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Abstract

Improving the imaging speed of multi-parametric photoacoustic microscopy (PAM) is essential 

to leveraging its impact in biomedicine. However, to avoid temporal overlap, the A-line rate is 

limited by the acoustic speed in biological tissues to a few MHz. Moreover, to achieve high-speed 

PAM of the oxygen saturation of hemoglobin (sO2), the stimulated Raman scattering effect 

in optical fibers has been widely used to generate 558 nm from a commercial 532 nm laser 

for dual-wavelength excitation. However, the fiber length for effective wavelength conversion is 

typically short, corresponding to a small time delay that leads to a significant overlap of the 

A-lines acquired at the two wavelengths. Increasing the fiber length extends the time interval, but 

limits the pulse energy at 558 nm. In this Letter, we report a conditional generative adversarial 

network-based approach, which enables temporal unmixing of photoacoustic A-line signals with 

an interval as short as ~38 ns, breaking the physical limit on the A-line rate. Moreover, this deep 

learning approach allows the use of multi-spectral laser pulses for PAM excitation, addressing 

the insufficient energy of monochromatic laser pulses. This technique lays the foundation for 

ultra-high-speed multi-parametric PAM.

Capable of quantifying blood oxygenation and hemodynamics at the microscopic level 

via spectroscopic, statistical, and correlation analyses [1], multi-parametric photoacoustic 

microscopy (PAM) has found broad biomedical applications [2–4]. To further leverage 

its impact, recent advances have improved the A-line rate of multi-parametric PAM to 

more than 1 MHz, enabling real-time functional monitoring [5]. Although exciting, the 

ever-increasing A-line rate is approaching the physical limit imposed by the acoustic speed 

in biological tissues. Indeed, it takes ~1/3 μs for the light-generated ultrasonic wave to travel 

through 500 μm of tissue and reach the acoustic detector. To avoid temporal overlap between 

sequentially acquired A-lines, the maximum A-line rate is limited to ~3 MHz.

Moreover, to distinguish oxy- and deoxy-hemoglobin (i.e., HbO2 and HbR, respectively) 

for the quantification of blood oxygenation (i.e., sO2), a dual-wavelength excitation at 

532 nm and 558 nm is typically employed in multi-parametric PAM [6–8]. Because high-

repetition-rate dual-wavelength nanosecond-pulsed lasers are not commercially available for 

this application, the stimulated Raman scattering (SRS) effect in optical fibers has been used 
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by us and others to partially shift the 532-nm output of commercial lasers to 558 nm for the 

dual-wavelength PAM excitation [7,8]. Although promising, the fiber length for the effective 

SRS-based wavelength conversion is typically ~10 m, which corresponds to a time delay of 

~50 ns. Since the delay is much smaller than the typical length of an A-line signal (~1/3 

μs for 500-μm depth recording), the A-lines successively acquired at the two wavelengths 

overlap with each other, which compromises the accuracy of the sO2 measurement. Multiple 

approaches have been developed to address this issue. For example, two lasers operating at 

different wavelengths can be triggered sequentially to produce the dual-wavelength pulses 

with a sufficient time interval [6], or an electro-optic modulator can be used to switch the 

laser pulses between two different optical paths (with or without SRS) for pulse-by-pulse 

wavelength conversion [7]. Alternatively, a long fiber can be used to significantly delay the 

laser pulses [9]. However, these methods either result in limited pulse energy [9] or require 

additional equipment [6,7]. Moreover, they cannot break the physical limit imposed by the 

acoustic speed in tissue. Recently, a frequency-domain approach was developed to digitally 

unmix temporally overlapping photoacoustic signals [10]. However, the time expense of 

this method is high (i.e., several hours), and the recovered microvascular sO2 is inaccurate. 

Besides, this approach assumes that the A-line signals acquired at different wavelengths 

have identical waveforms, which, however, is not necessarily true.

