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Abstract

Membraneless organelles have emerged during the evolution of eukaryotic cells as intracellular
domains in which multiple proteins organize into complex structures to perform specialized
functions without the need of a lipid bilayer compartment. Here we describe the perinuclear space
of eukaryotic cells as a highly organized network of cytoskeletal filaments that facilitates assembly
of biomolecular condensates. Using bioinformatic analyses, we show that the perinuclear
proteome is enriched in intrinsic disorder with several proteins predicted to undergo liquid-liquid
phase separation. We also analyze immunofluorescence and transmission electron microscopy
images showing the association between the nucleus and other organelles, such as mitochondria
and lysosomes, or the labeling of specific proteins within the perinuclear region of cells.
Altogether our data support the existence of a perinuclear dense sub-micron region formed

by a well-organized three-dimensional network of structural and signaling proteins, including
several proteins containing intrinsically disordered regions with phase behavior. This network of
filamentous cytoskeletal proteins extends a few micrometers from the nucleus, contributes to local
crowding, and organizes the movement of molecular complexes within the perinuclear space. Our
findings take a key step towards understanding how membraneless regions within eukaryotic cells
can serve as hubs for biomolecular condensates assembly, in particular the perinuclear space.
Finally, evaluation of the disease context of the perinuclear proteins revealed that alterations in

*Special section on “State without borders: Membrane-less organelles and liquid-liquid phase transitions”; Edited by Vladimir N
Uversky.
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their expression can lead to several pathological conditions, and neurological disorders and cancer
are among the most frequent.
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1. Introduction

During evolution, different eukaryotic cells have emerged with highly specialized structures
and functions. Despite these differences, all eukaryotic cells share common intracellular
membranous organelles (MOs), such as the nucleus, endoplasmic reticulum, Golgi
apparatus, lysosomes, mitochondria, peroxisomes, and endosomes. MOs are important
eukaryotic achievements, as they allow specialized processes, such as energy production
and synthesis of macromolecules, to occur concomitantly at different subcellular locations
within a single cell. Along with MOs, membraneless organelles (MLOs) have also evolved
in eukaryotes to organize the complexity of the intracellular space [1]. Well-characterized
examples of MLOs include the nucleolus in the nucleus [2,3], as well as centrosomes,
ribosomes, and proteasomes in the cytoplasm [4,5]. Recently, it has become clear that
MLOs are liquid compartments assembled through liquid-liquid phase separation (LLPS)
[4,6,7]. The unique dynamic properties of liquids (coalesce, deform, show fusion and
fission behavior) allow fine spatiotemporal control of diverse cellular reactions (reviewed
in Boeynaems et al. [8]).

This prompted us to postulate that the perinuclear space acts as a hub for condensation,
favoring multivalent contacts and enhancing phase separation. Several “client” proteins

may partition into condensates to perform signaling functions. In addition, membranous
organelles located in the perinuclear space such as the endoplasmic reticulum, mitochondria,
lysosomes, vesicles and endosomes, can function together with biomolecular condensates
intertwined in cytoskeleton networks (reviewed in Koppers et al. [9]). To summarize, when
proteins with LLPS ability reach the perinuclear region, they are prone to phase separate in
this peculiarly crowded sub-region.

The perinuclear space has different functions, such as regulating the traffic of molecules
between the nucleus and the cytosol, providing structural support for the nucleus,
controlling nuclear size and position, modulating several intracellular signaling pathways,
and allowing a dynamic interaction between the nucleus and other organelles and structures
[10]. Therefore, our hypothesis is that to perform these complex functions, this region
concentrates intrinsically disordered proteins (IDPs) with phase behavior that is tunable

by specific molecules (e.g., protein, nucleic acid (NA), post-translational modifications)

in different moments. Collectively, the perinuclear cloud should be a well-organized
three-dimensional region favorable to the montage of several biomolecular condensates in
eukaryotic cells.

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2022 August 18.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

do Amaral et al.

Page 3

To test this hypothesis, we investigated (i) proteins with a reported perinuclear localization
by a systematic bibliometric review; (ii) by /in silico analysis, the IDPs that have a
perinuclear distribution; and (iii) images from fluorescence and transmission electron
microscopy (TEM) showing the contact between the nucleus and other organelles, and the
gathering of specific proteins within the juxtanuclear region of cells. Since we hypothesize
that the nuclear space has both structural and signaling properties, we discuss the prevalence
of predicted intrinsic disorder content and phase separation ability of proteins with known
perinuclear distribution.

2. Materials and methods

2.1. Antibodies and probes

Rabbit polyclonal antibodies against desmin (code# D-8281) and LMO?7 (code #
HPA020923), and mouse monoclonal antibody antisarcomeric alpha-actinin (code# A-7871,
clone EA-53) were purchased from Sigma-Aldrich (USA). Rabbit monoclonal anti-

Gli-1 (ab134906) antibody was from Abcam (UK). DNA-binding probe 4,6-Diamino-2-
phenylindole dihydrochloride (DAPI), Alexa Fluor 488-goat anti-rabbit IgG antibodies and
Alexa Fluor 546-goat anti-mouse 1gG antibodies were from Molecular Probes (USA).

2.2. Embryonic chick skeletal muscle cell cultures

Primary cultures of myogenic cells were prepared from breast muscles of 11-day-old chick
embryos [11]. Embryonated chick eggs were obtained from Granja Tolomei (Rio de Janeiro,
Brazil) and handled according to Institutional Animal Care and Use Committee protocols
under the number 069/19. Briefly, fragments of pectoral muscle were incubated at 37 °C
for 10 min in calcium-magnesium-free solution (CMF, Sigma-Aldrich) containing 0.25%
trypsin (Sigma-Aldrich). After removal of the trypsin solution, cells were dispersed by
repeated pipetting in culture medium (Minimum Essential Medium with 10% horse serum,
0.5% chick embryo extract, 1% L-glutamine, and 1% penicillin/streptomycin, all from
Invitrogen, Brazil). The resulting suspension was filtered, and cells were plated at an initial
density of 7.5 x 10° cells/35 mm culture dishes in 2 mL of medium. Cells were cultured

on 22-mm Aclar plastic coverslips (Pro-Plastics Inc., USA) previously coated with rat tail
collagen. Cells were grown in a humidified 5% CO, atmosphere at 37 °C. After the first 24
h, cultures were fed with fresh cultured medium.

