

HHS Public Access

Author manuscript Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2022 August 18.

Published in final edited form as: *Biochim Biophys Acta Mol Cell Res.* 2022 January ; 1869(1): 119161. doi:10.1016/ j.bbamcr.2021.119161.

The perinuclear region concentrates disordered proteins with predicted phase separation distributed in a 3D network of cytoskeletal filaments and organelles*

Mariana Juliani do Amaral^a, Ivone de Andrade Rosa^b, Sarah Azevedo Andrade^b, Xi Fang^c, Leonardo Rodrigues Andrade^{b,d}, Manoel Luis Costa^b, Claudia Mermelstein^{b,*}

^aFaculdade de Farmácia, Universidade Federal do Rio de Janeiro, RJ, Brazil

^bInstituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil

^cDepartment of Medicine, University of California, La Jolla, CA, USA

^dSalk Institute for Biological Studies, Waitt Advanced Biophotonics Core, La Jolla, CA, USA

Abstract

Membraneless organelles have emerged during the evolution of eukaryotic cells as intracellular domains in which multiple proteins organize into complex structures to perform specialized functions without the need of a lipid bilayer compartment. Here we describe the perinuclear space of eukaryotic cells as a highly organized network of cytoskeletal filaments that facilitates assembly of biomolecular condensates. Using bioinformatic analyses, we show that the perinuclear proteome is enriched in intrinsic disorder with several proteins predicted to undergo liquid-liquid phase separation. We also analyze immunofluorescence and transmission electron microscopy images showing the association between the nucleus and other organelles, such as mitochondria and lysosomes, or the labeling of specific proteins within the perinuclear region of cells. Altogether our data support the existence of a perinuclear dense sub-micron region formed by a well-organized three-dimensional network of structural and signaling proteins, including several proteins containing intrinsically disordered regions with phase behavior. This network of filamentous cytoskeletal proteins extends a few micrometers from the nucleus, contributes to local crowding, and organizes the movement of molecular complexes within the perinuclear space. Our findings take a key step towards understanding how membraneless regions within eukaryotic cells can serve as hubs for biomolecular condensates assembly, in particular the perinuclear space. Finally, evaluation of the disease context of the perinuclear proteins revealed that alterations in

^{*}Special section on "State without borders: Membrane-less organelles and liquid–liquid phase transitions"; Edited by Vladimir N Uversky.

^{*}Corresponding author. mermelstein@ufrj.br (C. Mermelstein).

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bbamcr.2021.119161.

Ethics statement

The use of chick embryos and zebrafish embryos was approved by the Ethics Committee for Animal Care and Use in Scientific Research from the Federal University of Rio de Janeiro and received the approval numbers: 069/19 for the chick embryos and 039/20 for the zebrafish embryos.

CRediT authorship contribution statement

CM conceived the work. CM, IAR, LRA, MJA, MLC, SAA and XF contributed to the acquisition of data and their analysis. CM and MJA wrote the first draft of the manuscript. All authors contributed to manuscript revision and approved the submitted version.

their expression can lead to several pathological conditions, and neurological disorders and cancer are among the most frequent.

Keywords

Intrinsically disordered protein/region; Liquid-liquid phase separation; Biomolecular condensates; Membraneless organelles; Perinuclear; Nuclear cloud

1. Introduction

During evolution, different eukaryotic cells have emerged with highly specialized structures and functions. Despite these differences, all eukaryotic cells share common intracellular membranous organelles (MOs), such as the nucleus, endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, peroxisomes, and endosomes. MOs are important eukaryotic achievements, as they allow specialized processes, such as energy production and synthesis of macromolecules, to occur concomitantly at different subcellular locations within a single cell. Along with MOs, membraneless organelles (MLOs) have also evolved in eukaryotes to organize the complexity of the intracellular space [1]. Well-characterized examples of MLOs include the nucleolus in the nucleus [2,3], as well as centrosomes, ribosomes, and proteasomes in the cytoplasm [4,5]. Recently, it has become clear that MLOs are liquid compartments assembled through liquid-liquid phase separation (LLPS) [4,6,7]. The unique dynamic properties of liquids (coalesce, deform, show fusion and fission behavior) allow fine spatiotemporal control of diverse cellular reactions (reviewed in Boeynaems et al. [8]).

This prompted us to postulate that the perinuclear space acts as a hub for condensation, favoring multivalent contacts and enhancing phase separation. Several "client" proteins may partition into condensates to perform signaling functions. In addition, membranous organelles located in the perinuclear space such as the endoplasmic reticulum, mitochondria, lysosomes, vesicles and endosomes, can function together with biomolecular condensates intertwined in cytoskeleton networks (reviewed in Koppers et al. [9]). To summarize, when proteins with LLPS ability reach the perinuclear region, they are prone to phase separate in this peculiarly crowded sub-region.

The perinuclear space has different functions, such as regulating the traffic of molecules between the nucleus and the cytosol, providing structural support for the nucleus, controlling nuclear size and position, modulating several intracellular signaling pathways, and allowing a dynamic interaction between the nucleus and other organelles and structures [10]. Therefore, our hypothesis is that to perform these complex functions, this region concentrates intrinsically disordered proteins (IDPs) with phase behavior that is tunable by specific molecules (*e.g.*, protein, nucleic acid (NA), post-translational modifications) in different moments. Collectively, the perinuclear cloud should be a well-organized three-dimensional region favorable to the montage of several biomolecular condensates in eukaryotic cells.

To test this hypothesis, we investigated (i) proteins with a reported perinuclear localization by a systematic bibliometric review; (ii) by *in silico* analysis, the IDPs that have a perinuclear distribution; and (iii) images from fluorescence and transmission electron microscopy (TEM) showing the contact between the nucleus and other organelles, and the gathering of specific proteins within the juxtanuclear region of cells. Since we hypothesize that the nuclear space has both structural and signaling properties, we discuss the prevalence of predicted intrinsic disorder content and phase separation ability of proteins with known perinuclear distribution.

2. Materials and methods

2.1. Antibodies and probes

Rabbit polyclonal antibodies against desmin (code# D-8281) and LMO7 (code # HPA020923), and mouse monoclonal antibody antisarcomeric alpha-actinin (code# A-7871, clone EA-53) were purchased from Sigma-Aldrich (USA). Rabbit monoclonal anti-Gli-1 (ab134906) antibody was from Abcam (UK). DNA-binding probe 4,6-Diamino-2-phenylindole dihydrochloride (DAPI), Alexa Fluor 488-goat anti-rabbit IgG antibodies and Alexa Fluor 546-goat anti-mouse IgG antibodies were from Molecular Probes (USA).

2.2. Embryonic chick skeletal muscle cell cultures

Primary cultures of myogenic cells were prepared from breast muscles of 11-day-old chick embryos [11]. Embryonated chick eggs were obtained from Granja Tolomei (Rio de Janeiro, Brazil) and handled according to Institutional Animal Care and Use Committee protocols under the number 069/19. Briefly, fragments of pectoral muscle were incubated at 37 °C for 10 min in calcium-magnesium-free solution (CMF, Sigma-Aldrich) containing 0.25% trypsin (Sigma-Aldrich). After removal of the trypsin solution, cells were dispersed by repeated pipetting in culture medium (Minimum Essential Medium with 10% horse serum, 0.5% chick embryo extract, 1% L-glutamine, and 1% penicillin/streptomycin, all from Invitrogen, Brazil). The resulting suspension was filtered, and cells were plated at an initial density of 7.5×10^5 cells/35 mm culture dishes in 2 mL of medium. Cells were cultured on 22-mm Aclar plastic coverslips (Pro-Plastics Inc., USA) previously coated with rat tail collagen. Cells were grown in a humidified 5% CO₂ atmosphere at 37 °C. After the first 24 h, cultures were fed with fresh cultured medium.

2.3. COS-7 cells

African green monkey kidney fibroblast-like cell line COS-7 was obtained from ATCC (USA). COS-7 cells were maintained in DMEM supplemented with 10% FBS and a 1% penicillin-streptomycin solution at 37 °C in a humidified 5% CO₂-containing atmosphere. COS-7 cells were used in the experiments between passages 3 and 15. Measurements of the size of cytoskeletal filaments and protein aggregates in COS-7 cells were made using Fiji software [12].

2.4. Zebrafish husbandry

Zebrafish (*Danio rerio*) were maintained in aquaria with recirculating water system at 28 \pm 1 °C on a 14:10 light/dark cycle in a vivarium localized at the Institute of Biomedical

Sciences, Federal University of Rio de Janeiro (Rio de Janeiro, Brazil). Animals were handled and experimented according to Institutional Animal Care and Use Committee protocols under the number 039/20. Embryos were collected, bleached with 0.05% NaOCl for 3 min and rinsing with water 3 times before chorion removal.

