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Abstract

Artificial intelligence (AI) has great potential to transform the clinical workflow of radiotherapy. 

Since the introduction of deep neural networks, many AI-based methods have been proposed to 

address challenges in different aspects of radiotherapy. Commercial vendors have started to release 

AI-based tools that can be readily integrated to the established clinical workflow. To show the 

recent progress in AI-aided radiotherapy, we have reviewed AI-based studies in five major aspects 

of radiotherapy including image reconstruction, image registration, image segmentation, image 

synthesis, and automatic treatment planning. In each section, we summarized and categorized 

the recently published methods, followed by a discussion of the challenges, concerns, and 

future development. Given the rapid development of AI-aided radiotherapy, the efficiency and 

effectiveness of radiotherapy in the future could be substantially improved through intelligent 

automation of various aspects of radiotherapy.
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I. Introduction

ARTIFICIAL intelligence (AI) is a data-driven agent that is designed to imitate human 

intelligence. The concept of AI is believed to be originated from the idea of robots, 

which can help human perform laborious and time-consuming tasks. In recent years, the 

advancements of both computer hardware and software have enabled the development of 

more and more sophisticated AI agents that can excel certain complex tasks without human 

input. Meanwhile, the growth and sharing of data has powered the continuous evolvement of 

AI by machine learning (ML) and deep learning (DL).

ML, a subset of AI, enables machines to achieve artificial intelligence through algorithms 

and statistical techniques trained with data where the training process informs decisions 

made by the machine learning framework, thus improving the end result as experience is 

gained[14]. Supervised ML methods for the automatic segmentation of images involves 

training and tuning a predictive model, often integrating prior knowledge about an image via 

training samples (i.e., other similarly annotated images to inform the current segmentation 

task). ML employs statistical tools to explore and analyze previously labeled data with 

image representations being built from pre-specified filters tuned to a specific segmentation 

task. Although ML techniques are more efficient with image samples and have a less 

complicated structure, they are often not as accurate when compared to DL techniques [23]. 

DL is a subset of ML that was originally designed to mimic the learning style of the human 

brain using neurons. Unlike ML where the “useful” features for the segmentation process 

must be decided by the user, with DL, the “useful” features are decided by the network 

without human intervention.

Radiation oncology is a type of cancer treatment that requires multidisciplinary expertise 

including medicine, biology, physics, and engineering. The workflow of typical radiotherapy 
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consists of medical imaging, diagnosis, prescription, CT simulation, target registration/

contouring, treatment planning, treatment quality assurance and treatment delivery. Owing 

to the technological advances in the past few decades, the workflow of radiotherapy has 

become increasingly complex, resulting in heavy reliance on human-machine interactions. 

Each step in the clinical workflow is highly specialized and standardized with its own 

technical challenges. Meanwhile, the requirement of manual input from a diverse team 

of healthcare professionals including a radiation oncologist, medical physicist, medical 

dosimetrist, and radiation therapist has resulted in a sub-optimal treatment process that 

prevents patients’ wider access to the scarce treatment infrastructures. The wide adoption of 

image guided radiotherapy has created a massive amount of imaging data that needs to be 

analyzed in a short period of time. However, humans are limited in reviewing and analyzing 

large amounts of data due to time constraints. Machines, on the other hand, can be trained to 

share many repetitive workloads with humans and therefore boosting the capacity of quality 

healthcare. Since the introduction of deep neural networks, many AI-based methods have 

been proposed to address challenges in different aspects of radiotherapy. Given the rapid 

development of AI-aided radiotherapy, the efficiency and effectiveness of radiotherapy in the 

future could be substantially improved through intelligent automation in various aspects of 

radiotherapy.

Several articles have been published regarding artificial intelligence in radiation 

oncology[30-32]. Huynh et al. provided a high level general description of AI methods, 

reviewed its impact on each step of the radiation therapy workflow and discussed how AI 

might change the roles of radiotherapy medical professionals[32]. Siddique et al. provided 

a review of AI in radiotherapy, including diagnostic processes, medical imaging, treatment 

planning, patient simulation, and quality assurance[31]. Vandewinckele et al. published an 

overview of AI based applications in radiotherapy, focusing on the implementation and 

quality assurance of AI models[30]. In this study, to show the recent progress in AI-aided 

radiotherapy, we have reviewed AI-based studies in five major aspects of radiotherapy 

including image reconstruction, image registration, image segmentation, image synthesis, 

and automatic treatment planning. In each section, we summarized and categorized the 

recently published methods, followed by a discussion of the challenges, concerns and future 

development. Specifically,H. Zhang contributed to the image reconstruction section; Y. Fu, 

T. Liu and X. Yang contributed to the image registration section; E. D. Morris and C. K. 

Glide-Hurst contributed to the image segmentation section; S. Pai, A. Traverso, L. Wee and 

I. Hadzic contributed to the image synthesis section; P. Lønne and C. Shen contributed to the 

automatic treatment planning section.

II. Image Reconstruction

Tomographic imaging plays an important role in external-beam radiation therapy for 

simulation and treatment planning, pre-treatment and intrafractional image guidance, as well 

as follow-up care. Before treatment, the patient usually undergoes a computed tomography 

(CT) simulation to acquire images of the area of body to be treated with radiation. The 

acquired CT images are used to delineate the tumors and surrounding critical structures, 

and then to design an optimal treatment plan for the patient. For tumors around the 

diaphragm, such as those in the liver and lower lung lobe, 4D CT scans may also be 
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performed to capture the motion of tumors in respiration. Due to the advantage of superior 

soft tissue contrast, magnetic resonance imaging (MRI) scans are also prescribed for some 

patients with brain tumors, paraspinal tumors, head and neck cancer, prostate cancer, and 

extremity sarcoma. The MRI scans are fused to simulation CT images to facilitate tumor 

delineation and organs at risk (OAR) contouring, or in MRI-only simulation to synthesize 

CT images for treatment planning and dose calculation[43]. Different from anatomical 

imaging such as CT and MRI, positron emission tomography (PET) provides information on 

tumor metabolism and is used for visualization of tumor extent and delineation of volume 

in need of dose-escalation, e.g., in head and neck cancers[45]. In addition, cone-beam 

CT (CBCT) is equipped on most C-arm linear accelerators (LINACs) and widely used 

in daily procedures for verifying the position of the patient and treatment target. Gated 

CBCT or 4D-CBCT is sometimes utilized for positioning patient with moving tumors, 

such as in lung stereotactic ablative radiotherapy (SABR). Furthermore, CT, megavoltage 

CT (MV-CT), MV-CBCT are also integrated in some radiotherapy machines for image 

guidance. MRI-LINAC systems have also been developed in the past decade[48], in which 

MRI helps to improve patient setup and target localization, and enables interfraction and 

intrafraction radiotherapy adaptation[50]. Very recently, PET-guided radiation therapy is also 

ready for clinical adoption to treat advanced-stage and metastatic cancers[53]. Finally, after 

completing their radiation treatment course, patients may have another scan (CT, MRI, or 

PET) before a follow-up appointment with radiation oncologist.

In the clinic, tomographic images are displayed on the console soon after a patient scan. 

Thus, making it easy to be unaware of the crucial reconstruction step which is performed in 

the background by dedicated reconstruction computers. In fact, reconstruction is at the heart 

of tomographic imaging modalities, because many clinical tasks in the radiation therapy 

workflow are highly dependent on the reconstruction quality, including target delineation, 

OARs segmentation, image registration or fusion, image synthesis, treatment planning, dose 

calculation, patient positioning, image guidance, and radiation therapy response assessment. 

Poor reconstruction quality would inevitably jeopardize the accuracy of the clinical tasks 

mentioned above and eventually the outcome for cancer patients. Thus, tomographic image 

reconstruction has always been an active area of research, with the aim of reducing radiation 

exposure and/or scan time, suppressing noise and artifacts, and improving image quality.

After data acquisition, the detector measurements are usually preprocessed/calibrated by 

vendors for various degrading factors. Then, the sensor domain measurements y ∈ ℝI × 1 and 

the desired image x ∈ ℝJ × 1 can be expressed as[55]:

y = Ax ⊕ ε (1)

where A ∈ ℝI × J is the system matrix for CT and PET and encoding matrix for MRI, I is 

the number of sensor measurements, J is the number of image voxels, ε is the noise intrinsic 

to the data acquisition, and the operator ⊕ denotes the interaction between signal and noise. 

The operator ⊕ becomes + when additive Gaussian noise is assumed for CT and MRI 

measurements, and becomes a nonlinear operator when Poisson noise is assumed for PET 

measurements. Essentially, image reconstruction is an inverse problem where we reconstruct 

the unknow image x from the measurements y.
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Various image reconstruction methods have been proposed in the past few decades. 

Analytical reconstruction methods, such as filtered back-projection (FBP) for CT, 

Feldkamp-Davis-Kress (FDK) for CBCT, and inverse fast Fourier transform for MRI, 

are based on the mathematical inverse of the forward model. Because of their high 

efficiency and stability, they are still employed by most commercial scanners. However, 

the reconstructed images may suffer from excessive noise and streak artifacts when the 

sensor measurements are noisy and undersampled. Iterative reconstruction methods[56-61], 

including algebraic reconstruction technique, statistical image reconstruction, compressed 

sensing, and prior-image-based reconstruction, are based on sophisticated system modeling 

of data acquisition and prior knowledge. They have shown advantages of reducing radiation 

dose or data acquisition time and improving image quality over analytical methods. 