2.3. COS-7 cells

African green monkey kidney fibroblast-like cell line COS-7 was obtained from ATCC
(USA). COS-7 cells were maintained in DMEM supplemented with 10% FBS and a 1%
penicillin-streptomycin solution at 37 °C in a humidified 5% CO»,-containing atmosphere.
COS-7 cells were used in the experiments between passages 3 and 15. Measurements of the
size of cytoskeletal filaments and protein aggregates in COS-7 cells were made using Fiji
software [12].

2.4. Zebrafish husbandry

Zebrafish (Danio rerio) were maintained in aquaria with recirculating water system at 28
+ 1 °Cona14:10 light/dark cycle in a vivarium localized at the Institute of Biomedical
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Sciences, Federal University of Rio de Janeiro (Rio de Janeiro, Brazil). Animals were
handled and experimented according to Institutional Animal Care and Use Committee
protocols under the number 039/20. Embryos were collected, bleached with 0.05% NaOCI
for 3 min and rinsing with water 3 times before chorion removal.

2.5. Immunofluorescence microscopy

Dechorionated zebrafish embryos at 24- or 48-h stages and chick muscle cells were fixed
in 4% paraformaldehyde in PBS for 10 min at room temperature. Embryos and cells were
then permeabilized with 0.5% Triton-X 100 in PBS (PBS/T) three times for 30 min and
incubated for 1 h at 37 °C with primary antibodies (all diluted 1:100 in PBS/T). Then,
embryos and cells were washed for 30 min with PBS/T and incubated for 1 h at 37 °C

with Alexa Fluor-conjugated secondary antibodies (all diluted 1:200 in PBS/T). Nuclei were
labeled with 0.1 pg/mL of DAPI in 0.9% NaCl. Embryos and cells were mounted on #1.5
24 x 60-mm glass coverslips (with spacers in the case of embryos) using Prolong Gold
(Molecular Probes). Experiments with zebrafish embryos and with chick muscle cells were
repeated four times, using fifty zebrafish embryos and five 35 mm chick cell culture dishes
each time.

2.6. Fluorescence image acquisition and processing

Cells and embryos were examined with either (i) an Axiovert 100 microscope (Carl Zeiss,
Germany) coupled to an Olympus DP71 high-resolution camera, (ii) a Leica TCS SPE laser
scanning confocal microscope (Leica, Japan), or (iii) a DSU Spinning Disk confocal scanner
mounted on an inverted fluorescent microscope (Olympus, Japan). Control experiments
with only secondary antibodies showed only a faint background staining (data not shown).
Phase contrast microscopy images of cultured cells were acquired with an Axiovert

100 microscope using a 63 x (NA 1.4) oil-immersion objective lens. Image processing
(brightness and contrast adjustments) was performed using Fiji software [12] and figure
panels were produced with Adobe Photoshop software (Adobe Systems Inc., USA), where
some of the original fluorescence grayscale images were pseudo-colored and superimposed.
Some fluorescent images (Gli-1 labeling) were digitally processed by Universal live-cell
super-resolution microscopy (SRRF) [13,14].

2.7. Transmission electron microscopy (TEM)

Wild-type C57BL/6J mice of 2- or 4-months old mice were anesthetized with ketamine

(50 mg/kg) and xylazine (5 mg/kg) and perfusion-fixed through their ventricles with 2.5%
(v/v) glutaraldehyde, 4% paraformaldehyde in 0.1 M cacodylate buffer (pH 7.2). Then the
hearts were isolated and kept overnight in a new batch of the same fixative solution at 4 °C.
Next day, hearts were washed with the same buffer (3 x 30 min), cut in several 2 x 2 mm
fragments, and transferred to glass vials. Experiments with mice hearts were repeated three
times.

Eleven-day-old embryonic chick skeletal muscle cells were fixed overnight at room
temperature with 2.5% (v/v) glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2).
Afterwards, the cells were washed three times in the same buffer. Heart samples and cells
were postfixed for 40 min in 1% OsO4 in 0.1 M cacodylate buffer containing 5 mM CaCl,

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2022 August 18.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

do Amaral et al.

Page 5

and 0.8% potassium ferricyanide. All samples were dehydrated in acetone and embedded in
Epon. Ultrathin sections 60 nm thick were collected on 300-mesh copper grids, stained with
2% urany! acetate for 30 min and 1% lead citrate for 3 min, and finally the cells observed
with a JEOL 1210 (Jeol, Japan) and hearts with a Leo Libra 120 (Zeiss, Oberkochen,
Germany) transmission electron microscopes, both operated at 80 kV. Experiments with
chick muscle cells were repeated four times.

For cytoskeleton observations of membrane-extracted cells, COS-7 were cultured on nickel
grids covered with Formvar film and treated with an extraction solution composed of:
phalloidin (50 ng/mL), 10 mM Pipes (pH 6.8), 300 mM sucrose, 3 mM MgCl,, 2

mM EGTA, 1% (v/v) Triton X-100, protease inhibitor cocktail (Roche, USA), and 0.5%
glutaraldehyde for 7 min at RT. Then, cells were briefly washed in PBS and fixed in 2.5%
(v/v) glutaraldehyde, 4% paraformaldehyde in 0.1 M cacodylate buffer (pH 7.2) for 30
min. Then, cells were washed in PBS (3 x 15 min), dehydrated in ethanol until absolute,
critical-point dried (CPD 030, Leica, Japan), and observed in a Leo Libra 120 (Zeiss,
Oberkochen, Germany) transmission electron microscope, operated at 80 kV. Experiments
with COS-7 cells were repeated three times.

2.8. Bibliometric analysis

Perinuclear proteins were identified by an /n-sifico bibliometric analysis in PubMed (https://
pubmed.nchi.nlm.nih.gov/). Articles with the descriptor “perinuclear protein” were selected
in the entire PubMed collection database (from 1955 to June 2021) and they were

then individually examined to check whether each article was describing proteins with

a perinuclear localization (Table 1). The disease context of each perinuclear protein was
individually examined in PubMed database.