2.5. Immunofluorescence microscopy

Dechorionated zebrafish embryos at 24- or 48-h stages and chick muscle cells were fixed in 4% paraformaldehyde in PBS for 10 min at room temperature. Embryos and cells were then permeabilized with 0.5% Triton-X 100 in PBS (PBS/T) three times for 30 min and incubated for 1 h at 37 °C with primary antibodies (all diluted 1:100 in PBS/T). Then, embryos and cells were washed for 30 min with PBS/T and incubated for 1 h at 37 °C with Alexa Fluor-conjugated secondary antibodies (all diluted 1:200 in PBS/T). Nuclei were labeled with 0.1 µg/mL of DAPI in 0.9% NaCl. Embryos and cells were mounted on #1.5 24×60 -mm glass coverslips (with spacers in the case of embryos) using Prolong Gold (Molecular Probes). Experiments with zebrafish embryos and with chick muscle cells were repeated four times, using fifty zebrafish embryos and five 35 mm chick cell culture dishes each time.

2.6. Fluorescence image acquisition and processing

Cells and embryos were examined with either (i) an Axiovert 100 microscope (Carl Zeiss, Germany) coupled to an Olympus DP71 high-resolution camera, (ii) a Leica TCS SPE laser scanning confocal microscope (Leica, Japan), or (iii) a DSU Spinning Disk confocal scanner mounted on an inverted fluorescent microscope (Olympus, Japan). Control experiments with only secondary antibodies showed only a faint background staining (data not shown). Phase contrast microscopy images of cultured cells were acquired with an Axiovert 100 microscope using a $63 \times (NA \ 1.4)$ oil-immersion objective lens. Image processing (brightness and contrast adjustments) was performed using Fiji software [12] and figure panels were produced with Adobe Photoshop software (Adobe Systems Inc., USA), where some of the original fluorescence grayscale images were pseudo-colored and superimposed. Some fluorescent images (Gli-1 labeling) were digitally processed by Universal live-cell super-resolution microscopy (SRRF) [13,14].

2.7. Transmission electron microscopy (TEM)

Wild-type C57BL/6J mice of 2- or 4-months old mice were anesthetized with ketamine (50 mg/kg) and xylazine (5 mg/kg) and perfusion-fixed through their ventricles with 2.5% (v/v) glutaraldehyde, 4% paraformaldehyde in 0.1 M cacodylate buffer (pH 7.2). Then the hearts were isolated and kept overnight in a new batch of the same fixative solution at 4 °C. Next day, hearts were washed with the same buffer (3×30 min), cut in several 2×2 mm fragments, and transferred to glass vials. Experiments with mice hearts were repeated three times.

Eleven-day-old embryonic chick skeletal muscle cells were fixed overnight at room temperature with 2.5% (v/v) glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2). Afterwards, the cells were washed three times in the same buffer. Heart samples and cells were postfixed for 40 min in 1% OsO_4 in 0.1 M cacodylate buffer containing 5 mM CaCl₂

and 0.8% potassium ferricyanide. All samples were dehydrated in acetone and embedded in Epon. Ultrathin sections 60 nm thick were collected on 300-mesh copper grids, stained with 2% uranyl acetate for 30 min and 1% lead citrate for 3 min, and finally the cells observed with a JEOL 1210 (Jeol, Japan) and hearts with a Leo Libra 120 (Zeiss, Oberkochen, Germany) transmission electron microscopes, both operated at 80 kV. Experiments with chick muscle cells were repeated four times.

For cytoskeleton observations of membrane-extracted cells, COS-7 were cultured on nickel grids covered with Formvar film and treated with an extraction solution composed of: phalloidin (50 ng/mL), 10 mM Pipes (pH 6.8), 300 mM sucrose, 3 mM MgCl₂, 2 mM EGTA, 1% (v/v) Triton X-100, protease inhibitor cocktail (Roche, USA), and 0.5% glutaraldehyde for 7 min at RT. Then, cells were briefly washed in PBS and fixed in 2.5% (v/v) glutaraldehyde, 4% paraformaldehyde in 0.1 M cacodylate buffer (pH 7.2) for 30 min. Then, cells were washed in PBS (3×15 min), dehydrated in ethanol until absolute, critical-point dried (CPD 030, Leica, Japan), and observed in a Leo Libra 120 (Zeiss, Oberkochen, Germany) transmission electron microscope, operated at 80 kV. Experiments with COS-7 cells were repeated three times.

2.8. Bibliometric analysis

Perinuclear proteins were identified by an *in-silico* bibliometric analysis in PubMed (https:// pubmed.ncbi.nlm.nih.gov/). Articles with the descriptor "perinuclear protein" were selected in the entire PubMed collection database (from 1955 to June 2021) and they were then individually examined to check whether each article was describing proteins with a perinuclear localization (Table 1). The disease context of each perinuclear protein was individually examined in PubMed database.

2.9. Bioinformatic analyses of intrinsic disorder and LLPS propensity

To identify the proteome with perinuclear location, we selected human proteins from the UniProtKB/Swiss-Prot, which is a manually annotated database, using the search engine for subcellular locations (https://www.uniprot.org/locations/198, The UniProt Consortium, release 2021 03). This location is based on Gene Ontology (GO) 0048471 and defined as "the cytoplasmic region just around the nucleus". The canonical sequences from the 285 identified proteins and proteins gathered from literature (as described in Section 2.8) were retrieved in FASTA format and submitted to analysis by the Predictor of Natural Disordered Region (PONDR)-VSL2 provided by http://www.pondr.com/ [15]. The PONDR-VSL2 was trained by 1327 proteins and showed a predictor accuracy of approximately 81% for both short (below 30 residues) and long (above 30 residues) disordered regions. Thus, it intends to recognize disordered amino acid stretches of any length [15]. We then verified whether the retrieved perinuclear proteins were part of the DisProt database, a reviewed repository of experimentally proven disordered regions [16]. We selected the perinuclear proteins reported by DisProt and the ones with an overall disorder content above one-third of their primary sequences (33.3%, named herein as perinuclear IDR-containing proteins) for further analysis. The mean net charge versus mean hydropathy (CH-plot) was obtained by PONDR (http://www.pondr.com), as described in [29]. The LLPS-propensity analysis by the catGRANULE algorithm (http://s.tartaglialab.com/new_submission/catGRANULES) [30] was calculated for the perinuclear IDR-containing proteins. Overall catGRANULE scores above zero indicate LLPS ability [30]. The LLPS prediction potentially mediated by pi-pi contacts was evaluated by the PScore algorithm (http://abragam.med.utoronto.ca/~JFKlab/Software/psp.htm), whereby a PScore 4.0 predicts the LLPS propensity [17].

2.10. Bioinformatic analyses of functional aspects, sequence composition and prion-like regions

The UniProt IDs from the human perinuclear IDR-containing subgroups: LLPS (43 proteins) and non-LLPS (74 proteins) were submitted to STRING (available at https://string-db.org/) [51] and enriched keywords were analyzed. The groups were evaluated by nucleic acid (NA) and cytoskeleton related processes by the following UniProt keywords (reviewed): "RNA-binding" (KW-0694), "mRNA transport" (KW-0509), "DNA-binding" (KW-0238), "cytoskeleton" (KW-0206), "cell projection" (KW-0966) and "intermediate filaments" (KW-0403). Sequence composition from the LLPS and non-LLPS were evaluated by the Composition Profiler (available at http://www.cprofiler.org/cgi-bin/profiler.cgi). Results were plot in GraphPad Prism v.6. Prion-like regions were analyzed by PLAAC (available at http://plaac.wi.mit.edu/).

3. Results

3.1. How is the perinuclear space organized?

To evaluate how the perinuclear region of eukaryotic cells is organized, we initially analyzed COS-7 fibroblastic cells after membrane extraction, which reveals the fine ultrastructure of the nuclei and the cytoskeleton system. An intricate three-dimensional network of filaments and protein aggregates was seen occupying the cytoplasmic space and associated with the nuclei (Fig. 1A). This 3D nuclear space extends $\sim 2-5 \mu m$ from the outer nuclear surface towards the cytoplasm. High magnification images showed the common cytoskeletal filaments like actin microfilaments (~7 nm) and intermediate filaments (~12 nm) (Fig. 1B). Since we did not use Taxol to preserve the microtubules while extracting the membranes, we assumed that most of the thicker filaments were made of intermediate filaments. In addition, those thicker filaments exhibited few branches, which do not occur with microtubules (Fig. 1B). After lipids were dissolved, round aggregates of proteins were found adhered to cytoskeletal filaments, varying in size from a minimum of 30 nm and maximum of 80 nm in diameter (average = 40 ± 18 nm, N = 8 cells). We cannot determine whether all (or part) of the aggregates were already attached to the filaments before the extraction/ fixation. However, we speculate that those complexes floating around without a strong interaction would be washed out. The dense network of cytoskeleton filaments surrounding the nucleus creates the proper environment for biochemical processes, such as the regulation of the traffic of molecules between the nucleus and the cytoplasm, RNA processing, protein synthesis, and modulation of signaling pathways. Interestingly, we noticed in many instances intermediate filaments strongly attached to the outer nuclear membrane (Fig 1B).