One example of these iterative methods is the penalized weighted least square (PWLS) 

reconstruction which is widely used for CT/CBCT, MRI and PET:

x = argmin ‖y − Ax‖W
2 + β R(x) (2)

where W is a weighting matrix accounting for reliability of each sensor measurement, 

R(x) is a regularization term incorporating prior knowledge or expectations of image 

characteristics, and β > 0 is a scalar control parameter to balance data fidelity and 

regularization. Commonly used regularizations are based on the Markov random field 

(MRF) or total variation (TV), while a comprehensive review of the regularization strategies 

can be found in[58].

Inspired by the successes of AI in many other fields, researchers have investigated to 

leverage AI, especially DL for tomographic image reconstruction[62]. Numerous papers 

have been published on this topic, and image reconstruction has become a new frontier of 

DL[63]. It is noted that many DL-based reconstruction methods can be shared by CT, MRI 

and PET, thus we focus on reviewing them for CT and CBCT since they are most widely 

used in radiation therapy. Interested readers can refer to these review articles [64-68] on DL 

for PET and MRI reconstruction.

Patients for radiation therapy receive multiple CT and CBCT scans, and the accumulated 

imaging dose could be significant. Considering the harmful effects of X-ray radiation 

including secondary malignancies, low-dose imaging with satisfactory image quality for 

clinical tasks are desirable. Aside from hardware improvements, two other strategies have 

been investigated to achieve low-dose imaging for CT and CBCT, reducing the X-ray 

tube current and exposure time (low-flux acquisition) or the angular sampling per rotation 

(sparse-view acquisition)[58]. However, these strategies would increase noise and streak 

artifacts in the FBP or FDK reconstructed images. 4D-CBCT has the potential to reduce 

motion artifacts and improve patient setup and treatment accuracy, but the scan takes 2-4 

minutes to acquire enough projections at each respiratory phase to achieve acceptable image 

quality. The long scan time leads to increased patient discomfort, intraimaging patient 

motion, and additional imaging radiation dose. An accelerated scan is desirable in the clinic 

but the FDK reconstructed images from the sparse-view acquisition are also degraded with 

severe streak artifacts[69]. While iterative reconstruction can tackle these challenges to some 

extent, the reconstruction time might be too long. Therefore, many DL-based reconstruction 
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methods have been developed to further improve image quality and/or substantially reduce 

reconstruction time, which can be grouped into the following five categories.

A. Image Domain Methods

One simple approach to improve low-dose CT image quality is post-reconstruction 

denoising, and researchers have applied many different filters to the FBP reconstructed 

low-dose CT images to suppress noise and streak artifacts. Similarly, the FBP reconstructed 

low-dose images can be fed into a DL neural network to learn a mapping between the 

low-dose image and its high-quality counterpart. For example, Kang et al. [70] applied 

a deep convolutional neural network (CNN) to the wavelet transform coefficients of low-

dose CT images, which can effectively suppress noise in the wavelet domain. Chen et 
al. [71] proposed using overlapped patches from low-dose and corresponding high-quality 

CT images to boost the number of samples, and then employed a residual encoder–

decoder CNN (RED-CNN) to improve low-dose image quality. Yang et al. [72] explored 

a generative adversarial network (GAN) based denoising method with Wasserstein distance 

and perceptual similarity to improve the GAN performance. Wang et al. [73] argues that 

these image-to-image mapping approaches have some limitations for ultralow-dose CT 

images. They proposed an iterative residual-artifact learning CNN (called IRLnet) which 

estimates the high-frequency details within the noise and then removes them iteratively 

while the residual low-frequency details can be processed through the conventional network.

The streak artifacts in FBP reconstructed images from sparse-view acquisition are difficult to 

remove by conventional CNNs. Han and Ye [74] found that the existing U-Net architecture 

resulted in image blurring and false features for sparse-view CT reconstruction, and 

proposed a dual frame U-Net and tight frame U-Net to overcome limitations. Zhang et 
al. [75] investigated a method based on a combination of DenseNet and deconvolution for 

sparse-view CT, which employs the advantages of both and greatly increases the depth 

of the network to improve image quality. Alternatively, Jiang et al. [76] used TV-based 

iterative reconstruction to obtain sparse-view CBCT images (which are superior to FDK 

reconstructed images), and then fed them into a symmetric residual CNN to learn the 

mapping between TV-reconstructed images and ground truth. Then, for new sparse-view 

CBCT acquisitions, one can use the network to boost TV-reconstructed images.

It is noted above that DL methods are based on a supervised learning framework, 

which requires both the low-dose CT images and corresponding high-quality counterparts. 

However, these image pairs may not be available in many clinical scenarios. Wolterink et al. 
[77] explored a GAN consists of a generator CNN and a discriminator CNN to reduce image 

noise, which showed a generator CNN trained with only adversarial feedback can learn 

the appearance of high-quality images. Li et al. [78] investigated a cycle-consistent GAN 

(CycleGAN) based method which does not require low-dose and reference full-dose images 

from the same patient. In the near future, more unsupervised learning approaches which 

require no reference ground truth, or semi-supervised learning requiring limited reference 

data, may be explored for low-dose CT and CBCT.
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B. Sensor Domain Methods

It is advantageous to remove noise in the CT sinogram or projection data to prevent 

its propagation into the reconstruction process, but the edges in sensor domain are 

usually not well defined as those in the image domain, resulting in edge blurring in 

the final reconstructed images[79]. Thus, DL-based denoising methods are rarely applied 

to the sensor domain directly. Instead, efforts [80-82] were dedicated to sparse-view CT 

reconstruction, which utilize DL to interpolate or synthesize unmeasured projection views. 

Then, the FBP method is used to reconstruct images with substantially reduced streaking 

artifacts. Additionally, Beaudry et al. [83] proposed a DL method to reconstruct high-quality 

4D-CBCT images from sparse-view acquisitions. They estimated projection data for each 

respiratory bin by taking projections from adjacent bins and linear interpolation, and then 

trained a CNN model to predict full projection data which are reconstructed with the FDK 

method.

C. DL for FBP

DL methods can also be combined with the FBP reconstruction. In 2016, Wurfl et al. 
[84] demonstrated that FBP reconstruction can be mapped onto a deep neural network 

architecture, in which the projection filtering is reformed as a convolution layer and 

the back-projection is formed with a fully connected layer. They showed the advantage 

of learning projection-domain weights for the limited angle CT reconstruction problem. 

He et al. [85] further proposed an inverse Radon transform approximation framework 

which resembles the FBP reconstruction steps. They constructed a neural network with 

three dedicated components (a fully connected filtering layer, a sinusoidal back-projection 

layer, and a residual CNN) corresponding to projection filtering, back-projection, and 

postprocessing. They demonstrated that the approach outperforms TV-based iterative 

reconstruction for low-flux and sparse-view CT. Li et al. [86] also proposed an iCT-Net 

which consists of four major cascaded components that are also analogous to the FBP 

reconstruction. This approach can achieve accurate reconstructions under various data 

acquisition conditions such as sparse-view and truncated data.

D. DL for Iterative Reconstruction

DL is also applied to iterative reconstruction methods for different purposes including 

regularization design, parameter tuning, optimization algorithms, and reconstruction results 

improvement. Wu et al. [87] proposed regularizations trained by artificial neural network for 

PWLS reconstruction of low-dose CT, which can learn more complex image features and 

thus outperform the TV and dictionary learning regularizations. Chen et al. [88] learned a 

CNN-based regularization for PWLS reconstruction and found it can preserve both edges 

and regions with smooth intensity transition without staircase artifacts. Gao et al. [89] 

constructed a CNN texture prior from previous full-dose scan for PWLS reconstruction of 

current ultralow-dose CT images. One drawback of the conventional model based iterative 

reconstruction is manual tuning of the hyperparameter which controls tradeoff between 

data fidelity and regularization. Shen et al. [90] used deep reinforcement learning to 

train a system which can automatically adjust the parameter, and demonstrated that the 

parameter-tuning policy network is equivalent or superior to manual tuning. Chen et al. 
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[91] proposed a Learned Experts’ Assessment-based Reconstruction Network (LEARN) 

for sparse-data CT that learns both regularization and parameters in the model. He et al. 
[92] also proposed a DL-based strategy for PWLS to simultaneously address regularization 

design and parameter selection in one optimization framework. DL can also be used to 

modify optimization algorithms for iterative reconstruction. Kelly et al. [93] incorporated 

DL within an iterative reconstruction framework, which utilizes a CNN as a quasi-projection 

operator within a least-squares minimization procedure for limited-view CT reconstruction. 

Gupta et al. [94] presented an iterative reconstruction method that replaces the projector 

in a projected gradient descent algorithm with a CNN, which is guaranteed to converge 

and under certain conditions converging to a local minimum for the non-convex inverse 

problem. They also showed improved reconstruction over TV or dictionary learning based 

reconstruction for sparse-view CT. Adler and Oktem [95] proposed learned Primal-Dual 

algorithm for CT iterative reconstruction which replaces the proximal operators with CNNs. 