The past decade sees a widespread adoption of deep learning [11–13]. Although 

convolutional neural networks are widely used in deep learning, human interventions are 

often needed to design effective losses. In contrast, the conditional generative adversarial 

network (cGAN) automatically learns a loss that adapts to the data. Thus, it can be applied 

to a variety of tasks that would otherwise require the design of different loss functions, 

and is well suited for image-to-image translation tasks [14]. Offering these advantages, 

the cGAN has been applied to biomedical image analysis [15–17]. Although the training 

process is data-hungry and time-consuming, it takes only a single effort (i.e., once the cGAN 

is established, no re-training is needed and the equipment used to generate the training 

data can be repurposed). In this Letter, we adopt a cGAN model [14] to reliably unmix 

photoacoustic signals with a time delay as short as ~38 ns without any prior assumption on 

the signal waveform. In addition, to demonstrate the utility of this cGAN model in situations 

where the energy of monochromatic pulses produced by the SRS process is limited [9], we 

intentionally use multi-spectral pulses for PAM excitation and apply the model for spectral 

unmixing. Our results show that this cGAN model can quantitatively recover hemoglobin 

concentration (CHb), sO2, and blood flow with high accuracy in vivo.

As shown in Fig. 1, the optical components in the dashed box generate 532-nm and 558-nm 

nanosecond pulses for conventional PAM imaging. Laser 1 (GLPM-10, IPG Photonics; 

wavelength: 532 nm) operates at a repetition rate of 20 kHz. Individual pulses from this 

laser are switched between two optical paths by an acousto-optic modulator (AOM; AOMO 

3080–122, Crystal Technology). When the AOM is off, the laser light passes through it 

without diffraction (i.e., 0th order) and is coupled into a 4.2-m polarization-maintaining 

single-mode fiber (PM-SMF, HB450-SC, Fibercore) through a fiber coupler (CFC-11X-A, 

Thorlabs). The SRS in the PM-SMF leads to red-shifts of the laser wavelength. Then, a 

bandpass filter (CT560/10bp, Chroma) is used to select out the 558-nm component. When 

the AOM is on, ~60% of the 532-nm light is diffracted (i.e., 1st-order diffraction) into 
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the second optical path, where no wavelength conversion is implemented. Due to the low 

energy, the other ~40% of the diffracted light does not undergo the SRS-based wavelength 

conversion and is rejected by the bandpass filter. Thus, pulse-by-pulse wavelength switching 

is realized by triggering the AOM at 10 kHz. Next, the 532- and 558-nm pulses are 

combined via a dichroic mirror (FF538-FDi01, Semrock) and coupled into a 1-m long 

single-mode optical fiber (SMF, P1–460Y-FC-1, Thorlabs) for conventional PAM imaging, 

which provides the ground truth for deep learning. Note that this part (in the dashed box) 

is no longer needed once the one-time training is completed. The SMF output is then 

collimated by a fiber coupler, magnified by a pair of lenses (L1, AC254–050-A, Thorlabs; 

L2, AC254–300-A, Thorlabs), and focused into the object to be imaged by an objective 

lens (AC254–050-A, Thorlabs), through a correction lens and the central opening of a ring-

shaped ultrasonic transducer (UT; inner diameter: 1.1 mm; outer diameter: 3.0 mm; focal 

length: 4.4 mm; center frequency: 40 MHz; 6-dB bandwidth: 69%). The optically excited 

ultrasonic wave is detected by the UT, amplified by a low-noise amplifier (HD28082, HD 

Communications), and acquired by a high-speed data acquisition board (DAQ, ATS9350, 

AlazarTech) at 500 MS/s. For 2D raster scan, the object is mounted on a two-axis scanner 

with a pair of motorized linear stages (L-509, Physik Instrumente). For acoustic coupling, 

the UT and CL are immersed in the water tank. A thin layer of ultrasound gel (Aquasonic 

CLEAR, Parker Laboratories) is applied between the object and a piece of polyethylene 

membrane at the bottom of the water tank. A field-programmable gate array (PCIe-7842r, 

National Instruments) is programmed to synchronize the lasers, AOM, motorized stages, and 

DAQ during the image acquisition.