2.9. Bioinformatic analyses of intrinsic disorder and LLPS propensity

To identify the proteome with perinuclear location, we selected human proteins from the
UniProtKB/Swiss-Prot, which is a manually annotated database, using the search engine
for subcellular locations (https://www.uniprot.org/locations/198, The UniProt Consortium,
release 2021 03). This location is based on Gene Ontology (GO) 0048471 and defined as
“the cytoplasmic region just around the nucleus”. The canonical sequences from the 285
identified proteins and proteins gathered from literature (as described in Section 2.8) were
retrieved in FASTA format and submitted to analysis by the Predictor of Natural Disordered
Region (PONDR)-VSL2 provided by http://www.pondr.com/ [15]. The PONDR-VSL2 was
trained by 1327 proteins and showed a predictor accuracy of approximately 81% for both
short (below 30 residues) and long (above 30 residues) disordered regions. Thus, it intends
to recognize disordered amino acid stretches of any length [15]. We then verified whether
the retrieved perinuclear proteins were part of the DisProt database, a reviewed repository
of experimentally proven disordered regions [16]. We selected the perinuclear proteins
reported by DisProt and the ones with an overall disorder content above one-third of

their primary sequences (=33.3%, named herein as perinuclear IDR-containing proteins)
for further analysis. The mean net charge versus mean hydropathy (CH-plot) was obtained
by PONDR (http://www.pondr.com), as described in [29]. The LLPS-propensity analysis
by the catGRANULE algorithm (http://s.tartaglialab.com/new_submission/catGRANULES)
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[30] was calculated for the perinuclear IDR-containing proteins. Overall catGRANULE
scores above zero indicate LLPS ability [30]. The LLPS prediction potentially mediated
by pi-pi contacts was evaluated by the PScore algorithm (http://abragam.med.utoronto.ca/
~JFKlab/Software/psp.htm), whereby a PScore =24.0 predicts the LLPS propensity [17].

2.10. Bioinformatic analyses of functional aspects, sequence composition and prion-like
regions
The UniProt IDs from the human perinuclear IDR-containing subgroups: LLPS (43 proteins)
and non-LLPS (74 proteins) were submitted to STRING (available at https://string-db.org/)
[51] and enriched keywords were analyzed. The groups were evaluated by nucleic acid
(NA) and cytoskeleton related processes by the following UniProt keywords (reviewed):
“RNA-binding” (KW-0694), “mRNA transport” (KW-0509), “DNA-binding” (KW-0238),
“cytoskeleton” (KW-0206), “cell projection” (KW-0966) and “intermediate filaments”
(KW-0403). Sequence composition from the LLPS and non-LLPS were evaluated by
the Composition Profiler (available at http://www.cprofiler.org/cgi-bin/profiler.cgi). Results
were plot in GraphPad Prism v.6. Prion-like regions were analyzed by PLAAC (available at
http://plaac.wi.mit.edu/).

3. Results

3.1. How is the perinuclear space organized?

To evaluate how the perinuclear region of eukaryotic cells is organized, we initially analyzed
COS-7 fibroblastic cells after membrane extraction, which reveals the fine ultrastructure of
the nuclei and the cytoskeleton system. An intricate three-dimensional network of filaments
and protein aggregates was seen occupying the cytoplasmic space and associated with

the nuclei (Fig. 1A). This 3D nuclear space extends ~2-5 pm from the outer nuclear

surface towards the cytoplasm. High magnification images showed the common cytoskeletal
filaments like actin microfilaments (~7 nm) and intermediate filaments (~12 nm) (Fig. 1B).
Since we did not use Taxol to preserve the microtubules while extracting the membranes, we
assumed that most of the thicker filaments were made of intermediate filaments. In addition,
those thicker filaments exhibited few branches, which do not occur with microtubules

(Fig. 1B). After lipids were dissolved, round aggregates of proteins were found adhered

to cytoskeletal filaments, varying in size from a minimum of 30 nm and maximum of

80 nm in diameter (average = 40 + 18 nm, NV/= 8 cells). We cannot determine whether

all (or part) of the aggregates were already attached to the filaments before the extraction/
fixation. However, we speculate that those complexes floating around without a strong
interaction would be washed out. The dense network of cytoskeleton filaments surrounding
the nucleus creates the proper environment for biochemical processes, such as the regulation
of the traffic of molecules between the nucleus and the cytoplasm, RNA processing, protein
synthesis, and modulation of signaling pathways. Interestingly, we noticed in many instances
intermediate filaments strongly attached to the outer nuclear membrane (Fig 1B).

Next, we further explored the perinuclear region of cells using ultrathin sections. Mouse
cardiomyocytes showed a close interaction between the outer nuclear surface and several
organelles, such as mitochondria, Golgi apparatus, vesicles and myofibrils (Fig. 1C-G).
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Interestingly, we observed layers of myofibrils oriented parallel to the nuclear cloud (Fig.
1D, G), with Zdisks and T-tubules apparently anchored to the nuclear surface through tiny
filaments (Fig. 1G). Also, cytoskeletal filaments were seen close to the nucleus, likely to

be intermediate filaments (Fig. 1C). Mitochondria, which are mostly intercalated among the
myofibrils, were seen in the nuclear cloud (Fig. 1C, D, F, G).

We also analyzed embryonic chick skeletal muscle cells under TEM (Fig. 2A-D). Fig. 3A is
a low magnification image where many Golgi cisternae are preferentially localized adjacent
to the nucleus. Not only the Golgi, but lysosomes also seem to be attached to the outer
nuclear membrane (Fig. 2B). Mitochondria, on the other hand, have a broader distribution,
although some are remarkably close to the nucleus (Fig. 2C, D).

3.2. Which proteins localize within the perinuclear space?

Since several protein aggregates were observed in close interaction with the external nuclear
surface, we decided to evaluate which proteins were reported to be found at the perinuclear
region of eukaryotic cells. A bibliometric approach was employed in which the entire
PubMed database was scanned for articles reporting proteins with a perinuclear localization.
Seventy nine perinuclear proteins were found (Table 1) and classified in three different
groups according to their functions: cytoskeleton, vesicular traffic, and signaling. Most of
these proteins (60%) were cytoskeletal. All three classes of cytoskeletal filaments were
found, namely, microfilaments (MF), microtubules (MT) and intermediate filaments (IF),
including the proteins actin (MF), alpha/beta/gamma tubulin (MT), desmin (IF), vimentin
(IF), neurofilament (IF), keratin (IF), glial fibrillary acidic protein (IF), nestin (IF) and
peripherin (IF). Interestingly, several cytoskeletal-associated proteins, such as alpha-actinin
(MF), arp2/3 (MF), filamin (MF), formin (MF), rac1 (MF), plectin (IF), and the motor
proteins myosin, dynein and kinesin were among them. The second most represented group
(25%) of perinuclear proteins was involved in cell signaling, including Calpain-3, Gli-1,
Lmo7, Rafl, Huntingtin, p53, and PrP. Several proteins involved in vesicular trafficking
were also identified (15%) among the preferentially nuclear localized proteins, including
Rab, alpha- and gamma-synuclein, and VAMP (Table 1).