They demonstrated this DL-based iterative reconstruction is superior to TV regularized 

reconstruction and DL-based denoising methods.

E. Domain Transformation Methods

Researchers have also leveraged DL to map sensor domain measurements to image domain 

reconstruction directly. For example, Zhu et al. [96] proposed an automated transform by 

manifold approximation (AUTOMAP) approach to achieve end-to-end image reconstruction. 

But the approach requires high memory for storing the fully connected layer and thus, 

limits this approach to small size image reconstruction. Fu and De Man [97] recursively 

decomposed the reconstruction problem into hierarchical sub problems and each can be 

solved by a neural network. Shen et al. [98] proposed a deep-learning model trained to map 

a single 2D projection to 3D CBCT images by using patient-specific prior information. They 

introduced a feature-space transformation between a single projection and 3D volumetric 

images within a representation- generation framework. Inspired by this work, Lei et al. [99] 

investigated a GAN-based approach with perceptual supervision to generate instantaneous 

volumetric images from a single 2D projection for real time imaging in lung SABR.

It should be noted that many reconstruction methods mentioned above are generic and 

may be used for both diagnostic imaging and image-guided radiotherapy. We are expecting 

to see more evaluations and validations of these techniques on specific applications in 

radiotherapy. By now, there are still many concerns on stability and reliability of the DL-

based reconstruction methods because of their black-box nature. More research efforts are 

needed to interpret these DL models and improve robustness and accuracy of DL-based 

reconstruction.

Although with great potential, we have not seen reports of using DL-based reconstruction 

algorithms for radiotherapy applications in clinic. The DL-based reconstruction algorithms 

from GE Healthcare and Canon Medical Systems have received FDA 510(k) clearance. 

Solomon et al. [100] studied the noise and spatial resolution properties of DL-based 

reconstruction from GE, and found it can substantially reduce noise compared to FBP 

while maintaining similar noise texture and high-contrast spatial resolution but also with 

degraded low-contrast spatial resolution. since the quality of reconstructed image is so 
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crucial in radiotherapy, more clinical assessments and comparisons are needed before we 

can confidently adopt them in clinic.

III. Image Registration

Image registration is an important component for many medical applications such as 

motion tracking [101], segmentation [101-103], image guided radiotherapy [104, 105] and 

so on. Image registration is to seek an optimal spatial transformation which aligns the 

anatomical structures of two or more images based on its appearances. Traditional image 

registration methods include optical flow [106], demons [107], ANTs [108], HAMMER 

[109], ELASTIX [110] and so on. Recently, many DL (DL)-based methods have been 

published and achieved state-of-art performances in many applications[111]. cNN uses 

multiple learnable convolutional operation to extract features from the images. Many types 

of architectures exist for CNN, including the AlexNet, U-Net, ResNet, DenseNet and so on. 

Due to its excellent feature extraction ability, cNN has become one of the most successful 

models in DL-based image processing, such as image segmentation and registration. Early 

works that utilized CNN for image registration attempted to train a network to predict the 

multi-modal deep similarity metric to replace the traditional image similarity metrics such 

as mutual information in the iterative registration framework [112, 113]. It is important 

to ensure the smoothness of the first order derivative of the learnt deep similarity metrics 

in order to fit them into traditional iterative registration frameworks. The gradient of the 

deep similarity metric with respect to the transformation can be calculated using the chain 

rule. The major drawback of this method is that it inherits the iterative nature of the 

traditional registration frameworks. To enable fast registration, many CNN-based image 

registration methods have been proposed to directly infer the final DVF in a single/few 

forward predictions. In this section, we focus on this type of registration method since there 

is a clear trend towards direct DVF inference for DL-based fast image registration.

According to the network training strategy, this type of CNN-based image registration 

method can be grouped into two broad categories which are supervised DVF prediction and 

unsupervised DVF prediction, as shown in Fig. 3. supervised DVF prediction refers to DL 

models that are trained with known ground truth transformation between the moving and 

the fixed images. on the contrary, unsupervised DVF prediction does not need the ground 

truth transformation for network training. For supervised DVF prediction, the ground truth 

DVF can be generated artificially using mathematical models or by traditional registration 

algorithms. The DVF error between the predicted and ground truth DVFs can be minimized 

to train the network. For unsupervised DVF prediction, ground truth DVF is not needed, 

however, robust image similarity metrics are necessary to train the network to maximize 

the image similarity between the deformed images and the fixed images. Over the last 

several years, there has been an increasing number of publications on CNN-based direct 

DVF inference methods.

To investigate the trend of the number of publications that used supervised and unsupervised 

learning methods for image registration, we have collected 100+ publications from various 

databases, including Google Scholar, PubMed, Web of Science, Semantic Scholar and so 

on. Keywords including but not limited to machine learning, deep learning, learning-based, 
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convolutional neural network, image registration, image fusion, image alignment were used. 

Fig. 4 shows the number of publications from the year of 2017 through November of 2020. 

In 2017 and 2018, the supervised methods are clearly more prevalent. From 2019, the 

unsupervised methods have become slightly more popular than the supervised methods.

A. Supervised Transformation Prediction

Supervised transformation prediction aims to train the network with ground truth 

transformations. However, the ground truth transformation is usually unavailable in 

practice. Various methods have been proposed to generate/estimate the ground truth 

transformation, including manual/automatic masks contouring, landmark detection/selection, 

artificial transformation generation, traditional registration-calculated transformation, and 

model-based transformation generation. Table I shows a list of selected references that 

used supervised transformation prediction. Salehi et al. trained a CNN-based rigid image 

registration for fetal brain MR scans [114]. The network was trained to predict both rotation 

and translation parameters using datasets generated by randomly rotating and translating the 

original 3D images. Eppenhof et al. trained a CNN to perform 3D Lung deformable image 

registration using synthetic transformations [20]. The network was trained by minimizing 

the mean square error (MSE) between the predicted DVF and the ground truth DVF. A 

target registration error (TRE) of 4.02±3.08 mm was achieved on DIRLAB [115], which was 

worse than 1.36±0.99 mm [116] that was achieved when using the traditional DIR method. 

The TRE was later reduced from 4.02±3.08 mm to 2.17±1.89 mm on DIRLAB datasets 

using a U-Net architecture [21].

Instead of using artificially generated transformation as ground truth, Sentker et al. 
proposed generating the DVF using PlastiMatch [117], NiftyReg [118], and VarReg [119] 

as ground truth [19]. The authors showed that the network trained using VarReg had 

better performance than those trained using PlastiMatch and NiftyReg on DIRLAB [115] 

datasets. The best TRE values they achieved on DIRLAB was 2.50±1.16 mm, which was 

not better than the network trained using artificially generated transformations. statistical 

appearance models (SAM) have also been used by Uzunova et al. to generate a large and 

diverse set of training image pairs with known transformations from a few sample images 

[120]. They showed that CNNs learnt from the SAM-generated transformation outperformed 

cNNs learnt from artificially generated and affine registration-generated transformations. 

sokooti et al. used a model of respiratory motion to simulate ground truth DVF for 3D-

CT lung image registration [26]. They have outperformed models that were trained using 

artificially generated transformations. They achieved a TRE of 1.86 mm for the DIRLAB 

datasets. Instead of using the artificially-generated dense DVF, higher-level correspondence 

information such as masks of anatomical organs were also used for network training [18, 

121]. Networks trained using higher-level of correspondences such as organ masks or 

landmarks are often called weakly supervised methods since the exact dense voxel-level 

transformation was unknown during the training. It is called weakly supervised also because 

the higher-level of correspondence was not required in inference stage to facilitate fast 

registration.
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one major limitation of supervised transformation prediction is that the generated 

transformation may not reflect the true physiological motion, resulting in a biased model 

towards the artificially generated transformation prediction. It is possible to mitigate this 

problem using better transformation models to generate various training image pairs which 

simulate realistic transformations.

B. Unsupervised Transformation Prediction

The loss function definition in supervised transformation prediction methods was 

straightforward. However, for unsupervised transformation prediction, it was not so 

straightforward to define a proper loss function without knowing the ground truth 

transformations. Fortunately, the spatial transformer network (STN) which allows spatial 

manipulation of data during training was proposed [122]. The STN can be readily plugged 

into existing CNN architectures. The STN was used to deform the moving image based on 

the current predicted DVF to generate the deformed images which were compared to the 

fixed image to calculate image similarity loss. Table II shows a list of selected references 

that used unsupervised transformation predictions with their respective similarity metrics. 

SSD stands for sum of squared difference, MI stands for mutual information, MSE stands 

for mean squared error, CC stands for cross correlation.

An unsupervised CNN-based registration method, called VoxelMorph was proposed for 

MR brain atlas-based registration [38, 39]. The VoxelMorph has a U-Net like architecture. 

With STN, the image similarity between the deformed images and the fixed images 

were maximized during training. The predicted transformation was regularized to have 

low local spatial variations. They have achieved comparable performance to the ANT 

[108] registration method in terms of the Dice similarity coefficient (DSC) score of 

multiple anatomical structures. Zhang et al. proposed a network to predict diffeomorphic 

transformation using trans-convolutional layers for end-to-end MRI brain DVF prediction 

[123]. An inverse-consistent regularization term was used to penalize the difference between 

two transformations from the respective inverse mappings. The network was trained using 

a combination of an image similarity loss, a transformation smoothness loss, an inverse 

consistent loss, and an anti-folding loss.