In parallel, Laser 2 (GLPM-10-Y13, IPG Photonics; wavelength: 532 nm) operates at 

10 kHz, and the pulses are split by a half-wave plate (HWP, WPH05M-532, Thorlabs) 

combined with a polarizing beamsplitter (PBS, PBS121, Thorlabs). The horizontally 

polarized component passes through the PBS, while the vertically polarized component is 

reflected by the PBS and coupled into a 7.7-m-long PM-SMF. With the short delay (~38 ns) 

induced by the PM-SMF, the A-line signals generated by the 532-nm and the multi-spectral 

pulses are expected to have a significant overlap. The two optical paths are combined by 

a PBS. The combined beam is intensity-modulated by an HWP and a PBS, before being 

merged with the excitation beam of the conventional PAM system and entering the scanning 

head through the SMF. The integration of the two PAM systems (i.e., the new cGAN-based 

system with overlapping A-lines and the conventional system with non-overlapping A-lines) 

allows concurrent acquisition of multi-parametric images over the same region of interest for 

supervised learning.

Besides the A-line overlap, another unique aspect of the present technique is the use 

of multi-spectral rather than monochromatic pulses for PAM excitation. Harnessing all 

wavelength components generated in the SRS process can effectively address the signal-to-

noise ratio (SNR) issue in high-speed PAM where the pulse energy is limited by the fiber 

damage threshold [7] and in cases where the SRS is less efficient due to relatively long laser 

pulse durations [9]. Given that the cGAN model can reliably identify the relationship of 

correlated objects [14], we intentionally challenge the cGAN model with the multi-spectral 

pulse, mimicking situations where the 558-nm component alone cannot provide sufficient 

SNR. Specifically, the energy of the multi-spectral pulse (the 532, 545, and 558-nm 
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components each occupy 13.5%, 21.1%, and 65.4%, respectively) is set to 100 nJ at the 

tissue surface, by adjusting the HWP.

As shown in Fig. 2, the input of the cGAN is the mixed signals generated by the 532-nm 

and the multi-spectral pulses. The x-z projection image and a representative A-line on 

the left show the significant overlap of the two signals. The image data generated by the 

conventional PAM with widely separated 532-nm and 558-nm pulses are used as targets to 

train the cGAN, where the target is the desired output of the cGAN for a given input. The 

cGAN learns to uncover the relationship between the input (i.e., B-scan with mixed A-lines) 

and the target (i.e., B-scan with non-overlapping A-lines or the ground truth). Once the 

training is completed, the cGAN can reliably unmix the input and generate non-overlapping 

A-lines at 532 nm and 558 nm with high accuracy.

The architecture of the cGAN is adopted from the original model [14], and the same set 

of parameters are used for both numerical simulation and in vivo test. Specifically, the 

number of images for training is 15,600. The image sizes of the input and output are set to 

256×256×1 and 256×256×2 pixels, respectively. Both the buffer size and the batch size are 

set to 1. The number of epochs is set to 10. The architecture of upsample and downsample 

layers remains the same as in the original model [14]. The random jitter function is disabled 

to avoid scaling and cropping because each pixel in the image has a fixed step size. For the 

total generator loss, the weight of the mean absolute error between the generated image and 

the target image is set to 2,000.

To determine the minimum delay that is separable practically, we performed a numerical 

simulation by digitally delaying the A-line signals. We used 10,000 non-overlapping A-line 

pairs acquired experimentally by conventional PAM at 532 nm and 558 nm for training and 

100 pairs for testing. A graphics processing unit (GPU; GTX 1080 Ti) was used for this 

purpose. As illustrated in Fig. 3(a), the A-line acquired at 558 nm (the yellow waveform) 

was digitally shifted in the time domain to create a specific delay from the A-line acquired 

at 532 nm (the green waveform). Then, the two A-lines were summed up to generate a 

mixed A-line, as shown in Fig. 3(b). Although the two peaks are still distinguishable after 

the mixing, the peak of the 558-nm A-line is partially overlapped with the tail of the 532-nm 