Fig. 3 provide some examples of the perinuclear localization of reported cytoskeletal and
signaling perinuclear proteins, including desmin, alpha-actinin, Lmo7 and Gli-1. Lmo7 is a
scaffolding protein that carries Lim and F-box domains, which enables the protein to interact
with different partners (in the cytoplasm and within the nucleus) and to act like a signaling
hub [18,19]. Lmo7 is concentrated at the perinuclear space of chick skeletal muscle fibers
(white arrows in Fig. 3A, B), suggesting that this location might be related to changes in
nuclear transport dynamics in muscle cells, as previously described [20].

Gli-1 is an effector protein in the sonic hedgehog signaling pathway in eukaryotes and
involved in several processes, including cell fate, proliferation, and differentiation [21].
Gli-1 can move from the perinuclear space to the nucleus and vice-versa, and within the
nucleus can regulate gene expression [22]. Fig. 3C-E show Gli-1 perinuclear location in
embryonic skeletal muscle fibers.
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Alpha-actinin is an actin-associated protein found in multiple actin-containing cellular
structures, including cell-matrix adhesion sites, contractile ring in cytokinesis, and
perinuclear actin cap [23]. A thin dotted line of sarcomeric alpha-actinin can be found

at the perinuclear region of skeletal myoblasts (Fig. 3F), where it is probably acting as an
actin crosslinking factor.

Desmin is a muscle-specific IF protein and one of the first cytoskeleton proteins to be
expressed in muscle cells [24]. Most IF proteins have a perinuclear distribution in eukaryotic
cells and desmin has been shown to be stably associated with the outer nuclear surface

in embryonic chick myoblasts (Fig. 3G and H, and [25]), where its function has been
associated with providing structural support and shape to the nucleus. Fig. 3G and H

show a dense network of desmin IFs around the nuclei of mononucleated myoblasts and
multinucleated myotubes, respectively. Interestingly, the web of desmin IFs present in the
perinuclear space seems to be denser in myoblasts than in myotubes (Fig. 3G and H).

Next, we analyzed the perinuclear distribution of proteins in eukaryotic cells /n vivo,
focusing on the distribution of desmin in whole zebrafish embryos. Confocal images of
different focal planes (Fig. 4A-K) confirmed the perinuclear localization of desmin in newly
formed muscle somites at the most caudal region of 24-h zebrafish embryos (white arrow

in Fig. 4D). A 3D reconstruction of desmin IFs distribution at the perinuclear cloud of
zebrafish embryos in shown in Supplementary Video 1. Desmin was also found concentrated
adjacent to the septa between muscle somites in zebrafish embryos (black arrow in Fig.

4K). These results are in accordance with previous data from our group showing the
concentration of desmin around the nucleus in recently born zebrafish somites [26], and
support the existence of a perinuclear region in which specific proteins concentrate in both
in vitro and in vivo eukaryotic cells.

We also evaluated the disease context of all the perinuclear proteins described in Table 1.
Our data shows that alterations in the expression of perinuclear proteins can lead to several
pathological disorders, including atherosclerosis, autoimmune diseases, cancer, cardiac and
skeletal myopathies, diabetes, inflammatory diseases, neurodegenerative disorders, obesity,
skin disorders, and viral infection. These results suggest that alterations in their expression
and/or intracellular distribution are critical for cell, tissue and organ’s structure and function,
and highlight their important role in health and disease. Importantly, among the most
prevalent diseases associated with perinuclear proteins were neurodegenerative disorders
(50%), cancer (45%), cardiac and skeletal myopathies (27%), immune/inflammatory
diseases (17%), viral infection (13%) and skin disorders (10%). These data might be
strategic for the development of new therapeutic approaches towards these pathological
conditions. Interestingly, it has been described that structural disorder significantly
distinguishes proteins up-regulated in neurodegenerative diseases from those linked to
cancer [27]. These authors also observed high correlation between structural disorder and
age of onset in several neurodegenerative diseases, which strongly supports the role of
protein unfolding in neurodegenerative processes [27].

Curiously, many viral proteins and/or RNA have been reported to have a perinuclear
distribution during a virus cycle within eukaryotic cells. These data are not included in
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Table 1, but clearly highlight the important role of the nuclear space for virus-related cellular
processes. Hantavirus, rotavirus, hepatitis virus, baculovirus, measles virus, yellow-fever
virus, and severe acute respiratory syndrome-associated virus (SARS-CoV) are among the
virus proteins and/or virus RNA detected within the nuclear cloud [28]. Importantly, Table 1
shows data related to the perinuclear localization of cellular proteins, but not viral proteins,
involved in viral infection. Coatomer subunit epsilon (COPE), endophilin B2, nuclear pore
complex protein, nucleoporin (Nup), promyelocytic leukemia protein (PML), Rabring?,
spectraplakin/Shot and stimulator of interferon genes protein (Sting) are among the cellular
proteins involved in viral infection and detected within the perinuclear space of eukaryotic
cells. These data could have valuable impact in new therapeutic strategies targeting viral
infections.

3.3. Are IDPs present in the nuclear space?

Since several proteins show a perinuclear localization, we questioned whether they have an
enriched intrinsic disorder content, which is an important feature of LLPS “driver” proteins.
In addition to data gathered from the literature (Table 1), we retrieved the human mature
protein sequences from UniProt described in the subcellular localization of the perinuclear
region (Supplementary Table 1, data S1). Only five proteins (STING, Src, oxysterol-binding
protein 1, gamma-synuclein and phospholipase D1) from the entire literature group (7=

79) were listed in the perinuclear UniProt dataset (Supplementary Table 1, data S3). Taking
together the literature group and UniProt dataset, the perinuclear group contained 359
unambiguously proteins (Supplementary Table 1, data S1 and Table 1).