Lei et al. used an unsupervised CNN to perform 3D CT abdominal image registration [46]. 

A dilated inception module was used to extract multi-scale motion features for robust DVF 

prediction. Besides the image similarity loss and DVF regularization loss, an adversarial 

loss term was added by training a discriminator. Vos et al. proposed a fast unsupervised 

registration framework by stacking multiple CNNS into a larger network for cardiac cine 

MRI and 3D CT lung image registration [37]. They showed their method was comparable 

to conventional DIR methods while being several orders of magnitude faster. Jiang et al. 
proposed a multi-scale framework with unsupervised CNN for 3D CT lung DIR [124]. They 

cascaded three CNN models with each model focusing on its own scale level. The network 

was trained using image patches to optimize an image similarity loss and a DVF smoothness 

loss. They demonstrated that the network trained on SPARE datasets has good performance 

on the DIRLAB datasets. The same trained network could also be generalized to CT-CBCT 

and CBCT-CBCT registration without re-training or fine-tuning. Jiang et al. achieved an 
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average TRE of 1.66±1.44 mm on DIRLAB datasets. Fu et al. proposed an unsupervised 

whole-image registration for 3D-CT lung DIR [49]. The network adopted a multi-scale 

approach where the CoarseNet was first trained using down-sampled images for global 

registration. Secondly, local image patches were registered to the image patches of the fixed 

image using a patch-based FineNet. A discriminator was trained to provide adversarial loss 

to penalize unrealistic warped images. They have outperformed some traditional registration 

methods with an average TRE of 1.59±1.58 mm on DIRLAB datasets.

Compared to supervised transformation prediction, unsupervised methods could alleviate 

the problem of lack of training datasets since ground truth transformation is not needed. 

However, without direct transformation supervision, DVF regularization terms have become 

more important to ensure plausible transformation prediction. So far, most of the 

unsupervised methods focused on unimodality registration since it is relatively easy to define 

image similarity metrics for unimodal registration than multi-modal image registration.

Supervised transformation prediction methods are limited by the lack of known 

transformations in the training datasets. Artificial transformations could introduce errors due 

to the inherent differences between the artificial and realistic transformations. Model-based 

transformation generation which could simulate highly realistic transformation has been 

shown to alleviate the lack of realistic ground truth transformation. On the other hand, 

unsupervised methods need extensive transformation regularization terms to constrain the 

predicted transformation since ground truth transformation is not available for supervision. 

One challenge is to efficiently determine the relative importance of each regularization term. 

Repeated trial and evaluation were often performed to find an optimal set of transformation 

regularization terms that could help generate not only physically plausible but also a 

physiologically realistic deformation field for a certain registration task. Another limitation 

for unsupervised transformation prediction is that it relies on effective and accurate image 

similarity metrics to calculate similarity loss and train the network. However, multi-modal 

image similarity metrics are usually more difficult to define and calculate than unimodal 

image similarity metrics. Therefore, there is a lack of multi-modal unsupervised image 

registration methods as compared to unimodal image registration methods. Deep similarity 

metrics could be trained for multimodal image registration tasks and used in unsupervised 

transformation prediction. However, the training of deep similarity metrics often requires 

pre-aligned training image pairs which are difficult to obtain.

IV. Image segmentation

In radiation therapy, image segmentation can be described as the process where each 

pixel in an image is assigned a label, and pixels with similar labels are linked such 

that a visual or logical property is realized()[125]. Resultant groupings of pixels with the 

same label are called delineations (i.e., segmentations). Once RT images are acquired, 

tumors and OARs are delineated, often by a physician or dosimetrist, to be incorporated 

into the treatment planning process. Manual segmentation has been reported to be the 

most time consuming process of radiation therapy, introducing substantial inter- and intra-

observer variability[126], and dependent on image acquisition and display settings[127]. 

To address these limitations, auto-segmentation is often employed. Auto-segmentation 
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may be unsupervised, where only the image itself is considered and image intensity/

gradient analyses are implemented, performing best with distinct boundaries[23]. Supervised 

segmentation, on the other hand, integrates prior knowledge about the image often in the 

form of other similarly annotated images to inform the current segmentation task (i.e., 

training samples).

Recent DL techniques[128, 129] are well poised for the task of accurate automatic 

segmentation with less reliance on organ contrast[130-132] as the algorithm is designed 

to acquire higher order features from raw data[128]. Deep neural networks (DNNs) learn 

a mapping function between an image and a corresponding feature map (i.e. segmented 

ground-truth) by incorporating multiple hidden layers between the input and output layer. 

The U-Net[5] is a DNN architecture that has shown great promise for generating accurate 

and rapid delineations for applications in RT[133]. The U-Net “U-shaped” architecture 

shown in Fig. 5 was inspired by the original fully convolutional network from Long et 
al. [134] and was initially implemented by Ronneberger et al. [5] in 2015 to segment 

biomedical image data using 30 annotated image sets. The U-Net has an additional 

expansion pathway that replaces the maximum pooling operations with up-convolutions 

to increase the resolution of the feature maps, a desirable feature for medical image 

segmentation. The original 2D U-NET was quickly implemented into 3D volumetric inputs 

to train using the entire dataset and annotations simultaneously to improve segmentation 

continuity, including multi-channel inputs of different image types[135] (i.e., MRI, CT, etc.). 

Overall, the U-Net is an end-to-end solution has shown remarkable potential to segment 

medical images, even when the amount of training data is scarce[136]. Various deep neural 

networks have also been applied to medical image segmentation[133] including deep CNNs 

with adaptive fusion[137] or multi-stage[138] strategies, as well as generative adversarial 

networks (GANs)[139].

Data scarcity may be a challenge in radiation therapy. Publicly available annotated 

“ground truth data” for training and validation are available through The Cancer Imaging 

Archive[140]. Several other strategies are employed to improve the variability and diversity 

of available data—without new unique samples—which is referred to as data augmentation. 

Data augmentation has been shown to improve auto-segmentation accuracy and prevent 

model overfitting[135, 137, 141]. Examples of augmentation include image flipping, 

rotation, scaling, and translation (pixels/axis). other emerging areas of data augmentation 

include integrating inter-fractional data such as incorporating daily cone-beam CTs for 

patients to increase segmentation accuracy in radiation therapy[142] and using transfer 

learning to generate new training imagesets from other modalities. Typical endpoints of 

AI segmentation include qualitative review or comparison with ground truth labels using 

overlap metrics such as the DSC or distance metrics such as the Hausdorff distance or mean 

distance to agreement.

Applications of AI for segmentation in RT planning typically fall into two main classes: 

organs at risk and lesions. Table III outlines a few state-of-the-art examples of each with key 

findings, with a comprehensive list available in other references[143].
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Emerging areas of interest include segmenting substructures of organs at risk including the 

cardiac substructures[135], applications for adaptive radiation therapy[7], and longitudinal 

response assessment. other areas under development include optimizing loss functions, 

such as integrating DSC less, unweighted DSC loss, or focal DSC loss, with tunable 

hyperparameters[144] to better address segmentation accuracy for small structures[145].

V. Image synthesis

In this section, we focus on generative modelling of information content across imaging 

modalities relevant to the radiotherapy workflow. Generative modelling, in this context, 

refers to capturing information about the data distribution associated with each modality 

thus enabling translation across different modalities. Within generative modelling, we limit 

our review to techniques that are most suitable to represent unpaired data obtained in real 

clinical settings where obtaining one-to-one correspondences between modalities may not 

be feasible. Among these techniques, GANs have proven to be very successful. GANs are 

a framework that optimize an objective by running a min-max two player game between 

two networks. One of the networks, called the generator, tries to learn the data distribution 

by trying to fool the other network, called the discriminator, which simultaneously tries to 

differentiate between real images and fake images created by the generator.

GAN-based approaches have also shown to be superior when paired data is available 

where they eliminate the need to design hand-crafted losses in the image-space[146]. We 

present methods proposed to aid different stages of the workflow ranging from image 

acquisition to treatment delivery. Specifically, we discuss MRI to CT, CBCT to CT and CT 

to PET translation. We focus our review on techniques aimed [?]at inter-modality translation 

due to the large variation in content representation across these modalities. For example, 

CT images capture electron densities through Hounsfield units whereas MRI images are 

generated based on the excitation and relaxation of hydrogen protons. These differences 

in representation allow for effective demonstration of the capacity of GAN-based image 

translation approaches to learn complex mappings.

A. MRI to CT Translation

MRI-only radiotherapy can provide multiple benefits to the patient and clinic due to 

its immense flexibility in imaging physiological and functional characteristics of tissue, 

combined with much superior soft-tissue differentiation. It also avoids additional risk 

induced by subjecting the patient to ionizing radiation via CT. However, MRI lacks the 

ability to provide electron densities which is explicitly needed in radiation dosimetry 

transport calculations. Generative modelling of information content between MRI to CT 

modalities can allow for obtaining electron densities from MRI. This is done by translating 

it into a synthetic CT while retaining structural information present within the original 

MRI scan itself. In order to effectively translate between the modalities, suitable input-

output representations need to be determined, and this is done as follows: 1) constructing 

a mapping between paired MRI-CT data from the same patient (registered to ensure 

correspondence) or 2) unpaired MRI-CT data from the same patient or across patients. For 

MRI-to-CT translation in nasopharyngeal cancer treatment planning – Peng et al. [147] use 
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conditional GANs for paired data and CycleGANs for unpaired data. CycleGANs ensure 

reliable translation by enforcing cycle-consistency in the MRI-to-CT translation[148]. 