Next, we further explored the perinuclear region of cells using ultrathin sections. Mouse cardiomyocytes showed a close interaction between the outer nuclear surface and several organelles, such as mitochondria, Golgi apparatus, vesicles and myofibrils (Fig. 1C–G).

Interestingly, we observed layers of myofibrils oriented parallel to the nuclear cloud (Fig. 1D, G), with Z-disks and T-tubules apparently anchored to the nuclear surface through tiny filaments (Fig. 1G). Also, cytoskeletal filaments were seen close to the nucleus, likely to be intermediate filaments (Fig. 1C). Mitochondria, which are mostly intercalated among the myofibrils, were seen in the nuclear cloud (Fig. 1C, D, F, G).

We also analyzed embryonic chick skeletal muscle cells under TEM (Fig. 2A–D). Fig. 3A is a low magnification image where many Golgi cisternae are preferentially localized adjacent to the nucleus. Not only the Golgi, but lysosomes also seem to be attached to the outer nuclear membrane (Fig. 2B). Mitochondria, on the other hand, have a broader distribution, although some are remarkably close to the nucleus (Fig. 2C, D).

3.2. Which proteins localize within the perinuclear space?

Since several protein aggregates were observed in close interaction with the external nuclear surface, we decided to evaluate which proteins were reported to be found at the perinuclear region of eukaryotic cells. A bibliometric approach was employed in which the entire PubMed database was scanned for articles reporting proteins with a perinuclear localization. Seventy nine perinuclear proteins were found (Table 1) and classified in three different groups according to their functions: cytoskeleton, vesicular traffic, and signaling. Most of these proteins (60%) were cytoskeletal. All three classes of cytoskeletal filaments were found, namely, microfilaments (MF), microtubules (MT) and intermediate filaments (IF), including the proteins actin (MF), alpha/beta/gamma tubulin (MT), desmin (IF), vimentin (IF), neurofilament (IF), keratin (IF), glial fibrillary acidic protein (IF), nestin (IF) and peripherin (IF). Interestingly, several cytoskeletal-associated proteins, such as alpha-actinin (MF), arp2/3 (MF), filamin (MF), formin (MF), rac1 (MF), plectin (IF), and the motor proteins myosin, dynein and kinesin were among them. The second most represented group (25%) of perinuclear proteins was involved in cell signaling, including Calpain-3, Gli-1, Lmo7, Raf1, Huntingtin, p53, and PrP. Several proteins involved in vesicular trafficking were also identified (15%) among the preferentially nuclear localized proteins, including Rab, alpha- and gamma-synuclein, and VAMP (Table 1).

Fig. 3 provide some examples of the perinuclear localization of reported cytoskeletal and signaling perinuclear proteins, including desmin, alpha-actinin, Lmo7 and Gli-1. Lmo7 is a scaffolding protein that carries Lim and F-box domains, which enables the protein to interact with different partners (in the cytoplasm and within the nucleus) and to act like a signaling hub [18,19]. Lmo7 is concentrated at the perinuclear space of chick skeletal muscle fibers (white arrows in Fig. 3A, B), suggesting that this location might be related to changes in nuclear transport dynamics in muscle cells, as previously described [20].

Gli-1 is an effector protein in the sonic hedgehog signaling pathway in eukaryotes and involved in several processes, including cell fate, proliferation, and differentiation [21]. Gli-1 can move from the perinuclear space to the nucleus and *vice-versa*, and within the nucleus can regulate gene expression [22]. Fig. 3C–E show Gli-1 perinuclear location in embryonic skeletal muscle fibers.

Alpha-actinin is an actin-associated protein found in multiple actin-containing cellular structures, including cell-matrix adhesion sites, contractile ring in cytokinesis, and perinuclear actin cap [23]. A thin dotted line of sarcomeric alpha-actinin can be found at the perinuclear region of skeletal myoblasts (Fig. 3F), where it is probably acting as an actin crosslinking factor.

Desmin is a muscle-specific IF protein and one of the first cytoskeleton proteins to be expressed in muscle cells [24]. Most IF proteins have a perinuclear distribution in eukaryotic cells and desmin has been shown to be stably associated with the outer nuclear surface in embryonic chick myoblasts (Fig. 3G and H, and [25]), where its function has been associated with providing structural support and shape to the nucleus. Fig. 3G and H show a dense network of desmin IFs around the nuclei of mononucleated myoblasts and multinucleated myotubes, respectively. Interestingly, the web of desmin IFs present in the perinuclear space seems to be denser in myoblasts than in myotubes (Fig. 3G and H).

Next, we analyzed the perinuclear distribution of proteins in eukaryotic cells *in vivo*, focusing on the distribution of desmin in whole zebrafish embryos. Confocal images of different focal planes (Fig. 4A–K) confirmed the perinuclear localization of desmin in newly formed muscle somites at the most caudal region of 24-h zebrafish embryos (white arrow in Fig. 4D). A 3D reconstruction of desmin IFs distribution at the perinuclear cloud of zebrafish embryos in shown in Supplementary Video 1. Desmin was also found concentrated adjacent to the septa between muscle somites in zebrafish embryos (black arrow in Fig. 4K). These results are in accordance with previous data from our group showing the concentration of desmin around the nucleus in recently born zebrafish somites [26], and support the existence of a perinuclear region in which specific proteins concentrate in both *in vitro* eukaryotic cells.

We also evaluated the disease context of all the perinuclear proteins described in Table 1. Our data shows that alterations in the expression of perinuclear proteins can lead to several pathological disorders, including atherosclerosis, autoimmune diseases, cancer, cardiac and skeletal myopathies, diabetes, inflammatory diseases, neurodegenerative disorders, obesity, skin disorders, and viral infection. These results suggest that alterations in their expression and/or intracellular distribution are critical for cell, tissue and organ's structure and function, and highlight their important role in health and disease. Importantly, among the most prevalent diseases associated with perinuclear proteins were neurodegenerative disorders (50%), cancer (45%), cardiac and skeletal myopathies (27%), immune/inflammatory diseases (17%), viral infection (13%) and skin disorders (10%). These data might be strategic for the development of new therapeutic approaches towards these pathological conditions. Interestingly, it has been described that structural disorder significantly distinguishes proteins up-regulated in neurodegenerative diseases from those linked to cancer [27]. These authors also observed high correlation between structural disorder and age of onset in several neurodegenerative diseases, which strongly supports the role of protein unfolding in neurodegenerative processes [27].

Curiously, many viral proteins and/or RNA have been reported to have a perinuclear distribution during a virus cycle within eukaryotic cells. These data are not included in

Table 1, but clearly highlight the important role of the nuclear space for virus-related cellular processes. Hantavirus, rotavirus, hepatitis virus, baculovirus, measles virus, yellow-fever virus, and severe acute respiratory syndrome-associated virus (SARS-CoV) are among the virus proteins and/or virus RNA detected within the nuclear cloud [28]. Importantly, Table 1 shows data related to the perinuclear localization of cellular proteins, but not viral proteins, involved in viral infection. Coatomer subunit epsilon (COPE), endophilin B2, nuclear pore complex protein, nucleoporin (Nup), promyelocytic leukemia protein (PML), Rabring7, spectraplakin/Shot and stimulator of interferon genes protein (Sting) are among the cellular proteins involved in viral infection and detected within the perinuclear space of eukaryotic cells. These data could have valuable impact in new therapeutic strategies targeting viral infections.

3.3. Are IDPs present in the nuclear space?

Since several proteins show a perinuclear localization, we questioned whether they have an enriched intrinsic disorder content, which is an important feature of LLPS "driver" proteins. In addition to data gathered from the literature (Table 1), we retrieved the human mature protein sequences from UniProt described in the subcellular localization of the perinuclear region (Supplementary Table 1, data S1). Only five proteins (STING, Src, oxysterol-binding protein 1, gamma-synuclein and phospholipase D1) from the entire literature group (n = 79) were listed in the perinuclear UniProt dataset (Supplementary Table 1, data S3). Taking together the literature group and UniProt dataset, the perinuclear group contained 359 unambiguously proteins (Supplementary Table 1, data S1 and Table 1).

Using the charge-hydropathy (CH-plot) that enables differentiation of globular proteins *versus* IDPs based on the peculiar amino acid composition of IDPs [29], we observed 37 proteins from the perinuclear group in the plot space allocated to highly disordered proteins (Fig. 5). The functional annotation of these IDPs is shown in data S4 from Supplementary Table 1. Since this is a binary predictor and the fact that many proteins show a partly disordered nature, a clear differentiation of proteins containing short/long regions of disorder is not possible in the plot.