Using the charge-hydropathy (CH-plot) that enables differentiation of globular proteins
versus IDPs based on the peculiar amino acid composition of IDPs [29], we observed 37
proteins from the perinuclear group in the plot space allocated to highly disordered proteins
(Fig. 5). The functional annotation of these IDPs is shown in data S4 from Supplementary
Table 1. Since this is a binary predictor and the fact that many proteins show a partly
disordered nature, a clear differentiation of proteins containing short/long regions of disorder
is not possible in the plot.

From the 285 proteins extracted from UniProt, the analysis by the Predictor of Natural
Disordered Region (PONDR-VSL?2) revealed 60% (171 proteins) with a disorder content
above one-third of their primary sequence (>33.3% of overall disorder) (Supplementary
Table 1, data S3). The disordered regions with at least 15 residues are listed in
Supplementary Table 1, data S1. Moreover, the DisProt database of IDRs/IDPs with
experimental biophysical evidence for disorder reported 20 perinuclear proteins that contain
one or more regions of disorder (Supplementary Table 1, data S3, highlighted in grey).
Regarding the perinuclear dataset from literature, we selected proteins involved in signaling
and/or vesicular trafficking for intrinsic disorder analysis, since cytoskeleton components
generally have a well-defined 3D fold (Supplementary Table 1, data S2). Among the 41
proteins analyzed, 22 (54%) show a total disorder content above 33.3% or are annotated

in the DisProt database. Taken together, we identified 193 perinuclear proteins with
enriched intrinsic disorder (=33.3% of disorder by PONDR-VSL2 or IDPs/IDRs annotated
in DisProt), as shown in Table 2.
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3.4. Are perinuclear IDR-containing proteins predicted to undergo LLPS?

Given the enrichment of IDPs/IDR-containing proteins localized in the perinuclear region,
we asked if they could undergo phase separation using LLPS predictors. The catGRANULE
algorithm calculates LLPS ability based on the following features: primary structure
composition, structural disorder, and RNA-binding propensity. The algorithm uses as input
a database with 120 granule-forming proteins from about 4000 in the yeast proteome [30].
Interestingly, about 83% (161 proteins) of the predicted disordered perinuclear protein
dataset showed a minimum threshold for LLPS (score above 0) by the catGRANULE
analysis (Table 2, sixth column). Proteins with a more rigorous catGRANULE LLPS score
(=0.5) corresponds to 55% (106 proteins), as shown by a blue shade in Table 2. Vernon et al.
[17] reported that low complexity regions of LLPS-forming proteins contain a high number
of side chains that establish pi-pi contacts, especially planar such as v/a the guanidinium
from arginine, and aromatic rings (pi-stacking). Thus, the PScore reports phase separation
behavior considering the frequency of pi-pi contacts [17]. Analysis by the PScore algorithm
detected 19 proteins that might undergo LLPS mostly driven by pi-pi contacts (score = 4.0)
(Table 2, highlighted in yellow). To identify published experimental evidence of LLPS in
the perinuclear IDR-containing group, we analyzed the datasets from Hardenberg et al. [31],
who compiled data from several LLPS-related repositories based on /n vitro and/or in vivo
evidence. Also, we manually searched for references describing protein liquid behavior as
shown in Table 2. From the 31 proteins with LLPS described in published studies, 6 proteins
are predicted by both catGRANULE and PScore, while 12 proteins did not show a LLPS
score by both algorithms (Fig. 6A). Moreover, 13 proteins with proven LLPS showed an
intersection solely with catGRANULE, and one protein is predicted solely by PScore (Fig.
6A). Together with the IDR-containing proteins with evidence of LLPS, we selected the
ones predicted by both catGRANULE and PScore for further bioinformatics analysis (total
of 43; named herein as perinuclear LLPS-IDR-containing proteins).

3.5. Do the perinuclear IDR-containing proteins engage in a network with specific

functions?

It is known that liquid condensates can harbor hundreds of ‘client’ proteins, but also

many LLPS drivers can conjunctly contribute to condensate assembly through multivalent
heterotypic interactions. Based on that, we submitted the LLPS-IDR-containing group and
the IDR-containing (not predicted by catGRANULE + PScore; or not present on LLPS
literature; total 74 proteins), respectively, to the STRING network database (Fig. 6B).
Functional and physical protein interactions are observed in both groups, being p53 in

the LLPS-group an important interaction hub whereas MX1, SNAP25 and HRas were the
most connected proteins (above 4 edges). Considering only physical interactions, albeit the
LLPS-group harbor less members (43), they interact significantly more than the 74 members
of the non-LLPS-IDR-containing group (LLPS-group: 26 edges versus IDR-group: 14 edges
(Fig. 6C). Additionally, p53 might be a key protein in the perinuclear LLPS group as
highlighted by its multiple protein partners. In the non-IDR-group, the proteins assigned

in Fig. 6B did not reveal significant physical contacts to other members, and any protein
member stand out for several interactions (Fig. 6C).
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Interestingly, mRNA transport was the most enriched UniProt keyword for the LLPS-IDR-
group (strength 1.34). This was followed by other 15 UniProt keywords, being the most
enriched (strength >1.00): biological rhythms (strength 1.20) and host-virus interaction
(strength 1.01). Analysis of the IDR-group showed 5 UniProt keywords associated:
immunity (strength 0.66); cell projection (strength 0.60); cytoplasm (strength 0.57); coiled-
coil (strength 0.46) and phosphoprotein (strength 0.19). However, the top three UniProt
keywords strengths are significantly lower (below 0.70) for the IDR-containing group.

3.6. Are perinuclear IDR-containing proteins involved in nucleic acids processes?

Nucleic acids (NA), especially structured regions in RNA/DNA can act as a scaffold for
LLPS. In addition, nuclear mRNAs exported to the cytoplasm pass through the perinuclear
region where ribonucleoproteins, if present, could be involved in transporting them. LLPS
is involved in RNA storage, processing, and transport as well as various processes in the
nucleus (transcriptional regulation, DNA repair, organization of chromatin, among others).
Thus, we sought to determine if the perinuclear LLPS-IDR-containing are more frequently
involved in NA-related metabolism as opposed to the IDR-containing (not predicted by
catGRANULE + PScore; or not present on LLPS literature; total 74 proteins). To verify
that, we analyzed annotations on UniProt keywords related to NA-processes and merged
the results on the STRINGS network. This analysis revealed about 74% (32 proteins) from
the LLPS-IDR-containing group related to NA-processes (Fig. 6C, top network). In case of
the IDR-containing proteins that would not undergo LLPS, 49% (37 proteins) are related to
NA metabolism (Fig. 6C, bottom network). We then used ‘cytoskeleton’, ‘cell projection’
and ‘intermediate filaments’ as UniProt keywords, to investigate the participation on these
cytoskeleton-related processes. Proportionally, both groups showed a similar association

to cytoskeleton-derived processes (~35% of members from LLPS-IDR group and 39% of
members from IDR-group) (Fig. 6C).