They use 2D U-Net based generators that operate on a slice-by-slice basis and 6-layered 

convolutional discriminators. Wolterink et al. [149] and Lei et al. [150, 151] use paired 

data from the same patients for MRI-to-CT translation for treatment planning of brain 

tumors and brain /pelvic tumors, respectively. Although they use registered MRI-CT data 

from the same patient, they employed Cycle-GANs to account for local differences between 

the spatial representation across these modalities. Wolterink et al. used data from sagittal 

slices on a slice-by-slice basis and used the default CycleGAN setup including a patch-

based discriminator to preserve high frequency features. Lei et al. operated on 3D patches 

of smaller sizes (323) and implemented dense blocks[152] in the generator to capture 

multiscale information. They also proposed the use of novel mean P-distance (lp norm) 

and spatial gradient differences as cycle-consistency losses to avoid blurriness and promote 

sharpness respectively.

In terms of results, Peng et al. reported mean absolute Hausdorff Unit (HU) differences 

(MAE) within the body of 69.6±9.27 for the paired approach and 100.6±27.39 for the 

unpaired approach. Wolterink et al. reported 73.7±2.3 HU MAE and Lei et al. reported 

57.5±4.7 HU MAE for the brain.

These methods are not directly comparable since they use different data, but they do 

represent an estimate of their quantitative performance. However, it is difficult to ascertain 

clear clinical applicability based solely on these metrics. Consider a case where the average 

HU values are biased by strong deviations in areas belonging to the tumor where other 

areas are quite accurate. If this is placed in comparison to another case where smaller 

but uniform deviations are present across the entire scan, which scenario would be more 

clinically relevant? These metrics fail to answer these questions in entirety. Peng et al. 
provided additional metrics such as comparing dose distributions of translated CT with the 

reference CT with 2%/2-mm gamma passing rates of (98.68%±0.94%) and (98.52%±1.13%) 

for the paired and unpaired approaches, respectively. This gives a better idea of dosimetric 

accuracy of implementing their methods in a treatment planning system.

B. CT to PET translation

PET/CT scans can play a crucial role in combining anatomical and functional information 

to pinpoint metabolic activity and may provide better information in the contouring process 

for treatment planning. Synthesizing virtual PET from CT-only workflows can eliminate 

the need for the more costly PET/CT scan. Additionally, this reduces cost and complexities 

such as storage of radiotracers associated with PET imaging. Ben-Cohen et al. proposed 

a conditional-GAN (cGAN) [146] based method to generate PET from contrast enhanced 

CT-scans for false positive reduction in lesion detection within the liver. They used paired 

PET/CT data and performed a transformation to align and interpolate the PET to the CT. 

A first synthesized estimate of PET is performed using a fully convolutional variant of 

VGG [153] followed by a cGAN applied on channel concatenated input comprising of 

CT and the previous PET estimate. In this two-stage network, while optimizing over the 

image-losses, SUV-based weighting is applied to provide better results in PET regions with 
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high-SUVs. The proposed method obtains a mean absolute SUV difference of 0.73±0.35 

across all regions and 1.33±0.65 in high-SUV regions. Finally, false positives are shown 

to be reduced from 2.9% to 2.1% in liver lesion detection when using the generated PET 

information for detection. Bi et al. [154] explored synthesis of PET image from paired 

PET/CT data for lung cancer patients and propose three different methods exploiting varied 

input representations. All three methods apply a U-Net based cGAN but vary in terms 

of input provided to the model: (1) binary label-map of the tumor annotations, (2) CT 

image, and (3) channel-combined CT with binary label-map. The last method provided the 

results closest to the real-PET image with a SUV MAE of 4.60. The authors suggested 

that this synthesized PET can be used to form training data for PET/CT based prediction 

models. Further, they formulated a potential extension of their work to combine both real 

and synthetic PET to boost the training samples in an attempt to boost generalization.

C. CBCT to CT Translation

Radiotherapy treatment planning starts with acquiring a CT scan of the patient, usually 

denoted as a planning CT (pCT). Dose calculation as well as beam energy and arrangement 

are derived from the pCT, comprising a treatment plan. Commonly, in order to correctly 

position the patient at each fraction of the dose delivery, a CBCT scan is obtained. 

However, CBCT can potentially provide insight into the anatomical changes that occurred 

over the course of the treatment and could enable adaptive radiotherapy by leveraging 

that information to adjust the treatment plan. Unfortunately, treatment re-planning is not 

possible with CBCT scans as they are noisier, contain more artifacts and have inferior 

soft-tissue contrast compared to fan-beam CT. One way to make use of the information in 

a CBCT scan is by using deformable image registration (DIR) to map pCT to the anatomy 

of CBCT [155], producing a scan with HU values of the pCT with the latest anatomy, in 

literature referred as deformed planning CT (dpCT) or virtual CT (vCT). On the other hand, 

generative DL methods may provide a faster and potentially superior alternative to treatment 

re-planning based on dpCT or other techniques (look-up table [156], Monte Carlo[157], 

scatter correction with pCT prior [158]) by synthesizing a CT scan from an input CBCT 

scan. Such synthetic CT (sCT) should have all the characteristics of a CT scan while 

preserving the anatomy from the CBCT. Maspero et al. [159] trained 4 standard CycleGAN 

[148] models on lung, breast, and head-and-neck scans – three for each anatomical site 

separately and one model on all sites jointly. They showed that a single model for all three 

anatomical sites performs comparably against models trained per anatomical site, which 

would simplify its possible clinical adoption. The results are evaluated using rescanned CT 

(rCT) as ground truth, where rCT is a CT scan that is acquired at the same fraction as the 

CBCT in question. The reported HU MAE for sCT are 5312, 6618, 8310 for head-and-neck, 

lung and breast, respectively. Liang et al. ()[160] used a standard CycleGAN model, but 

evaluate the HU accuracy and dose calculations against dpCT instead of rCT. Furthermore, 

they performed an evaluation of anatomical accuracy of sCT using deformable head-and-

neck phantoms. The phantom allows for a simulation of the patient at the beginning of the 

treatment and after a few fractions of the treatment, where the tumor shrinkage is observed. 

This provides a CBCT and rCT scan with identical anatomy, which can be used to assess 

if and how translation of CBCT to sCT affects the representation of the anatomy. They 

concluded that the CycleGAN model has higher anatomical accuracy than DIR methods.
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D. Clinical Perspective and Future Applications of Synthetic Imaging

In the radiotherapy workflow, medical images are one of the most important sources of 

data used in decision-making. Imaging is used in all the steps of patient care in oncology: 

diagnosis, staging, treatment planning, treatment delivery, and disease follow-up. Based on 

the anatomical site of a tumor and the specific properties we want to investigate, some 

imaging modalities might be more appropriate than others. For example, an MRI scan is 

suggested for malignancies located in the pelvic region, due to the large presence of soft 

tissues compared to bone structures. This allows an improved ability to contour lesions and 

surrounding organs. CT is the predominant modality for staging lung tumors, but recently 

MRI scans, and more specifically Diffusion Weighted Imaging (DWI) sequences, are used to 

evaluate the involvement of mediastinal lymph nodes with higher sensitivity than CT, with 

implications on better staging and treatment decisions. Finally, it is well established that 

treatment planning always requires the acquisition of a CT scan, while PET imaging is often 

used prior to treatment planning to evaluate the presence of metastasis and the degree of 

suspicion of the identified lesions, and within/after treatment fractions to quantify treatment 

response[161]. Such examples highlight the need for multiple modalities of imaging to fully 

capture the complexity of human anatomy and tumor tissues in tandem with the specific 

tasks that we want to accomplish. This would eventually improve the decision-making 

process. In an ideal scenario, all modalities of imaging for the patient would be available, but 

that is far from being an achievable or practical solution.

Several reasons stand behind this evidence:

1) Cost-effectiveness:  Scanning patients costs both hospitals and the patients themselves. 

These costs may be reimbursed by healthcare providers or insurance companies. With 

an increasing number of new and diverse imaging technologies a growing demand for 

cost-effectiveness analysis (CEA) in imaging technology assessment is induced. As pointed 

out by Sailer et al. [162], when assessing the cost-effectiveness of diagnostic imaging, the 

initial question is whether adding an imaging test in a medical pathway does indeed lead 

to improved medical decision-making. One of the most significant examples was the lung 

cancer screening trial entitled NLST[163], which showed that participants who received 

low-dose helical CT scans had a 15 to 20 percent lower risk of dying from lung cancer than 

participants who received standard chest X-rays. In radiotherapy, a study [164] highlighted 

the costs related to various radiological imaging procedures in image-guided radiotherapy 

of cancers, based on standard billing procedures. The median imaging cost per patients was 

$6197, $6183, $6358, $6428, $6535 and $6092 from 2009 to 2014, respectively. This seems 

to highlight an upcoming trend of reducing costs related to imaging. Unfortunately, it is not 

clear if this reduction in costs was associated with an optimization of the diagnostic imaging.