From the 285 proteins extracted from UniProt, the analysis by the Predictor of Natural Disordered Region (PONDR-VSL2) revealed 60% (171 proteins) with a disorder content above one-third of their primary sequence (>33.3% of overall disorder) (Supplementary Table 1, data S3). The disordered regions with at least 15 residues are listed in Supplementary Table 1, data S1. Moreover, the DisProt database of IDRs/IDPs with experimental biophysical evidence for disorder reported 20 perinuclear proteins that contain one or more regions of disorder (Supplementary Table 1, data S3, highlighted in grey). Regarding the perinuclear dataset from literature, we selected proteins involved in signaling and/or vesicular trafficking for intrinsic disorder analysis, since cytoskeleton components generally have a well-defined 3D fold (Supplementary Table 1, data S2). Among the 41 proteins analyzed, 22 (54%) show a total disorder content above 33.3% or are annotated in the DisProt database. Taken together, we identified 193 perinuclear proteins with enriched intrinsic disorder (33.3% of disorder by PONDR-VSL2 or IDPs/IDRs annotated in DisProt), as shown in Table 2.

3.4. Are perinuclear IDR-containing proteins predicted to undergo LLPS?

Given the enrichment of IDPs/IDR-containing proteins localized in the perinuclear region, we asked if they could undergo phase separation using LLPS predictors. The catGRANULE algorithm calculates LLPS ability based on the following features: primary structure composition, structural disorder, and RNA-binding propensity. The algorithm uses as input a database with 120 granule-forming proteins from about 4000 in the yeast proteome [30]. Interestingly, about 83% (161 proteins) of the predicted disordered perinuclear protein dataset showed a minimum threshold for LLPS (score above 0) by the catGRANULE analysis (Table 2, sixth column). Proteins with a more rigorous catGRANULE LLPS score (0.5) corresponds to 55% (106 proteins), as shown by a blue shade in Table 2. Vernon et al. [17] reported that low complexity regions of LLPS-forming proteins contain a high number of side chains that establish pi-pi contacts, especially planar such as via the guanidinium from arginine, and aromatic rings (pi-stacking). Thus, the PScore reports phase separation behavior considering the frequency of pi-pi contacts [17]. Analysis by the PScore algorithm detected 19 proteins that might undergo LLPS mostly driven by pi-pi contacts (score 4.0) (Table 2, highlighted in yellow). To identify published experimental evidence of LLPS in the perinuclear IDR-containing group, we analyzed the datasets from Hardenberg et al. [31], who compiled data from several LLPS-related repositories based on in vitro and/or in vivo evidence. Also, we manually searched for references describing protein liquid behavior as shown in Table 2. From the 31 proteins with LLPS described in published studies, 6 proteins are predicted by both catGRANULE and PScore, while 12 proteins did not show a LLPS score by both algorithms (Fig. 6A). Moreover, 13 proteins with proven LLPS showed an intersection solely with catGRANULE, and one protein is predicted solely by PScore (Fig. 6A). Together with the IDR-containing proteins with evidence of LLPS, we selected the ones predicted by both catGRANULE and PScore for further bioinformatics analysis (total of 43; named herein as perinuclear LLPS-IDR-containing proteins).

3.5. Do the perinuclear IDR-containing proteins engage in a network with specific functions?

It is known that liquid condensates can harbor hundreds of 'client' proteins, but also many LLPS drivers can conjunctly contribute to condensate assembly through multivalent heterotypic interactions. Based on that, we submitted the LLPS-IDR-containing group and the IDR-containing (not predicted by catGRANULE + PScore; or not present on LLPS literature; total 74 proteins), respectively, to the STRING network database (Fig. 6B). Functional and physical protein interactions are observed in both groups, being p53 in the LLPS-group an important interaction hub whereas MX1, SNAP25 and HRas were the most connected proteins (above 4 edges). Considering only physical interactions, albeit the LLPS-group harbor less members (43), they interact significantly more than the 74 members of the non-LLPS-IDR-containing group (LLPS-group: 26 edges *versus* IDR-group: 14 edges (Fig. 6C). Additionally, p53 might be a key protein in the perinuclear LLPS group as highlighted by its multiple protein partners. In the non-IDR-group, the proteins assigned in Fig. 6B did not reveal significant physical contacts to other members, and any protein member stand out for several interactions (Fig. 6C).

Interestingly, mRNA transport was the most enriched UniProt keyword for the LLPS-IDRgroup (strength 1.34). This was followed by other 15 UniProt keywords, being the most enriched (strength >1.00): biological rhythms (strength 1.20) and host-virus interaction (strength 1.01). Analysis of the IDR-group showed 5 UniProt keywords associated: immunity (strength 0.66); cell projection (strength 0.60); cytoplasm (strength 0.57); coiledcoil (strength 0.46) and phosphoprotein (strength 0.19). However, the top three UniProt keywords strengths are significantly lower (below 0.70) for the IDR-containing group.

3.6. Are perinuclear IDR-containing proteins involved in nucleic acids processes?

Nucleic acids (NA), especially structured regions in RNA/DNA can act as a scaffold for LLPS. In addition, nuclear mRNAs exported to the cytoplasm pass through the perinuclear region where ribonucleoproteins, if present, could be involved in transporting them. LLPS is involved in RNA storage, processing, and transport as well as various processes in the nucleus (transcriptional regulation, DNA repair, organization of chromatin, among others). Thus, we sought to determine if the perinuclear LLPS-IDR-containing are more frequently involved in NA-related metabolism as opposed to the IDR-containing (not predicted by catGRANULE + PScore; or not present on LLPS literature; total 74 proteins). To verify that, we analyzed annotations on UniProt keywords related to NA-processes and merged the results on the STRINGS network. This analysis revealed about 74% (32 proteins) from the LLPS-IDR-containing group related to NA-processes (Fig. 6C, top network). In case of the IDR-containing proteins that would not undergo LLPS, 49% (37 proteins) are related to NA metabolism (Fig. 6C, bottom network). We then used 'cytoskeleton', 'cell projection' and 'intermediate filaments' as UniProt keywords, to investigate the participation on these cytoskeleton-related processes. Proportionally, both groups showed a similar association to cytoskeleton-derived processes (~35% of members from LLPS-IDR group and 39% of members from IDR-group) (Fig. 6C).

3.7. Structural features of perinuclear IDR-containing

The IDR-containing proteins (LLPS and non-LLPS groups) belong to different families and, most of them do not have a three-dimensional structure for the full polypeptide segment. The flexible nature of IDRs together with the phase separation ability can significantly hamper structural determination, especially by nuclear magnetic resonance spectroscopy in solution. In addition, STRING (via searching in SMART tool) did not report any conserved domain among the IDR-containing proteins. To better understand the differences between the perinuclear LLPS-IDR and non-LLPS groups, we analyzed the amino acid composition of the IDR-containing proteins (LLPS and non-LLPS groups) using as background globular proteins from the Protein Data Bank with a sequence identity below 25% (PDBS25). Analysis by the Composition Profiler [32] tool showed that, generally, both groups are enriched in disorder-promoting residues (red bars) and depleted in order-promoting residues (blue bars), as expected (Supplementary Fig. 2). However, the LLPS proteins showed an increased value of proline, glutamine, glycine and histidine compared to the non-LLPS members. In addition, cysteine, glutamate and leucine were increased in the non-LLPS proteins as compared to the LLPS ones. The high content of proline, glutamine and glycine, amino acids, commonly found in prion-like domains, prompted us to investigate the presence of them across the LLPS and non-LLPS groups. While the 74 members of

non-LLPS group did not show any predicted prion-forming sequence, the LLPS group showed 8 members (out of the 23) containing potential prion-like domains, as predicted by the PLAAC algorithm [33]. This included CREB-binding protein (UniProt Q92793; PLAAC PRDscore 102.5), HAT p300 (UniProt Q09472; PLAAC PRDscore 102.6), Atrophin-1 (UniProt P54259; PLAAC PRDscore 43.8), PrP (UniProt P04156; PLAAC PRDscore 16.8), CASC3 (UniProt O15234; PLAAC PRDscore 18.3), NUP98 (UniProt P52948; PLAAC PRDscore 13.3), Myelin-associated neurite-outgrowth inhibitor (UniProt A1KXE4; PLAAC PRDscore 16.7) and CPE-binding protein 4 (UniProt Q17RY0; PLAAC PRDscore 14.1). These finding are consonant to the property of low complexity prion-like regions driving LLPS.

4. Discussion

The collection of our findings points to the existence of a highly organized network of cytoskeletal filaments intermingled with several structural and signaling proteins in the perinuclear region of eukaryotic cells. Furthermore, we show that several perinuclear proteins are predicted to be intrinsically disordered. Since a common feature implicated in LLPS is the presence of disordered regions, enabling fluctuation in an ensemble of conformations (reviewed in Uversky [34]), our data point to an important function of IDPs as signaling hubs within the perinuclear cloud. Several perinuclear IDPs might function as scaffolding proteins that regulate "on-off" switches in signaling pathways by their phase separation property.