3.7. Structural features of perinuclear IDR-containing

The IDR-containing proteins (LLPS and non-LLPS groups) belong to different families and,
most of them do not have a three-dimensional structure for the full polypeptide segment.
The flexible nature of IDRs together with the phase separation ability can significantly
hamper structural determination, especially by nuclear magnetic resonance spectroscopy in
solution. In addition, STRING (v7a searching in SMART tool) did not report any conserved
domain among the IDR-containing proteins. To better understand the differences between
the perinuclear LLPS-IDR and non-LLPS groups, we analyzed the amino acid composition
of the IDR-containing proteins (LLPS and non-LLPS groups) using as background globular
proteins from the Protein Data Bank with a sequence identity below 25% (PDBS25).
Analysis by the Composition Profiler [32] tool showed that, generally, both groups are
enriched in disorder-promoting residues (red bars) and depleted in order-promoting residues
(blue bars), as expected (Supplementary Fig. 2). However, the LLPS proteins showed an
increased value of proline, glutamine, glycine and histidine compared to the non-LLPS
members. In addition, cysteine, glutamate and leucine were increased in the non-LLPS
proteins as compared to the LLPS ones. The high content of proline, glutamine and

glycine, amino acids, commonly found in prion-like domains, prompted us to investigate
the presence of them across the LLPS and non-LLPS groups. While the 74 members of
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non-LLPS group did not show any predicted prion-forming sequence, the LLPS group
showed 8 members (out of the 23) containing potential prion-like domains, as predicted by
the PLAAC algorithm [33]. This included CREB-binding protein (UniProt Q92793; PLAAC
PRDscore 102.5), HAT p300 (UniProt Q09472; PLAAC PRDscore 102.6), Atrophin-1
(UniProt P54259; PLAAC PRDscore 43.8), PrP (UniProt P04156; PLAAC PRDscore 16.8),
CASC3 (UniProt 015234; PLAAC PRDscore 18.3), NUP98 (UniProt P52948; PLAAC
PRDscore 13.3), Myelin-associated neurite-outgrowth inhibitor (UniProt ALKXE4; PLAAC
PRDscore 16.7) and CPE-binding protein 4 (UniProt Q17RY0; PLAAC PRDscore 14.1).
These finding are consonant to the property of low complexity prion-like regions driving
LLPS.

4. Discussion

The collection of our findings points to the existence of a highly organized network of
cytoskeletal filaments intermingled with several structural and signaling proteins in the
perinuclear region of eukaryotic cells. Furthermore, we show that several perinuclear
proteins are predicted to be intrinsically disordered. Since a common feature implicated

in LLPS is the presence of disordered regions, enabling fluctuation in an ensemble of
conformations (reviewed in Uversky [34]), our data point to an important function of IDPs
as signaling hubs within the perinuclear cloud. Several perinuclear IDPs might function as
scaffolding proteins that regulate “on-off” switches in signaling pathways by their phase
separation property.

Disordered regions can form a combination of weak interactions drove by ‘sticker’ residues,
that establish intra/intermolecular contacts forming supramolecular structures (reviewed in
Boeynaems et al. [8]). These transient interactions can be within monomers (homotypic) or
between protein-ligand such as RNA (heterotypic), and the multiple contact points create a
3D network of molecules driving a two-phase regime, a protein/RNA-rich phase (dense) is
formed separately from a dispersed (light) phase containing a low concentration of the same
molecules (reviewed in Boeynaems et al. [8]). The main property associated to the phase
separation ability is multivalency, because of that, not only disordered regions can function
as ‘sticky” patches but molten globule regions (e.g. p53-TAD) [35] and repeated folded
domains (e.g. SH3) can also mediate labile crosslinks involved in phase separation (reviewed
in Peran and Mittag [36]). However, since IDRs can self-associate at a low concentration,
they more often mediate LLPS intracellularly (at a physiological condition). ‘Spacers’

are residues that interleave the sticky patches and whose degree of solvation impacts on

the material properties of a phase-separated state and the onset of phase separation [37].
Positive and aromatic side chains are example of stickers that can drive a two-phase regime
by cation-pi, and pi-pi contacts, respectively. Spacers are constituted by polar residues,

for instance, Gly-rich regions that show an increased flexibility and contribute to liquid
condensates [37]. Oppositely, spacers such as serine and proline promote more ordered
phase separated states with lower fluidity [37,38]. Structural studies on dissecting the
atomic level structure of condensates revealed that determinants of LLPS are complex, and
the dissociation between a solely IDP-driven phenomenon is needed since the condensate-
forming protein can have a compact 3D structure when phase-separated [39-41]. In many
instances, albeit changes in internal dynamics, IDRs can remain disorder in condensates
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(reviewed by Peran and Mittag, 2019). However, some IDRs enriched in aromatics (not
clustered), can transit to reversible B-sheets during LLPS, this folding is transient as
opposed to stable steric zippers found in amyloids (reviewed by [36]). In addition, the tumor
suppressor protein p53, which arose as an important hub in the perinuclear space (Fig. 6B
and C) undergoes LLPS /n vitroin a mild denaturing condition (800 mM GndHCI) known
to contain a significant population in the molten globule conformation [35]. The pre-molten
globule-like structure of retinoid X receptor (hRXRy) has also been associated to drive
LLPS [42].

Interestingly, condensates can recruit specific “client’ proteins to catalyze reactions.

We hypothesize that the protein aggregates that we observe in the nuclear cloud by
electron microscopy of detergent-extracted cells may be protein-rich granules drove by IDR-
containing proteins. Together with intrinsic disorder, NA-binding residues and enrichment
of pi-stacking side chains are explored by LLPS predictors such as catGRANULE [30]
and PScore [17]. The perinuclear IDR-containing proteins (predicted by both algorithms
or with proven LLPS) showed an enrichment in mRNA transport function as opposed to
the IDPs not predicted to undergo LLPS (Fig. 6). In addition, the perinuclear IDPs from
LLPS group were more enriched in specified residues (proline, glutamine, glycine and
histidine) whereas the non-LLPS set had glutamic acid and cysteine increased over the
PDBS25 background (Supplementary Fig. 2). Furthermore, the LLPS set contains proteins
with prion-like domains as opposed to the non-LLPS group (discussed in Section 3.7).