2) Patient safety and comfort:  Recent studies indicated that repetitive imaging scans 

can deposit considerable radiation doses to some radiosensitive organs (e.g. heart) and could 

cause higher radiogenic cancer risks to the patients, with children being more impacted 

by this issue[165]. In a very utilitarian way, we might want to have an image with the 

highest possible contrast to be able to better identify suspicious structures, and to possibly 

obtain images of our patients within short intervals of time. This would allow using these 

images, for example, to perform a better evaluation of treatment response. Unfortunately, 
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due to the physics of imaging, ionizing imaging methods give a signal to noise ratio 

proportional to the released dose to the body[166]. More dose leads to better contrast, but 

also increases the probability of radiation-induced effects to the patient. Another point is 

represented by images acquired with the injection of an intravenous (IV) contrast medium. 

IV contrast media are usually toxic substances that need to be expelled by our body. If it 

is true that images acquired with IV contrast media (e.g., contrast enhanced CT) provide 

better resolution for specific anatomic regions compared to images without them (e.g., 

conventional CT); it also stands that many patients might not be eligible for the injection 

of a contrast media, because of poor performance status, presence of comorbidities, or 

poor renal function [167]. Finally, some imaging modalities such as DWI require longer 

acquisition times compared to T1 and T2 sequences [168], with an impact on costs and also 

on patients’ comfort.

3) Differences in imaging acquisition protocols and interoperability:  Despite the 

presence of specific guidelines and recommendations for diagnostic imaging, each 

institution might adopt not only different image acquisition protocols, but might also be 

missing specific imaging modalities (or sequences), which might be the standard of care in 

another institution. This evidence has an impact when performing or designing multicenter 

institutional studies, especially if retrospective and with the aim of the development of 

image-derived biomarkers. For example, if a center has developed a prognostic model based 

on an image-derived biomarker obtained by processing a specific imaging modality, a large 

external validation of this biomarker might not be possible because this imaging modality 

may not be available in many institutions. Additionally, when considering quantitative 

imaging analysis via machine learning and more specifically radiomics[169], a recent review 

pointed how different acquisition settings (e.g., slice thickness, tube current, reconstruction 

kernels) should be preferrable with respect to others, since they increase the reproducibility 

of the biomarkers[170]. It is, as mentioned before, not obvious that these acquisition settings 

are the same across all clinics. One possible solution, which is close to utopia, is to force 

each institution to acquire images with the same acquisition protocols. However, even if 

this was accomplished, the variability of scanner manufacturers, a well-known factor that 

impacts the stability of image-derived biomarkers, would still be difficult to tackle.

All the points presented above show that there is an open space for the application of DL 

based synthetic imaging. Without going into details, applications can include the generation 

of multi-modalities from a starting image (as explained in the case of the section MRI to 

CT of this paper), augmentation of image quality without exposing the patient to additional 

dose (as explained in the case of the section CBCT to CT translation), but also the recent 

work that introduces fast DL reconstruction for DWI images [171-173]. Synthetic imaging 

is taking a prominent role in oncology. We refer the reader to the following publications as 

proof of some interesting clinical applications that DL for image generation can offer[174, 

175], and to these more general reviews[176, 177].

VI. Automatic treatment planning

In radiotherapy planning, a main objective is to deliver the prescribed dose accurately 

to the target, keeping the dose to OAR below acceptable limits and minimizing dose to 
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surrounding, healthy tissue. The treatment planning process begins with delineation of target 

volumes and OARs on a planning CT. A set of dose-constraints are defined for targets, 

OARs and other regions of interest, typically dose-volume relations, stating the minimum 

or maximum dose that can be allowed to a given region. Intensity Modulated Radiation 

Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) are modern techniques 

that allow the treatment planner to create complex treatment plans by providing a set of 

such objectives that an optimizer algorithm will attempt to fulfill by inverse optimization, 

as illustrated by the workflow in Fig. 8. The optimizer often fails to achieve all the desired 

objectives, due to complicated patient geometry, limitations of the treatment modality or 

machine, etc. To improve the plan, the planner and physician discuss available options 

and clinical preference before adjusting the objectives for a new iteration of optimization. 

In recent years, automated treatment planning techniques have been developed, that aim 

to provide vastly improved starting points for the treatment planner, and even produce 

clinically acceptable treatment plans without human interaction.

The current planning workflow apparently relies heavily on humans (planner and physician). 

The reason for this workflow is twofold. First, there is no clear metrics to mathematically 

quantify plan quality. Although there are some plan quality scoring systems defined over 

the years [178], they might not necessarily reflect the most stringent clinical requirement 

for each patient. Second, for a specific patient, the best plan is unknown. The planning 

process has to explore the very high-dimensional solution space in a trial-and-error process 

to find out the optimal solution [179, 180]. This complex and cumbersome process poses 

substantial hurdles to plan quality and planning efficiency.

Due to extensive human involvement, the plan quality heavily depends on a number of 

human factors, such as the planner’s experience, the planner-physician communications, the 

amount of effort and available time for treatment planning, and the rate of human errors 

etc. [181-183]. Suboptimal plans are often unwittingly accepted [183-185], deteriorating 

treatment outcomes [186].

Moreover, while modern computers can solve the optimization problem rapidly, the trial-

and-error iterative planning process yields hours of planning time for a typical planner to 

generate a plan for the physician to review [187-189]. Multiple iterations between physician 

and planner are often needed, which extends the overall planning time up to one week 

in some challenging tumor sites. This lengthy process strongly contributes to the delay 

between diagnosis and start of RT, which has been shown to adversely affect treatment 

outcome. Moreover, patient’s anatomy may change during the time waiting for treatment 

planning [190, 191], making the plan carefully designed based on the initial patient anatomy 

sub-optimal for the changed anatomy [192, 193]. Additionally, the delayed treatment will 

increase the anxiety of patients who have already been overwhelmed by cancer diagnosis 

and are eager to start treatment. Such delays can be particularly severe in low- and middle-

income countries, with limited resources, capacity, staff and expertise [194].

The problem of sub-optimal plan quality and planning efficiency are indeed intertwined. 

Due to the low planning efficiency, the optimality of a plan is hard to guarantee for 

every patient in current practice given the strict time constraints. Heavy time pressure also 
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increases human error rate and may limit availability of advanced treatment techniques. 

Auto-planning (AP) techniques are urgently needed to tackle these problems in the current 

planning process.

AP has already been around for some time and is rapidly improving. There are several 

research projects and in-house solutions being developed worldwide, and most commercial 

vendors of treatment planning systems (TPS) have implemented some variety of AP tools. 

Studies show promising results for AP, but large-scale clinical implementation is not yet 

seen.

A. Classical Auto-planning Strategies

Classical AP tools can be divided into three categories: treatment planner mimicking (TPM), 

multi-criteria optimization (MCO) and knowledge-based planning (KBP).

1) Treatment Planner Mimicking: In treatment planner mimicking (TPM), the 

behavior and choices of the treatment planner are analyzed over time and converted into 

computer logic. Such logic can be a series of IF/THEN statements of decision making. 

Provided with a prioritized list of objectives the TPM follows its logic to create optimizer 

objectives that it tunes iteratively while steering the optimizer, in the same way that a human 

treatment planner would, pushing each objective as far as it can without degrading objectives 

of higher priority. The TPM is not as limited by time as a human planner, allowing it to 

perform more iterations, potentially leading to higher plan quality. Tol et al. designed a 

system that automatically scans DVH lines in the Eclipse TPS (Varian Medical Systems, 

Palo Alto, USA) optimization window, and moved the mouse cursor to adjust on-screen 

optimization objectives. In a blinded test, automated head-and-neck cancer (HNC) plans 

were preferred over MP by a HNC radiation oncologist in 19/20 cases, and the method is 

now in clinical use [195]. Several modern TPSs include possibilities for scripting, which 

have been used to develop in-house TPM by extracting DVH parameters directly from 

the TPS and automatically adjusting optimization objectives iteratively until the optimal 

solution is found [196-202]. A commercial TPM solution is available in Philips Pinnacle 

TPS (Philips Radiation Oncology Systems, Fitchburg, WI, US) Auto-Planning. Pinnacle 

Auto-Planning works by defining a template, called a technique, consisting of parameters, 

e.g., beam setup, dose prescriptions and objectives for each disease site [203]. When the 

technique is applied to a new patient, the AP will iteratively optimize a treatment plan, add 

helper volumes with new objectives to control the dose in the same fashion as a human 

planner might do, lower dose to OARs and reduce hot and cold spots in the dose distribution. 