Disordered regions can form a combination of weak interactions drove by 'sticker' residues, that establish intra/intermolecular contacts forming supramolecular structures (reviewed in Boeynaems et al. [8]). These transient interactions can be within monomers (homotypic) or between protein-ligand such as RNA (heterotypic), and the multiple contact points create a 3D network of molecules driving a two-phase regime, a protein/RNA-rich phase (dense) is formed separately from a dispersed (light) phase containing a low concentration of the same molecules (reviewed in Boeynaems et al. [8]). The main property associated to the phase separation ability is multivalency, because of that, not only disordered regions can function as 'sticky' patches but molten globule regions (e.g. p53-TAD) [35] and repeated folded domains (e.g. SH3) can also mediate labile crosslinks involved in phase separation (reviewed in Peran and Mittag [36]). However, since IDRs can self-associate at a low concentration, they more often mediate LLPS intracellularly (at a physiological condition). 'Spacers' are residues that interleave the sticky patches and whose degree of solvation impacts on the material properties of a phase-separated state and the onset of phase separation [37]. Positive and aromatic side chains are example of stickers that can drive a two-phase regime by cation-pi, and pi-pi contacts, respectively. Spacers are constituted by polar residues, for instance, Gly-rich regions that show an increased flexibility and contribute to liquid condensates [37]. Oppositely, spacers such as serine and proline promote more ordered phase separated states with lower fluidity [37,38]. Structural studies on dissecting the atomic level structure of condensates revealed that determinants of LLPS are complex, and the dissociation between a solely IDP-driven phenomenon is needed since the condensateforming protein can have a compact 3D structure when phase-separated [39–41]. In many instances, albeit changes in internal dynamics, IDRs can remain disorder in condensates

(reviewed by Peran and Mittag, 2019). However, some IDRs enriched in aromatics (not clustered), can transit to reversible β -sheets during LLPS, this folding is transient as opposed to stable steric zippers found in amyloids (reviewed by [36]). In addition, the tumor suppressor protein p53, which arose as an important hub in the perinuclear space (Fig. 6B and C) undergoes LLPS *in vitro* in a mild denaturing condition (800 mM GndHCl) known to contain a significant population in the molten globule conformation [35]. The pre-molten globule-like structure of retinoid X receptor (hRXR γ) has also been associated to drive LLPS [42].

Interestingly, condensates can recruit specific 'client' proteins to catalyze reactions. We hypothesize that the protein aggregates that we observe in the nuclear cloud by electron microscopy of detergent-extracted cells may be protein-rich granules drove by IDR-containing proteins. Together with intrinsic disorder, NA-binding residues and enrichment of pi-stacking side chains are explored by LLPS predictors such as catGRANULE [30] and PScore [17]. The perinuclear IDR-containing proteins (predicted by both algorithms or with proven LLPS) showed an enrichment in mRNA transport function as opposed to the IDPs not predicted to undergo LLPS (Fig. 6). In addition, the perinuclear IDPs from LLPS group were more enriched in specified residues (proline, glutamine, glycine and histidine) whereas the non-LLPS set had glutamic acid and cysteine increased over the PDBS25 background (Supplementary Fig. 2). Furthermore, the LLPS set contains proteins with prion-like domains as opposed to the non-LLPS group (discussed in Section 3.7).

Notably, the signaling proteins studied by immunofluorescence microscopy herein, Gli-1 and Lmo7, show long regions of disorder and high scores for condensation (Table 2). These two proteins are transcription factors (TFs), and likely use its phase separation ability to positively/negatively regulate transcription as reported for other TFs (reviewed in Peng et al. [43]). Indeed, Gli-1 and Lmo7 showed a punctate-pattern reminiscent of liquid-like condensates in the perinuclear region (Fig. 3). Additionally, Gli-1 [21] and Lmo7 [44] are involved in a variety of cancer types, hence, aberrant LLPS of these proteins might contribute to tumor development, configuring an important issue to address in further work.

Seventy nine perinuclear proteins were found through a bibliometric approach using the descriptors "perinuclear protein" in the entire PubMed articles database, while 285 perinuclear proteins were retrieved from UniProtKB/Swiss-Prot, with only five proteins found in both search strategies. Such difference in the number of perinuclear proteins in these two approaches suggest the need for a clear definition and characterization of what defines the limits of the nuclear cloud and which proteins and structures are their constituents. During our survey it became clear that several published articles do not describe perinuclear proteins in their results, even though images of proteins with an undoubted perinuclear localization are present in these papers. For this reason, we foresee that the number and importance of perinuclear proteins (IDPs and non-IDPs) in eukaryotic cells will certainly increase in the next few years.

Our data show that different organelles are positioned within the nuclear cloud. Mitochondria, lysosomes, endoplasmic reticulum, Golgi, and vesicles were found near or in association with the external nuclear surface. Particularly, lysosomes have been reported

to be distributed in a rather immobile pool located around the microtubule-organizing center in a cloud, and a highly dynamic pool in the cell periphery [45]. These authors describe that the perinuclear cloud appears to be a site for efficient maturation of endosomes. Lysosomes have recently been associated with cell signaling. Lysosome surfaces serve as a platform to assemble major signaling hubs such as mTORC1, AMPK, Wnt/beta-catenin and the inflammasome [46]. Bagri et al. [47] describe canonical Wnt/beta-catenin activators (BIO and Wnt3a) that induce the perinuclear positioning of lysosomes in cultured muscle cells, suggesting that the Wnt/beta-catenin pathway can modulate the distribution of lysosomes and induce their concentration within the nuclear cloud.

In a broad sense, our findings highlight the structural and signaling role of an intricate 3D network of cytoskeletal filaments and their associated proteins connected to the outer nuclear surface and extending several micrometers into the cytoplasm of eukaryotic cells. These results are in accordance with a previous study showing that the perinuclear cytoskeleton is a region with different mechanical properties than elsewhere in the cytosolic cytoskeleton, with heterogeneously distributed locations exhibiting subdiffusive features [48]. Indeed, we found that roughly 60% of all reported perinuclear proteins are components of the cytoskeleton. Earlier work from our lab has shown that desmin intermediate filaments are stably connected to the outer nuclear surface in skeletal muscle cells *in vivo* and *in vitro* [25].

Thus, our findings suggest that the perinuclear cloud is composed of a complex 3D network of cytoskeletal filaments intermingled with multiple structural and signaling proteins, including several IDPs that form biomolecular condensates, and with several organelles bound to the cytoskeleton (Fig. 7 and Table 3). The nuclear cloud has several functions, such as to provide structural support for the nucleus, to control nuclear size and position, to regulate the traffic of molecules between the nucleus and the cytoplasm, to process RNA molecules, to regulate protein synthesis, to modulate several intracellular signaling pathways, and to allow a dynamic interaction between the nucleus and other organelles and cellular structures (Table 3).

The existence of a membraneless region that concentrates specific structural and signaling proteins at the periphery of the nucleus might be an ancient feature acquired during the evolution of eukaryotic cells. This hypothesis is supported by previous studies showing that the perinuclear concentration of proteins and organelles is present in several eukaryotic unicellular organisms, such as Leishmania [49]. This membrane-free region might have been a key acquisition of a highly organized compartment in ancient eukaryotes providing them with new advantages over competing unicellular organisms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 302115/2017-0 for CM, grant 301443/2018-1 for MLC), and by Fundaçço de Apoio à Pesquisa do Estado do Rio de Janeiro (FAPERJ, grant E-26/202.920/2019 for CM and grant E26/210.220/2018 for MLC).

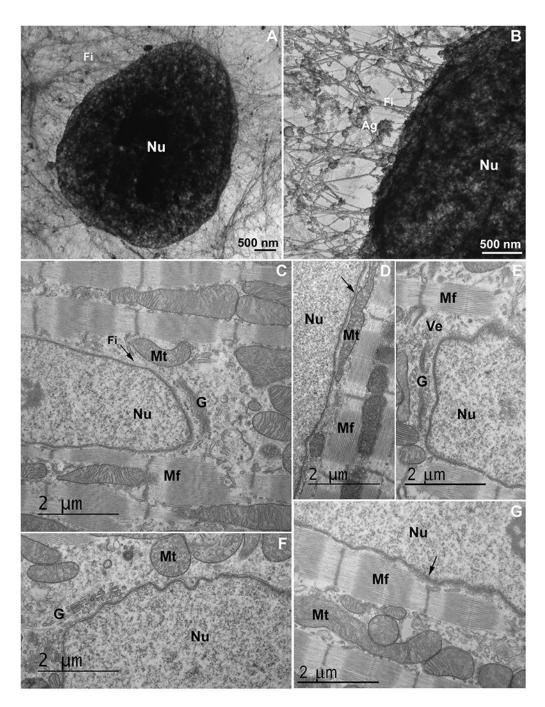
Declaration of competing interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Claudia Mermelstein reports financial support was provided by National Council for Scientific and Technological Development. Manoel Luis Costa reports financial support was provided by National Council for Scientific and Technological Development.