Notably, the signaling proteins studied by immunofluorescence microscopy herein, Gli-1
and Lmo7, show long regions of disorder and high scores for condensation (Table 2). These
two proteins are transcription factors (TFs), and likely use its phase separation ability to
positively/negatively regulate transcription as reported for other TFs (reviewed in Peng et
al. [43]). Indeed, Gli-1 and Lmo7 showed a punctate-pattern reminiscent of liquid-like
condensates in the perinuclear region (Fig. 3). Additionally, Gli-1 [21] and Lmo7 [44]

are involved in a variety of cancer types, hence, aberrant LLPS of these proteins might
contribute to tumor development, configuring an important issue to address in further work.

Seventy nine perinuclear proteins were found through a bibliometric approach using

the descriptors “perinuclear protein” in the entire PubMed articles database, while 285
perinuclear proteins were retrieved from UniProtKB/Swiss-Prot, with only five proteins
found in both search strategies. Such difference in the number of perinuclear proteins

in these two approaches suggest the need for a clear definition and characterization of
what defines the limits of the nuclear cloud and which proteins and structures are their
constituents. During our survey it became clear that several published articles do not
describe perinuclear proteins in their results, even though images of proteins with an
undoubted perinuclear localization are present in these papers. For this reason, we foresee
that the number and importance of perinuclear proteins (IDPs and non-IDPSs) in eukaryotic
cells will certainly increase in the next few years.

Our data show that different organelles are positioned within the nuclear cloud.
Mitochondria, lysosomes, endoplasmic reticulum, Golgi, and vesicles were found near or
in association with the external nuclear surface. Particularly, lysosomes have been reported
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to be distributed in a rather immobile pool located around the microtubule-organizing center
in a cloud, and a highly dynamic pool in the cell periphery [45]. These authors describe that
the perinuclear cloud appears to be a site for efficient maturation of endosomes. Lysosomes
have recently been associated with cell signaling. Lysosome surfaces serve as a platform

to assemble major signaling hubs such as mTORC1, AMPK, Whnt/beta-catenin and the
inflammasome [46]. Bagri et al. [47] describe canonical Wnt/beta-catenin activators (BIO
and Wnt3a) that induce the perinuclear positioning of lysosomes in cultured muscle cells,
suggesting that the Wnt/beta-catenin pathway can modulate the distribution of lysosomes
and induce their concentration within the nuclear cloud.

In a broad sense, our findings highlight the structural and signaling role of an intricate

3D network of cytoskeletal filaments and their associated proteins connected to the

outer nuclear surface and extending several micrometers into the cytoplasm of eukaryotic
cells. These results are in accordance with a previous study showing that the perinuclear
cytoskeleton is a region with different mechanical properties than elsewhere in the cytosolic
cytoskeleton, with heterogeneously distributed locations exhibiting subdiffusive features
[48]. Indeed, we found that roughly 60% of all reported perinuclear proteins are components
of the cytoskeleton. Earlier work from our lab has shown that desmin intermediate filaments
are stably connected to the outer nuclear surface in skeletal muscle cells /7 vivoand in vitro
[25].

Thus, our findings suggest that the perinuclear cloud is composed of a complex 3D network
of cytoskeletal filaments intermingled with multiple structural and signaling proteins,
including several IDPs that form biomolecular condensates, and with several organelles
bound to the cytoskeleton (Fig. 7 and Table 3). The nuclear cloud has several functions,
such as to provide structural support for the nucleus, to control nuclear size and position,

to regulate the traffic of molecules between the nucleus and the cytoplasm, to process

RNA molecules, to regulate protein synthesis, to modulate several intracellular signaling
pathways, and to allow a dynamic interaction between the nucleus and other organelles and
cellular structures (Table 3).

The existence of a membraneless region that concentrates specific structural and signaling
proteins at the periphery of the nucleus might be an ancient feature acquired during the
evolution of eukaryotic cells. This hypothesis is supported by previous studies showing that
the perinuclear concentration of proteins and organelles is present in several eukaryotic
unicellular organisms, such as Leishmania [49]. This membrane-free region might have been
a key acquisition of a highly organized compartment in ancient eukaryotes providing them
with new advantages over competing unicellular organisms.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Ar? intricated network of cytoskeletal filaments and several organelles are found in the
nuclear space of eukaryotic cells. (A and B) COS-7 cells were extracted and analyzed under
transmission electron microscopy. Note the presence of a dense network (in A and B) of
cytoskeletal filaments (Fi) linked to the nucleus (Nu). In the higher magnification (B) it is
possible to see several protein aggregates (Ag) attached to the cytoskeletal network. Scale
bars in A and B = 500 nm. (C-G) 2-month-old mouse cardiac tissues were processed for
transmission electron microscopy and images show mitochondria (Mt), Golgi apparatus (G),
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vesicles (Ve), myofibers (Mf), and cytoskeletal filaments (Fi) in proximity with the nucleus
(Nu). Arrow in (C) shows cytoskeletal filaments in the perinuclear space, arrow in (D) shows
mitochondria in close contact with the outer nuclear membrane, and arrow in (G) points to
the Z-disk of a myofibril in the vicinity of the nucleus. Scale bars in C-G =2 pym. V=3
independent experiments.
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Fig. 2.
Lysosomes, mitochondria and Golgi are components of the nuclear cloud. Embryonic chick

pectoral muscle was processed for transmission electron microscopy and organelles were
digitally colored to facilitate the visualization. Images show lysosomes (Ly, in green in A
and B), mitochondria (Mt, in red in C and D), endoplasmic reticulum (Er in C), and Golgi
(G, in pink in A and B) in proximity with the outer nuclear membrane (Nu). The highly
packed nuclear compartment nucleoli (Nuc, in dark yellow) are seen within the nucleus
(light yellow) of muscle cells (in A and B). Some lysosomes (in A and B) and mitochondria
(in C and D) seem to be adhered to the nuclear surface. Bars in A and C = 1 pm, and bars in
B and D =500 nm. /=4 independent experiments.
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Lmo7 Lmo7?