The use of this system has been reported in several studies [198, 203-214], creating APs 

of comparable or higher quality, reduced planning times and improved OAR sparing in 

comparison to MPs. In a study by Cilla et al. Pinnacle Auto-Planning produced high-quality 

plans for HNC and high-risk prostate and endometrial cancer while reducing planning time 

by 60-80 minutes, corresponding to 1/3 of the MP time [203]. However, Zhang et al. found 

that for nasopharyngeal carcinoma some automated plans did not fully meet dose objectives 

for the planning target volumes (PTV) and cautioned that AP cannot be fully trusted, and a 

manual selection between MP and AP should be performed for each patient [213].
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2) Multi Criteria Optimization: MCO is a method for AP that explores so-called 

Pareto-optimal (PO) plans. In a space spanned by assigning a dimension to each 

optimization parameter, the PO surface consists of plans that cannot be further optimized 

without degrading the performance of another objective. A schematic view of the MCO 

planning process is presented in Fig. 9. The PO surface is populated by several plans with 

various objective prioritizations, and while the clinically ideal plan is always on the PO 

surface, not all plans at the PO surface will be clinically acceptable or desirable. Hussein 

et al. describes two approaches for AP with MCO, a priori and a posteriori. In the case of 

a priori, only a single pareto-optimal plan is fully generated and presented to the treatment 

planner, while for a posteriori MCO, multiple plans are automatically generated, and the 

treatment planner can perform trade-off navigation using e.g., a navigation star [215] or 

sliders RayStation MCO (RaySearch Laboratories, Stockholm, Sweden), Varian Eclipse 

MCO) representing the objectives [216]. A posteriori MCO offers a convenient method to 

efficiently find an optimal treatment plan, while the treatment planner takes active choices 

in the process, and has been subject to several studies [217-229]. Kierkels et al. found that 

MCO plans had similar performance to MP, but allowed inexperienced planners to make 

high quality plans [224]. Creating a large number of plans is computationally intensive, 

but can be done in the background while the planner attends to other tasks. Furthermore, 

estimations made by Bortfield and Craft suggests that as few as N+1 plans are needed to 

populate the PO surface, where N is the number of objectives [230]. The Erasmus-iCycle 

software [217] presents a solution for a priori MCO, where a disease-site-specific wish-list is 

defined with absolute and desired constraints, used for iterative optimization by the software. 

The software has been used in several studies, yielding clinically acceptable plans of similar 

or higher quality when compared to manually created plans [231-236].

3) Knowledge Based Planning: KBP exploits the knowledge and expertise of 

treatment planners to aid the planning process for new patients, through a library of high-

quality clinical treatment plans. When a new patient is presented to the system, it will be 

characterized based on anatomical and geometrical features. There are two branches of KBP. 

In atlas-based systems, the closest matching patient in the library is chosen, and the plan 

setup belonging to that patient will be duplicated to the new patient and recalculated on its 

planning-CT. In model-based systems a predictive model is trained from the plan library, 

to predict parameters used for creating automated plans for new patients. The workflow for 

these approaches is illustrated in Fig. 9.

4) Atlas-based KBP: Atlas based KBP [237-246] searches a library (i.e. atlas) of 

clinical plans to find the plan most similar in geometry to the new patient. The library plan 

setup is copied to the new patient, and the dose is calculated on the CT of the new patient. 

A general approach is to copy the plan setup and position the isocenter centered in the target 

volume of the new patient. The original plan can be adapted further, as demonstrated for 

HNC patients by Schmidt et al. where the atlas plan was adapted to the new patient by 

deforming the atlas plan beam fluences to suit the target volume in the new patient and 

warping the atlas primary/boost dose distribution to the new anatomy. The warped dose 

distribution was then used to generate dose-volume constraints as optimization constraints. 

In this study it was found that AP had similar or better quality compared to MP for all 
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objectives. The extra steps to deform and warp the plan led to improved performance 

compared to simply using the atlas plan directly [244]. Atlas-based KBP can either be used 

to provide a starting point for further optimization, or fully automate planning. Schreibmann 

et al. demonstrated the use of atlas-based KBP for whole brain radiotherapy, generating high 

quality treatment plans in 3-4 minutes, with reduced doses to OARs [245], thus reducing the 

clinical workload.

5) Model-based KBP: Model based KBP [194, 202, 210, 214, 226, 229, 237, 238, 

247-282] trains a model on the plan library to predict parameters for a new patient 

introduced to the system. Such parameters can be e.g., beam settings, DVHs for target 

volumes and OARs, or full 3D dose distributions. DVH prediction has been widely studied 

in recent years for most disease sites, e.g., head and neck [214, 226, 258, 272, 274, 281], 

prostate [210, 238, 251, 255, 264, 266-268, 270, 276, 281], upper GI [259, 265, 273, 280], 

lower GI [229, 254, 269, 277, 278] and breast [259, 262, 275]. A commercial software 

for DVH prediction is Varian RapidPlan. RapidPlan examines geometric and dosimetric 

properties of structures in each library plan and uses these to calculate a set of features. 

The calculated data of each plan is included in model training, where principal component 

analysis (PCA) is used to identify the 2-3 most important features, which are used as input 

for a regression model [283]. The final model is then used for DVH prediction. DVHs can 

be converted to objectives for the inverse planning optimizer by sampling the predicted 

DVH curve and creating corresponding dose-volume objectives. The majority of studies 

demonstrate that the dose distribution to target volumes of the APs are equally good or better 

than that of MPs, with no human planner interaction, while the time it takes to generate 

a plan is drastically reduced. Several studies also demonstrate reduced dose to OARs for 

APs compared to MPs, possibly due to manual planners not having sufficient time to make 

further improvements once a clinically acceptable plan is found. One major limitation of 

DVH prediction models is that they only consider dose-volume relations for delineated 

structures, and not spatial distributions, thus the planner must be aware of issues such as 

where excess dose in healthy tissue is placed.

KBP models can be trained by relatively few patients, as demonstrated by Boutillier et al., 
who successfully trained a model for rectum DVH estimation using 20 library plans [284]. 

In a recent review of KBP methods by Ge and Wu, it is suggested that more complex plans 

will require larger plan libraries. Development of larger training databases, e.g., by multi-

institution collaborations, is recommended [261]. Another option to increase plan library 

size is to include plans from other techniques, e.g., 3D-CRT and IMRT plans for training 

a VMAT model [285], or plans from a different TPS [273]. However, as demonstrated by 

Ueda et al., models may perform differently when used under other conditions than those of 

library plans [273], thus proper QA during commissioning is important.

B. Modern AI in Radiation Therapy Treatment Planning

Modern AI, in particular the recent advancement in DL techniques, have achieved great 

success in a wide range of different disciplines, including medicine and healthcare. In the 

regime of RT treatment planning, a number of DL-driven AP methods have been developed 

recently in literature to address the remaining challenges in classical AP approaches. These 
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novel methods can be roughly categorized into three groups: DL-based dose prediction; 

DL-based fluence map/aperture prediction; and DL-based intelligent treatment planner.

1) DL based Dose Prediction: The DL dose prediction AP workflow is depicted in 

Fig. 10. A key step in this type of approaches is to build a DL-based dose prediction 

agent. Constructed by a carefully designed deep neural network (DNN), the dose prediction 

agent directly derives the dose distribution of a clinically acceptable plan based on 

the patient anatomical information (e.g. organ contours and/or CT image) and planning 

configurations (e.g. prescription dose, treatment beam/arc setups). Pioneer study [286] 

was firstly performed to investigate the feasibility of DL-based dose prediction using the 

treatment planning task of prostate cancer IMRT as a testbed. As a proof-of-principle study, 

a simplified 2D dose prediction was considered. The prediction accuracy was validated on 

a set of dosimetric quantities of clinical interest. With feasibility well justified, DL-based 

dose prediction was then successfully extended to other modalities (e.g. VMAT and helical 

tomotherapy) [287-291], and more complicated treatment sites (e.g. HNC and lung cancer) 

[287-290, 292], as well as to the direct 3D dose distribution prediction [291-293], which all 

are of more clinical and practical values. Later on, Pareto optimal dose prediction models 

[228, 293, 294], which can generate multiple plans reflecting different trade-offs among 

critical organs, were also developed to better address the diverse clinical needs. The clinical 

application of DL-based prediction methods is analogue to the classical KBP methods while 

the major difference is that DL-based dose prediction derives dose distributions directly 

in contrast to the DVHs generated in KBP. Despite the great success achieved, DL-based 

dose prediction also suffers from the similar hurdle as KBP, i.e. the predicted dose may be 

dosimetrically attractive, but not be physically achievable.

2) DL based Fluence Map Prediction: As shown in Fig. 11, the second type of 

approaches predicts the fluence map of an optimal plan from patient anatomy using DNN 

[196, 295-297], bypassing the plan optimization process in inverse treatment planning. More 

specifically, Lee et al.[295] developed a DNN model to derive the optimal fluence map of 

IMRT in a beam-by-beam-fashion using the beam’s eye view of PTV/organ contours, and 

the predicted optimal dose distribution for each beam as input. Li et al. [296] proposed a 

Dense-Res Hybrid Network (DRHN) to take a series of projections characterizing patient 

anatomy and treatment geometry as input and output the fluence intensity maps for the 

nine-field beam prostate cancer IMRT. Wang et al. [297] proposed two-stage strategy with 

each stage accomplished by a dedicated DNN. In the first stage, the dose of a beam is 

predicted from the contours and CT image of a patient, and the fluence map is then obtained 

based on the predicted dose of beam in the second stage. Note that these algorithms were 

all developed specifically for IMRT, which typically involves only a very limited number 

of treatment beams (≤9). Lin et al. [196] proposed a DL-based fluence map prediction 

approach that can handle the more general VMAT planning in which fluence map of 64 

treatment beams at different angles needs to be determined. By assuming the dose of an 

optimal plan already known, the projected dose was employed as input of the established 

DNN model to predict the fluence map. All these studies have shown DL as a promising 

tool for fluence map prediction. However, the physical achievability and deliverability of the 

predicted fluence map is again not guaranteed.
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3) DL based Virtual Treatment Planner: Motivated by the tremendous success 

of reinforcement learning (RL) in achieving human-level intelligence in decision-making 

process, the third group of methods focuses on developing RL-based virtual treatment 

planners (VPNs) to automatically adjust treatment planning setups or machine parameters 

[298-302] for high-quality treatment plans (Fig. 12). The idea of training a VPN is similar to 

the trial-and-error learning process of human beings. It allows the VPN to explore different 

ways of adjusting treatment planning setups/machine parameters and observe the impacts of 

these adjustments to the plan quality. VPN will gradually learn the consequences of applying 

different adjustments to a given plan from a wide spectrum of scenarios encountered in 

the training process, such that it can pick the adjustment leading to optimal plan quality. 