Data availability statement

All the datasets generated for this study can be found within the manuscript figures and supplementary material.


References

- Wheeler RJ, Hyman AA, Controlling compartmentalization by non-membrane-bound organelles, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci 373 (2018), 20170193. [PubMed: 29632271]
- [2]. Brangwynne CP, Mitchison TJ, Hyman AA, Active liquid-like behavior of nucleoli determines their size and shape in *Xenopus laevis* oocytes, Proc. Natl. Acad. Sci. U. S. A 108 (2011) 4334– 4339. [PubMed: 21368180]
- [3]. Weber SC, Brangwynne CP, Inverse size scaling of the nucleolus by a concentration-dependent phase transition, Curr. Biol 25 (2015) 641–646. [PubMed: 25702583]
- [4]. Stroberg W, Schnell S, On the origin of non-membrane-bound organelles, and their physiological function, J. Theor. Biol 434 (2017 Dec 7) 42–49, 10.1016/j.jtbi.2017.04.006. [PubMed: 28392184]
- [5]. Woodruff JB, Wueseke O, Viscardi V, et al. Centrosomes: regulated assembly of a supramolecular centrosome scaffold *in vitro*, Science 348 (2015) 808–812. [PubMed: 25977552]
- [6]. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Hyman AA, Germline P granules are liquid droplets that localize by controlled dissolution/condensation, Science 324 (2009) 1729–1732. [PubMed: 19460965]
- [7]. Hyman AA, Weber CA, Julicher F, Liquid-liquid phase separation in biology, Annu. Rev. Cell Dev. Biol 30 (2014) 39–58. [PubMed: 25288112]
- [8]. Boeynaems B, Alberti S, Fawzi NL, Protein phase separation: a new phase in cell biology, Trends Cell Biol. 28 (2018) 420–435. [PubMed: 29602697]
- [9]. Koppers M, Özkan N, Farías GG, Complex interactions between membrane-bound organelles, biomolecular condensates and the eytoskeleton, Front. Cell Dev. Biol 8 (2020), 618733.
 [PubMed: 33409284]
- [10]. Shaiken TE, Opekun AR, Dissecting the cell to nucleus, perinucleus and cytosol, Sci. Rep 4 (2014 May 12) 4923, 10.1038/srep04923. [PubMed: 24815916]
- [11]. Mermelstein CS, Costa ML, Chagas Filho C, Moura Neto V, Intermediate filament proteins in TPA-treated skeletal muscle cells in culture, J. Muscle Res. Cell Motil 17 (1996) 199–206.
 [PubMed: 8793722]
- [12]. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A, Fiji: an open-source platform for biological-image analysis, Nat. Methods 9 (2012) 676–682. [PubMed: 22743772]
- [13]. Culley S, Tosheva KL, Matos Pereira P, Henriques R, SRRF: universal live-cell super-resolution microscopy, Int. J. Biochem. Cell Biol 101 (2018) 74–79. [PubMed: 29852248]

- [14]. Gustafsson N, Culley S, Ashdown G, Owen DM, Pereira PM, Henriques R, Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations, Nat. Commun 7 (2016), 12471. [PubMed: 27514992]
- [15]. Peng K, Radivoja P, Vucetic S, Dunker AK, Obradovic Z, Length-dependent prediction of protein intrinsic disorder, BMC Bioinf. 7 (2006) 208.
- [16]. Hatos A, Hajdu-Soltész B, Monzon AM, et al. DisProt: intrinsic protein disorder annotation in 2020, Nucleic Acids Res. 48 (2020) D269–D276. [PubMed: 31713636]
- [17]. Vernon RM, Chong PA, Tsang B, Kim TH, Bah A, Farber P, Lin H, Forman-Kay JD, Pi-Pi contacts are an overlooked protein feature relevant to phase separation, eLife 7 (2018), e31486. [PubMed: 29424691]
- [18]. Holaska JM, Rais-Bahrami S, Wilson KL, Lmo7 is an emerin-binding protein that regulates the transcription of emerin and many other muscle-relevant genes, Hum. Mol. Genet 15 (2006) 3459–3472. [PubMed: 17067998]
- [19]. Possidonio AC, Soares CP, Fontenele M, Morris ER, Mouly V, Costa ML, Mermelstein C, Knockdown of Lmo7 inhibits chick myogenesis, FEBS Lett. 590 (2016) 317–329. [PubMed: 26786059]
- [20]. Dedeic Z, Cetera M, Cohen TV, Holaska JM, Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes, J. Cell Sci 124 (2011) 1691– 1702. [PubMed: 21525034]
- [21]. Niewiadomski P, Niedziółka SM, Markiewicz L, U pie ski T, Baran B, Chojnowska K, Gli proteins: regulation in development and cancer, Cells 8 (2019), 147.
- [22]. Teixeira JD, de Andrade Rosa I, Brito J, Maia de Souza YR, de Abreu Manso P, Machado MP, Costa ML, Mermelstein C, Sonic Hedgehog signaling and Gli-1 during embryonic chick myogenesis, Biochem. Biophys. Res. Commun 507 (2018) 496–502. [PubMed: 30449599]
- [23]. Huelsmann S, Brown NH, Nuclear positioning by actin cables and perinuclear actin. Special and general? Nucleus 5 (2014) 219–223. [PubMed: 24905988]
- [24]. Costa ML, Escaleira R, Cataldo A, Oliveira F, Mermelstein CS, Desmin: molecular interactions and putative functions of the muscle intermediate filament protein, Braz. J. Med. Biol. Res 37 (2004) 1819–1830. [PubMed: 15558188]
- [25]. Mermelstein CS, Andrade LR, Portilho DM, Costa ML, Desmin filaments are stably associated with the outer nuclear surface in chick myoblasts, Cell Tissue Res. 323 (2006) 351–357. [PubMed: 16160856]
- [26]. Costa ML, Escaleira R, Rodrigues VB, Manasfi M, Mermelstein CS, Some distinctive features of zebrafish myogenesis based on unexpected distributions of the muscle cytoskeletal proteins actin, myosin, desmin, alpha-actinin, troponin and titin, Mech. Dev 116 (2002) 95–104. [PubMed: 12128209]
- [27]. Klus P, Cirillo D, Botta Orfila T, Tartaglia GG, Neurodegeneration and cancer: where the disorder prevails, Sci. Rep 5 (2015), 15390. [PubMed: 26493371]
- [28]. Nal B, Chan C, Kien F, Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E, J. Gen. Virol 86 (2005) 1423– 1434. [PubMed: 15831954]
- [29]. Uversky VN, Gillespie JR, Fink AL, Why are natively unfolded proteins unstructured under physiologic conditions? Proteins 41 (2000) 415–427. [PubMed: 11025552]
- [30]. Bolognesi B, Lorenzo Gotor N, Dhar R, Cirillo D, Baldrighi M, Tartaglia GG, Lehner B, A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression, Cell Rep. 16 (2016) 222–231. [PubMed: 27320918]
- [31]. Hardenberg M, Horvath A, Ambrus V, Fuxreiter M, Vendruscolo M, Widespread occurrence of the droplet state of proteins in the human proteome, PNAS USA 117 (2020) 33254–33262.
 [PubMed: 33318217]
- [32]. Vacic V, Uversky VN, Dunker AK, Lonardi S, Composition profiler: a tool for discovery and visualization of amino acid composition differences, BMC Bioinf. 8 (2007), 211.
- [33]. Lancaster AK, Nutter-Upham A, Lindquist S, King OD, PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition, Bioinformatics 30 (2014) 2501–2502. [PubMed: 24825614]