A-line. As a result, the photoacoustic amplitude is changed due to the mixing, which makes 

the quantification of sO2 inaccurate. Indeed, the peak-to-peak amplitude value of the second 

signal in the mixed A-line (Fig. 3(b)) is ~27% larger than that in the 558-nm A-line (the 

yellow waveform in Fig. 3(a)). The cGAN uses the mixed signals as the input and the 

original signals as the target. The error between the output (i.e., the learning outcome) and 

the target is computed to update learnable parameters by the back-propagation method [14]. 

As shown in Fig. 3(c), after 10 epochs of training, the unmixed outputs of the cGAN model 

well agrees with the original A-lines (i.e., the ground truth), with an amplitude error of 

~0.1%. Since the goal of the cGAN-based deep learning is to enable sO2 measurement with 

high accuracy, we used unmixed 532-nm and 558-nm signals to derive the sO2 values and 

compared them against the ground truth. As shown in Fig. 3(d), the cGAN was separately 

trained for different delays (20–50 ns), and the sO2 values derived by the cGAN-unmixed 

A-lines (100 pairs) were compared to those derived by the ground truth. Note that, as shown 

in Fig. 3(e), the B-scans consisting of 256 original, mixed, and cGAN-unmixed A-lines 
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served as the target, input, and output of the cGAN, respectively. Our result suggests that 

the cGAN model can unmix the overlapping A-line signals with a small error (~5%) when 

the time delay is >30 ns. With this guidance, the 7.7-m PM-SMF was selected to introduce 

an ~38 ns time delay for our experimental demonstration. Shorter time delays are possible, 

providing more training data and a deeper network.

In the experimental setting in vivo, the inputs to the cGAN model were photoacoustic 

signals successively acquired with the 532-nm and multi-spectral pulses, and the outputs 

were unmixed 532-nm and 558-nm signals. The pixel number of each A-line was set 

to 256, and each B-scan contained 9,984 A-lines. Then, each B-scan was divided into 

256×256 subsets to be used as the input of the cGAN. Considering that the B-scan 

contained continuous vascular structures, the division was performed sequentially rather 

than randomly. Since the spatial interval between adjacent A-lines was ~0.2 μm, which 

was ~15 times finer than the optical diffraction limit, we selected a two-dimensional 

convolutional layer in the cGAN architecture [14] and set the kernel size of each layer 

to 4×4, which not only resulted in negligible loss of spatial resolution but also took adjacent 

A-lines into consideration to improve the accuracy. To demonstrate that our technique is 

generally and reliably applicable across different tissue sites and animals, two CD-1 mice 

(male, 8 weeks old, Charles River Laboratories) were used for this study. We first acquired 

the data in the ear of the first mouse in vivo to train the model, and then applied the trained 

model to the data acquired in the brain of the second mouse brain for testing. Both datasets 

were acquired over a 2×2 mm2 area. The step size along y direction is set to 5 μm. Under 

general anesthesia (2% isoflurane for induction and 1.5% for maintenance), a 3×3 mm2 

open-skull window was created, followed by the application of ultrasound gel for acoustic 

coupling. The body temperature of the animal was maintained at 37°C by using a heating 

pad (DCT-15, Kent Scientific). All procedures were carried out in conformity with animal 

protocols approved by the Institutional Animal Care and Use Committee of Washington 

University in St. Louis.