Gli1

alpha-actinin/dapi

alpha-
actinin

desmin

Fig. 3.

Lr%o?, Gli1, alpha-actinin and desmin are concentrated in the nuclear cloud in skeletal
muscle fibers. Primary cultures of chick myogenic cells were labeled with antibodies against
Lmo7 (B), Glil (C-E), alpha-actinin (F) and desmin (G-H), and with the nuclear dye

DAPI (D-F). A 72-h chick multinucleated myotube was visualized under phase contrast
microscopy (A) and under fluorescence microscopy to show the localization of Lmo7
(green, in B). Arrows in A and B point to Lmo7 distribution near the nuclear surface of

a myotube. White open circles (in A and B) mark the region of one nucleus surrounded
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by Lmo7-positive aggregates. Scale bar in A = 10 pm. Gli-1 (red, in C and E) localizes

at the perinuclear region of a 72-h multinucleated myotube (arrow in E). A merged image
(with Glil1 and DAPI) is shown in E. Scale bar in E =5 pm. The intermediate filament
desmin and the sarcomeric protein alpha-actinin accumulate at the perinuclear region of
mononucleated myoblasts (F and G) and multinucleated myotubes (H). A merged image

of sarcomeric alpha-actinin and DAPI is shown in (F). Note the punctate distribution of
alpha-actinin (arrows in F) and the continuous distribution of desmin filaments (arrows in G
and H) in the juxtanuclear region of cells. Scale bars in Fand H=10 um, and in G =5 um. n
= 4 independent experiments.
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dapi

Fig. 4.
Desmin accumulates at the perinuclear region of early somites in zebrafish embryos. 24-h

zebrafish embryos were labeled with an antibody against the muscle-specific intermediate
filament protein desmin (red, in A-K) and with the nuclear dye DAPI (cyan, in A-K).
Higher magnifications of the area marked in the inset in (A) are shown in images (B-K).
Immunofluorescence confocal images of different focal planes (1 um apart, in B-K) show
the perinuclear localization of desmin (white arrow in D) in somite 28 at the most caudal
region of a 24-h zebrafish embryo. Desmin is also found at the septa between adjacent
muscle somites 28 and 29 in zebrafish embryos (black arrow in K). Scale bar in K = 10 um.
N = 4 independent experiments.
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Some proteins of the perinuclear region show the unusual chemical characteristics of IDPs.
(A) The charge-hydropathy analysis of the human perinuclear proteins retrieved from the
UniProt database (purple squares) and literature (green circles). Inset: globular folded
proteins represented as blue circles and natively unfolded proteins as red dots. (B) Zoomed
area marked by dashed line from “A”. (C) List of perinuclear proteins with the exquisite
charge-hydropathy of IDPs, numbers refer to “B”. Plot described by [29] using 275 globular
proteins (blue circles) and 91 IDPs (red circles) that enable differentiation (black line) by
their charged and hydrophobic nature at pH 7.0 and obtained by PONDR (available at http://

www.pondr.com/).
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Fig. 6.
Perinuclear IDR-containing proteins with phase separation ability. (A) Venn diagram

(analyzed with BioVenn, available at http://www.biovenn.nl) showing the overlap between
predictions by catGRANULE (score = 0.5), PScore (score = 4.0) and perinuclear proteins
with peer-reviewed published evidence of phase behavior (in vitro and/or in vivo). (B)

STRING network of functional and physical protein-protein interactions. Top: perinuclear
LLPS-IDR-containing proteins with 43 members. Bottom: LLPS-IDR-containing proteins
with 74 members. Proteins highlighted in cyan are potential hubs using this classification.
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(C) Combined STRING (only physical interaction shown) and UniProt keywords evaluation
of NA-related and cytoskeleton-related processes. Top: LLPS-IDR-containing proteins.
Bottom: non-LLPS-IDR-containing proteins. Evidence from literature is assigned with
PMID. Legend is shown in the middle.
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Fig. 7.

Sc%ematic representation of the nuclear cloud of eukaryotic cells. This model illustrates the
complex organization of the perinuclear space (shown in light green) of eukaryotic cells. An
intricate 3D network of cytoskeletal filaments is found attached to the nuclear membrane
(yellow). Several proteins participate in this organization: cytoskeletal (microfilaments

in green, microtubules in red and intermediate filaments in blue) and cytoskeletal

associated proteins (plectin, alpha-actinin, and others), nesprins, SUNs, among many
others. Dynamic biomolecular condensates drove by intrinsically disordered proteins (IDPs),
have a higher propensity to be assembled (small green spheres). Different organelles and
cellular structures are also present in the nuclear could: mitochondria (orange), lysosomes,
endoplasmic reticulum, Golgi, vesicles, centrosome (grey), and myofibers (in muscle cells).
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Table 3

Main characteristics of the nuclear cloud. The main proteins, structures, organelles and functions of the
perinuclear space are described.

Char acteristics and functions of the perinuclear space

Perinuclear cytoskeleton: 3D network of cytoskeletal filaments, including a perinuclear actin cap (MFs) and a high number of actin-associated
proteins; MTOC/centrosome, network of MTs and MAPs; web of IFs and plectins (IF-associated proteins)

Perinuclear membranous organelles: ER, Golgi, mitochondria, lysosomes, vesicles
Perinuclear proteins: structural (cytoskeletal), vesicular trafficking and signaling proteins, including several IDPs

Perinuclear functions:
Provide a structural support for the nucleus
Spatial organization of the perinuclear space
Serve as a hub for the positioning of several organelles
Control of nuclear size
Control of nuclear position
Regulation of the molecular traffic between the nucleus and the cytoplasm Processing of RNA molecules
Regulation of protein synthesis and PTMs
Regulation of signaling pathways
Provide a dynamic interaction between the nucleus and other organelles

Disease context: alterations in the expression of perinuclear proteins can lead to several pathological conditions, such as neurodegenerative
disorders, cancer, cardiac and skeletal myopathies, immune/inflammatory diseases, and skin disorders

ER = endoplasmic reticulum, IDPs = intrinsically disordered proteins, IFs = intermediate filaments, MAPs = microtubule-associated proteins, MFs
= microfilaments, MTs = microtubules, MTOC = microtubule-organizing center, PTMs = post-translational modification of proteins.
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