- [34]. Uversky VN, Recent developments in the field of intrinsically disordered proteins: intrinsic disorder-based emergence in cellular biology in light of the physiological and pathological liquid-liquid phase transitions, Annu. Rev. Biophys 50 (2021) 135–156. [PubMed: 33503380]
- [35]. Petronilho EC, Pedrote MM, Marques MA, Passos YM, Mota MF, Jakobus B, de Sousa GDS, Pereira da Costa F, Felix AL, Ferretti GDS, Almeida FP, Cordeiro Y, Vieira TCRG, de Oliveira GAP, Silva JL, Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands, Chem. Sci 12 (2021) 7334–7349. [PubMed: 34163823]
- [36]. Peran I, Mittag T, Molecular structure in biomolecular condensates, Curr. Opin. Struct. Biol 60 (2020) 17–26. [PubMed: 31790873]
- [37]. Wang J, Choi JM, Holehouse AS, Lee HO, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu RV, Alberti S, Hyman AA, A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins, Cell 174 (2018) 688–699, e16. [PubMed: 29961577]
- [38]. Alshareedah I, Moosa MM, Banerjee PR. 2021. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. bioRxiv.
- [39]. Do Amaral MJ, Araujo TS, Díaz NC, Accornero F, Polycarpo CR, Cordeiro Y, Cabral K, Almeida MS, Phase separation and disorder-to-order transition of human brain expressed Xlinked 3 (hBEX3) in the presence of small fragments of tRNA, J. Mol. Biol 432 (2020) 2319– 2348. [PubMed: 32142787]
- [40]. Emmanouilidis L, Esteban-Hofer L, Damberger FF, de Vries T, Nguyen CK, Ibáñez LF, Allain FHT, NMR and EPR reveal a compaction of the RNA-binding protein FUS upon droplet formation, Nat. Chem. Biol 17 (2021) 608–614. [PubMed: 33686294]
- [41]. Kostylev MA, Tuttle MD, Lee S, Klein LE, Takahashi H, Cox TO, Strittmatter SM, Liquid and hydrogel phases of PrPC linked to conformation shifts and triggered by alzheimer's amyloid-β oligomers, Mol. Cell 72 (2018) 426–443. [PubMed: 30401430]
- [42]. Sołtys K, O yhar A, Ordered structure-forming properties of the intrinsically disordered AB region of hRXRγ and its ability to promote liquid-liquid phase separation, J. Steroid Biochem. Mol. Biol 198 (2020), 105571. [PubMed: 31881311]
- [43]. Peng L, Li EM, Xu LY, From start to end: phase separation and transcriptional regulation, Biochim. Biophys. Acta 194641 (2020).
- [44]. Hu Q, Guo C, Li Y, Aronow BJ, Zhang J, LMO7 mediates cell-specific activation of the rho-myocardin-related transcription factor-serum response factor pathway and plays an important role in breast cancer cell migration, Mol. Cell. Biol 31 (2011) 3223–3240. [PubMed: 21670154]
- [45]. Cabukusta B, Neefjes J, Mechanisms of lysosomal positioning and movement, Traffic 19 (2018) 761–769. [PubMed: 29900632]
- [46]. Inpanathan S, Botelho RJ. 2019. The lysosome signaling platform: adapting with the times. Front. Cell Dev. Biol 7:113. [PubMed: 31281815]
- [47]. Bagri KM, Rosa IA, Corrêa S, Yamashita A, Brito J, Bloise F, Costa ML, Mermelstein C, Acidic compartment size, positioning, and function during myogenesis and their modulation by the Wnt/beta-catenin pathway, Biomed. Res. Int 20 (2020), 6404230.
- [48]. Lozoya OA, Gilchrist CL, Guilak F, Universally conserved relationships between nuclear shape and cytoplasmic mechanical properties in human stem cells, Sci. Rep 6 (2016), 23047. [PubMed: 26976044]
- [49]. Puechberty J, Blaineau C, Meghamla S, Crobu L, Pagès M, Bastien P, Compared genomics of the strand switch region of Leishmania chromosome 1 reveal a novel genus-specific gene and conserved structural features and sequence motifs, BMC Genomics 8 (2007), 57. [PubMed: 17319967]
- [50]. Ray S, Singh N, Kumar R, Patel K, Pandey S, Datta D, Mahato J, Panigrahi R, Navalkar A, Mehra S, Gadhe L, Chatterjee D, Sawner AS, Maiti S, Bhatia S, Gerez JA, Chowdhury A, Kumar A, Padinhateeri R, Riek R, Krishnamoorthy G, Maji SK, α-Synuclein aggregation nucleates through liquid-liquid phase separation, Nat. Chem 12 (2020) 705–716. [PubMed: 32514159]
- [51]. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, von Mering C, STRING 8—a global view on proteins and their functional interactions in 630 organisms, Nucleic Acids Res 37 (2009) D412–D416. [PubMed: 18940858]

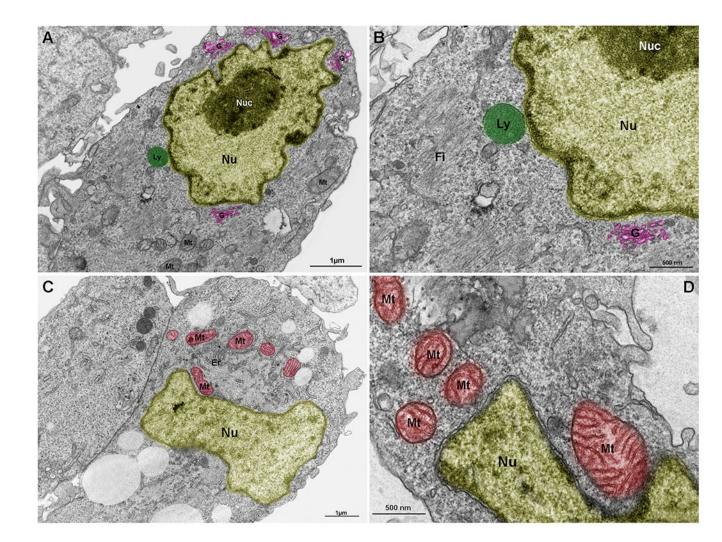
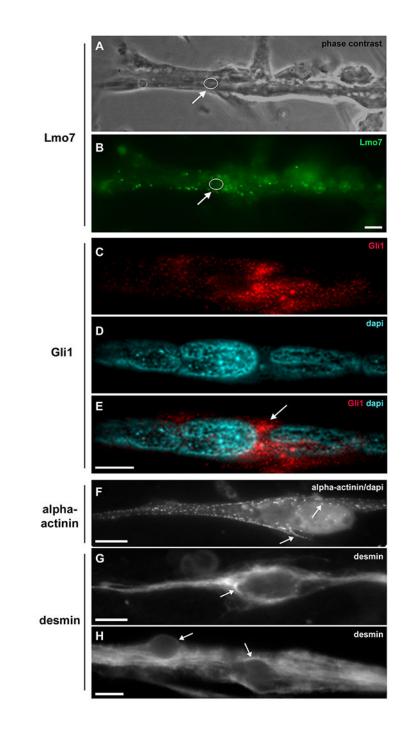

[52]. Woodruff JB, Wueseke O, Viscardi V, Mahamid J, Ochoa SD, Bunkenborg J, Widlund PO, Pozniakovsky A, Zanin E, Bahmanyar S, Zinke A, Hong SH, Decker M, Baumeister W, Andersen JS, Oegema K, Hyman AA, Centrosomes. Regulated assembly of a supramolecular centrosome scaffold in vitro, Science 348 (2015) 808–812. [PubMed: 25977552]

Fig. 1.


An intricated network of cytoskeletal filaments and several organelles are found in the nuclear space of eukaryotic cells. (A and B) COS-7 cells were extracted and analyzed under transmission electron microscopy. Note the presence of a dense network (in A and B) of cytoskeletal filaments (Fi) linked to the nucleus (Nu). In the higher magnification (B) it is possible to see several protein aggregates (Ag) attached to the cytoskeletal network. Scale bars in A and B = 500 η m. (C–G) 2-month-old mouse cardiac tissues were processed for transmission electron microscopy and images show mitochondria (Mt), Golgi apparatus (G),

vesicles (Ve), myofibers (Mf), and cytoskeletal filaments (Fi) in proximity with the nucleus (Nu). Arrow in (C) shows cytoskeletal filaments in the perinuclear space, arrow in (D) shows mitochondria in close contact with the outer nuclear membrane, and arrow in (G) points to the Z-disk of a myofibril in the vicinity of the nucleus. Scale bars in C-G = 2 μ m. *N*= 3 independent experiments.

Fig. 2.

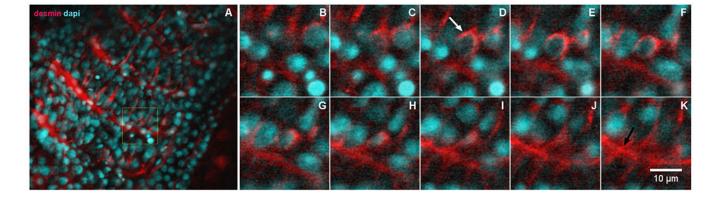

Lysosomes, mitochondria and Golgi are components of the nuclear cloud. Embryonic chick pectoral muscle was processed for transmission electron microscopy and organelles were digitally colored to facilitate the visualization. Images show lysosomes (Ly, in green in A and B), mitochondria (Mt, in red in C and D), endoplasmic reticulum (Er in C), and Golgi (G, in pink in A and B) in proximity with the outer nuclear membrane (Nu). The highly packed nuclear compartment nucleoli (Nuc, in dark yellow) are seen within the nucleus (light yellow) of muscle cells (in A and B). Some lysosomes (in A and B) and mitochondria (in C and D) seem to be adhered to the nuclear surface. Bars in A and C = 1 μ m, and bars in B and D = 500 nm. *N* = 4 independent experiments.