The feasibility of RL-based VPN has been demonstrated in both a proof-of-principle 

context of high-dose-rate brachytherapy [300] and more complicated cases of external beam 

radiotherapy [298, 299, 301, 302], showing that intelligent behaviors of operating a TPS 

can be spontaneously generated via an end-to-end RL. Unlike the dose prediction and 

fluence map prediction methods, RL-based approaches naturally guarantee the achievability 

and deliverability since the final plans are generated by a TPS. However, the low training 

efficiency and poor scalability of VPN have limited its applications to only simple treatment 

planning problems. Although recent studies have shown that the training efficiency and 

model scalability can be substantially improved by incorporating human knowledge [299], 

and DNN of hierarchical architecture ()[298], respectively, the feasibility of VPN on a 

commercial TPS for complex clinical treatment planning tasks still needs to be further 

investigated. Moreover, the VPNs in existing studies are trained under the guidance of 

simple plan evaluation quantities, such as ProKnow score (ProKnow Systems, Sanford, 

FL, USA), which does not necessarily reflect the real planning objectives in clinic. Better 

metrics of more clinical relevance, e.g. physicians’ preference on plan quality, need to be 

quantified, and incorporated to guide the training process of a VPN.

C. Challenges of Auto-planning

Although classical/DL based AP methods have achieved great success in many aspects, a 

number of technical or practical challenges remain unsolved. The first major challenge is 

the data size problem. Training effective AP models often requires a large cohort of data of 

sufficient diversity to cover the variations among different patients. However, such datasets 

are non-trivial to collect, and their accessibility is very limited due to many concerns, such 

as privacy issues. This is indeed more of a concern for DL-based algorithm since it typically 

requires huge amount of data to optimize DNNs with respect to the large number of 

learnable parameters. Lack of data often leads to severe overfitting, which may substantially 

deteriorate the performance of models on new patient cases never observed in model 

training. Second, despite their encouraging performance, most of the AP models, especially 

the DL-based ones, are difficult to interpret. To confidently deploy a model to automate the 

treatment planning process of patients, it is essential to have a good understanding about the 

reason behind the plan generation process. Such interpretability of a model is necessary to 

ensure its generality and robustness on different patients. Lack of interpretability may lead 

to unexpected model failure in clinical deployment stage, posing serious risk to patients. In 

addition, there is also arising worries de-staffing/deskilling of human planners. However, in 

a study by Speer et al., it was found that experienced planners outperform AP systems in 
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complex cases [23]. In this regard, AP will be helpful to reduce the workload from simple 

cases and enable human planners to spend more time on complex cases, thereby further 

improving plan quality. To implement AP in most clinics, commonly accepted guidelines on 

implementation and quality assurance of AI models will play an important role, as discussed 

thoroughly in a recent review article by Vandewinckele et al. [303].

D. Outlooks/Future Directions

AP has a great potential to automate and accelerate the tedious and time-consuming 

treatment planning process of RT. It is expected to improve the quality of treatment plans 

to a better level consistently, allowing to deliver the best of care to each patient. AP would 

also release human planners from simple cases, whose efforts can be focused on more 

challenging cases. The urgent need AP is further amplified in the regime of adaptive RT 

where planning efficiency critically affects the success of adaptation. Furthermore, moving 

towards the era of personalized care, AP permits quick generation of treatment plans of 

different treatment techniques, e.g. IMRT vs. VMAT, standard fractionation vs. SBRT, and 

photon vs. proton treatment, etc., from which the best treatment plan can be chosen for 

optimal treatment outcome.

The remaining challenges of AP approaches, such as data size and interpretability, need 

to be addressed for the development of effective and reliable models. Collecting a large 

inter-institutional dataset is attractive, but less practical due to privacy and regulation 

concerns. One potential solution might be federated learning [304-306], which allows each 

institution to keep their own data while having the model be trained on all data. In addition, 

interpretable machine learning/DL [307, 308] has become a central topic recently due to the 

increasing need of model expainability and reliability in many applications including RT. 

More efforts are definitely needed along these directions to fulfill the urgent, but unmet need 

of AP.
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Fig. 1. 
Illustration of image reconstruction from sensor domain.
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Fig. 2. 
Comparison of ultralow-dose CT images (120 kVp, 10 mAs) reconstructed by six different 

approaches. All the images are displayed in the same window of [−160, 240] HU. Figure 

reprinted from Wang et al. with permission.
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Fig. 3. 
Supervised and unsupervised deformation vector field (DVF) prediction methods.
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Fig. 4. 
Overview of number of publications in DL-based medical image registration.
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Fig. 5. 
Architecture for original U-Net by Ronneberger et al. [5] with the contraction path shown 

on the left and the expansion path shown on the right. The original input image has a size 

of 512 x 512. Feature maps are represented by purple rectangles with the number of feature 

maps on top of the rectangle.
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Fig. 6. 
GAN Framework showing MRI to CT image translation. The generator tries to learn the data 

distribution of MRI and CT images and uses this learnt representation to convert an MRI 

image to a fake CT image. The generator learns this representation by trying to fool the 

discriminator while it is comparing real and fake CTs and learning to differentiate between 

them.
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Fig. 7. 
Workflow for adaptive radiotherapy enabled by dose calculation from CBCT images. Prior 

to dose recalculation, a CBCT image is converted to a synthetic CT (sCT), providing correct 

HU values and removing artifacts, while preserving the anatomy.
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Fig. 8. 
The inverse treatment planning process begins with delineation of target volumes and 

OARs on medical images. Optimization objectives are defined and passed to the optimizer 

algorithm of the TPS. If the resulting plan is not acceptable, trade-off evaluation is 

performed to define new targets iteratively until a clinical plan is accepted.
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Fig. 9. 
Schematic view of some classical auto-planning workflows. Left: Multi criteria optimization 

generates a library of pareto optimal plans from a set of objectives. In the schematic, the 

user navigates the plans a posteriori by use of sliders for each parameter. Right: Knowledge 

based planning relies on a set of high-quality clinical plans. Atlas based methods finds the 

best matching patient in the library when introduced to a new patient, extracts the plan and 

adjusts it to the new patient. Model based approaches train a predictive model on the library 

plans. The model is used to predict parameters for new patients, which are used to generate 

objectives for the optimizer.
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Fig. 10. 
General workflow of DL dose prediction based auto-planning.
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Fig. 11. 
General workflow of DL fluence map prediction based auto-planning.
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Fig. 12. 
General workflow of virtual treatment planner based auto-planning, analog to conventional 

human planning process (dashed route).
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TABLE I

Selected supervised transformation prediction methods

References ROI Patch-
based

Modality Transformation

[8] Cardiac No MR Deformable

[13] Brain Yes MR Deformable

[15] Brain Yes MR Deformable

[16] Pelvic Yes MR-CT Deformable

[17, 18] Prostate No MR-US Deformable

[19] Lung Yes CT Deformable

[20, 21] Lung No CT Deformable

[12] Brain Yes MR Deformable

[24] Brain No T1, T2, Flair Affine

[25-27] Lung Yes CT Deformable

[29] Prostate No MR-TRUS Affine + Deformable

[33] Pelvis No CT-CBCT Deformable

[35] Cardiac No MRI Deformable
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Fu et al. Page 57

TABLE II

Selected unsupervised transformation prediction methods

References ROI Patch-
based

Modality Transform Similarity

[9] Brain No MR Deformable SSD

[10] Brain No MR Affine MI

[11, 12] Brain Yes MR Deformable Intensity & gradient difference

[22] HN Yes CT Deformable MSE

[28] Cardiac No MR Deformable CC

[34] Lung No MR Deformable MSE

[36] Brain No MR-US Deformable MSE after intensity mapping

[37] Cardiac, Lung Yes MR, CT Affine and Deformable MSE

[38, 39] Brain No MR Deformable CC

[40] Liver No CT Deformable CC

[41, 42] Brain No MR Deformable CC

[44] Liver No CT Deformable CC

[46] Abdomen Yes CT Deformable CC

[47] Abdomen Yes CT Deformable CC

[49] Lung Yes CT Deformable CC

[51, 52] Prostate No MR-TRUS/CBCT Deformable None

[54] Lung, Cardiac Yes CT, MRI Deformable CC
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