In Fig. 4, the first column on the left shows the CHb, sO2, and flow measurements acquired 

by the conventional PAM, which serve as the ground truth, and the second column shows the 

corresponding measurements acquired by the cGAN-based unmixing technique. Structural 

similarity index measure (SSIM) analyses of the two sets of multi-parametric measurements 

were performed to evaluate the accuracy of the cGAN-based unmixing technique. The 

SSIM value was calculated by using a built-in MATLAB function (ssim). To assess the 

micro-regional similarity between the two images, the SSIM value of individual image 

pixel was calculated within the surrounding micro-region containing 2 pixels by 50 pixels, 

which corresponds to 10 μm × 10 μm. In the pseudo-color SSIM maps, the RGB color 

and brightness of each pixel represent the SSIM value and the photoacoustic amplitude of 

the vessel signal, respectively. The close-to-one SSIM values throughout the field of view 

indicate that the multi-parametric measurements based on the temporal unmixing are nearly 

identical to the ground truth over the entire vascular network including the microvasculature. 

To further investigate the accuracy of the unmixing results, 15 vessels were manually 

segmented for quantitative analysis. The vessel segment indexes are labelled in Fig. 4(b). 

The average values and standard deviations of CHb, sO2, and flow within the 15 vessels 

are shown in on the right of Fig. 4. Paired t-tests using the average values of CHb, sO2, 

Zhou et al. Page 5

Opt Lett. Author manuscript; available in PMC 2022 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and blood flow yielded p-values of 0.42, 0.41, and 0.21, respectively—indicating that the 

unmixed results are not significantly different from the ground truth. It is worth noting that 

it only took the cGAN ~20 minutes to process the entire multi-parametric dataset, which can 

be further accelerated by optimizing the cGAN architecture and employing a faster GPU.

In conclusion, we have adopted a cGAN model to temporally and spectrally unmix 

photoacoustic signals for multi-parametric PAM measurements. This technique breaks the 

physical limit on the A-line rate, which is imposed by the acoustic speed in tissues. Also, 

it enables the use of multi-spectral laser pulses for PAM excitation, thereby harnessing 

all wavelength components generated in the SRS process to address the SNR issue 

associated with insufficient energy of monochromatic pulses. The cGAN model has 

moderate requirement on training (e.g., a single dataset with a field of view of 2×2 mm2) 

and is generally and reliably applicable across different tissue sites and animals (e.g., the 

model trained with ear data in one animal can be directly applied to the brain data in a 

different animal). Our follow-up studies will be focused on further shorten the time delay 

between individual pulses, as well as the application of this technique to increase the A-line 

rate to multiple MHz for ultra-high-speed multi-parametric PAM.
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Fig. 1. 
Schematic of the experimental setup. The optical components in the dashed box capture 

data for training the cGAN. AOM, acousto-optic modulator; FC, fiber coupler; PM-SMF, 

polarization-maintaining single mode optical fiber; BPF, bandpass filter; NDF, neutral 

density filter; DM, dichroic mirror; HWP, half-wave plate; PBS, polarizing beamsplitter; 

OL, objective lens; CL, correction lens; UT, ultrasonic transducer; WT, water tank.
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Fig. 2. 
Schematic of the cGAN. The grayscale images are x-z projections of the three-dimensional 

dataset. A representative A-line, along the red dashed line, is shown above each of the x-z 

projection images. Scale bar: 300 μm.
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Fig. 3. 
(a) 532-nm excited A-line (green) and digitally delayed 558-nm excited A-line (yellow). 

a.u., arbitrary units. (b) Digital sum of the two A-lines in (a). (c) Non-overlapping A-lines 

(green: 532 nm and yellow: 558 nm) generated by the cGAN. (d) Percentage error of 

sO2 values as a function of time delay. The error bars represent standard deviations. (e) 

Representative B-scans as the target, input, and output of the cGAN, consisting of 256 

original, mixed, and unmixed A-lines, respectively.
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Fig. 4. 
Validation of the cGAN model on a mouse brain in vivo. From left to right, (a) shows the 

original and the unmixed CHb, the SSIM of the two CHb, and the averaged CHb values in 

15 vessel segments, where a paired t-test gives p = 0.42. (b) and (c) show values of sO2 (p 

= 0.41) and flow (p = 0.21), respectively. The vessel segment index is labelled in Fig. 4(b). 

Scale bar: 500 μm.
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