://www.sciencedirect.com/science/article/pii/S0743731519301285.

20. Wei F, Vijayakumar P, Kumar N, Zhang R, Cheng Q. Privacy-Preserving Implicit Authentication Proto-

col Using Cosine Similarity for Internet of Things. IEEE Internet of Things Journal. 2021; 8(7):5599–

5606. https://doi.org/10.1109/JIOT.2020.3031486

21. Liu Y, Yu J, Fan J, Vijayakumar P, Chang V. Achieving Privacy-Preserving DSSE for Intelligent IoT

Healthcare System. IEEE Transactions on Industrial Informatics. 2022; 18(3):2010–2020. https://doi.

org/10.1109/TII.2021.3100873

22. Hua J, Zhu H, Wang F, Liu X, Lu R, Li H, et al. CINEMA: Efficient and privacy-preserving online medical

primary diagnosis with skyline query. IEEE Internet of Things Journal. 2018; 6(2):1450–1461. https://

doi.org/10.1109/JIOT.2018.2834156

23. Motiian S, Piccirilli M, Adjeroh DA, Doretto G. Unified deep supervised domain adaptation and generali-

zation. In: Proceedings of the IEEE international conference on computer vision; 2017. p. 5715–5725.

24. Liu F, Li T. A Clustering K -Anonymity Privacy-Preserving Method for Wearable IoT Devices. Security

and Communication Networks. 2018; 2018:1–8. https://doi.org/10.1155/2018/4945152

25. Zhou T, Shen J, He D, Vijayakumar P, Kumar N. Human-in-the-Loop-Aided Privacy-Preserving

Scheme for Smart Healthcare. IEEE Transactions on Emerging Topics in Computational Intelligence.

2022; 6(1):6–15. https://doi.org/10.1109/TETCI.2020.2993841

26. Xiong X, Liu S, Li D, Cai Z, Niu X. A comprehensive survey on local differential privacy. Security and

Communication Networks. 2020;2020.

27. Yang M, Guo J, Bai L. A Data Privacy-preserving Method for Students’ Physical Health Monitoring by

Using Smart Wearable Devices. In: 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Com-

puting, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing,

Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech); 2020.

p. 29–34.
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