Fig. 3.

Lmo7, Gli1, alpha-actinin and desmin are concentrated in the nuclear cloud in skeletal muscle fibers. Primary cultures of chick myogenic cells were labeled with antibodies against Lmo7 (B), Gli1 (C–E), alpha-actinin (F) and desmin (G–H), and with the nuclear dye DAPI (D–F). A 72-h chick multinucleated myotube was visualized under phase contrast microscopy (A) and under fluorescence microscopy to show the localization of Lmo7 (green, in B). Arrows in A and B point to Lmo7 distribution near the nuclear surface of a myotube. White open circles (in A and B) mark the region of one nucleus surrounded

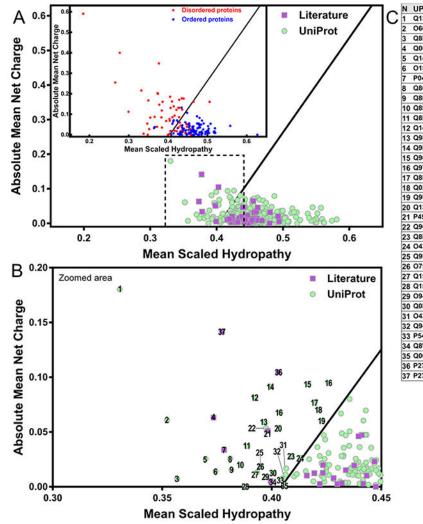
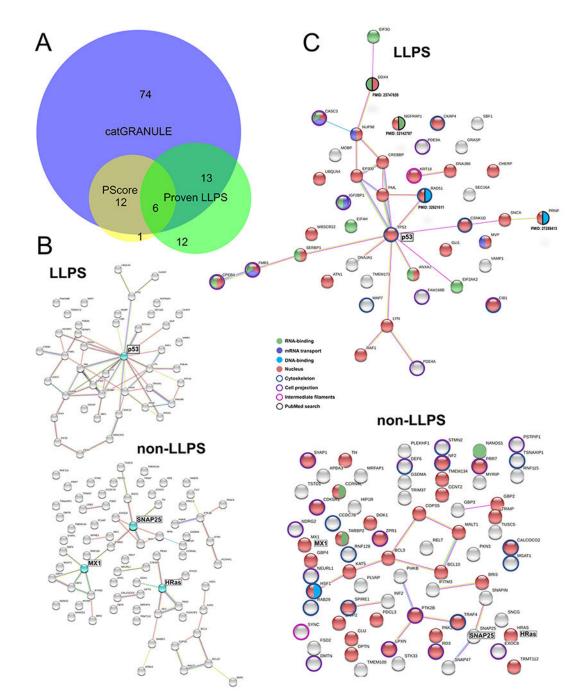

by Lmo7-positive aggregates. Scale bar in A = 10 μ m. Gli-1 (red, in C and E) localizes at the perinuclear region of a 72-h multinucleated myotube (arrow in E). A merged image (with Gli1 and DAPI) is shown in E. Scale bar in E = 5 μ m. The intermediate filament desmin and the sarcomeric protein alpha-actinin accumulate at the perinuclear region of mononucleated myoblasts (F and G) and multinucleated myotubes (H). A merged image of sarcomeric alpha-actinin and DAPI is shown in (F). Note the punctate distribution of alpha-actinin (arrows in F) and the continuous distribution of desmin filaments (arrows in G and H) in the juxtanuclear region of cells. Scale bars in F and H = 10 μ m, and in G = 5 μ m. *n* = 4 independent experiments.

Fig. 4.

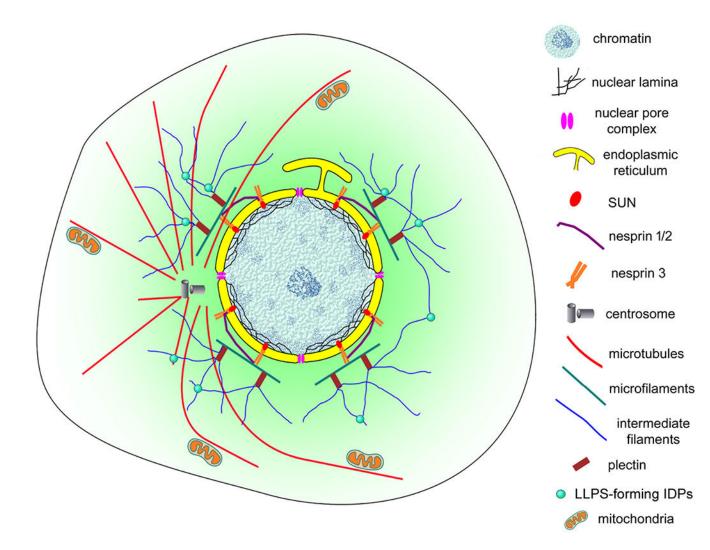
Desmin accumulates at the perinuclear region of early somites in zebrafish embryos. 24-h zebrafish embryos were labeled with an antibody against the muscle-specific intermediate filament protein desmin (red, in A–K) and with the nuclear dye DAPI (cyan, in A–K). Higher magnifications of the area marked in the inset in (A) are shown in images (B–K). Immunofluorescence confocal images of different focal planes (1 μ m apart, in B–K) show the perinuclear localization of desmin (white arrow in D) in somite 28 at the most caudal region of a 24-h zebrafish embryo. Desmin is also found at the septa between adjacent muscle somites 28 and 29 in zebrafish embryos (black arrow in K). Scale bar in K = 10 μ m. N = 4 independent experiments.


do Amaral et al.

Ν	UP ID	Protein
1	Q13875	Myelin-associated oligodendrocyte basic protein
2	O60356	Nuclear protein 1
3	Q8NC51	Plasminogen activator inhibitor 1 RNA-binding protein
4	Q00994	Brain expressed x-linked 3
5	Q14244	Ensconsin
6	015234	Protein CASC3
7	P04156	Major prion protein
8	Q86UE4	Protein LYRIC
9	Q8IWX8	Calcium homeostasis endoplasmic reticulum protein
10	Q8IX12	Cell division cycle and apoptosis regulator protein 1
11	Q8NEF9	Serum response factor-binding protein 1
	Q14004	Cyclin-dependent kinase 13
13	Q9BV73	Centrosome-associated protein CEP250
14	Q9H7C4	Syncoilin
	Q96A49	Synapse-associated protein 1
16	Q9Y605	MORF4 family-associated protein 1
17	Q8N3K9	
18	Q02410	Amyloid-beta A4 precursor protein-binding family A member 1
19	Q9UQF2	C-Jun-amino-terminal kinase-interacting protein 1
-	Q13137	Calcium-binding and coiled-coil domain-containing protein 2
21	P49454	Centromere protein F
22	Q96CV9	Optineurin
		Rab effector MyRIP
24	O43586	Proline-serine-threonine phosphatase-interacting protein 1
25	Q9H4E7	Differentially expressed in FDCP 6 homolog
26	075190	DnaJ homolog subfamily B member 6
27	Q15642	Cdc42-interacting protein 4
28	Q15056	Eukaryotic translation initiation factor 4H
29	094875	Sorbin and SH3 domain-containing protein 2
30	Q08495	Dematin
31	O43310	CBP80/20-dependent translation initiation factor
32	Q94045	Putative RNA polymerase II transcriptional coactivator
33	P54259	Atrophin-1
34	Q8WWI1	LIM domain only protein 7
	Q06787	Synaptic functional regulator FMR1
36	P27824	Calnexin
37	P27797	Calreticulin

Fig. 5.

Some proteins of the perinuclear region show the unusual chemical characteristics of IDPs. (A) The charge-hydropathy analysis of the human perinuclear proteins retrieved from the UniProt database (purple squares) and literature (green circles). Inset: globular folded proteins represented as blue circles and natively unfolded proteins as red dots. (B) Zoomed area marked by dashed line from "A". (C) List of perinuclear proteins with the exquisite charge-hydropathy of IDPs, numbers refer to "B". Plot described by [29] using 275 globular proteins (blue circles) and 91 IDPs (red circles) that enable differentiation (black line) by their charged and hydrophobic nature at pH 7.0 and obtained by PONDR (available at http://www.pondr.com/).


Fig. 6.

Perinuclear IDR-containing proteins with phase separation ability. (A) Venn diagram (analyzed with BioVenn, available at http://www.biovenn.nl) showing the overlap between predictions by catGRANULE (score 0.5), PScore (score 4.0) and perinuclear proteins with peer-reviewed published evidence of phase behavior (*in vitro* and/or *in vivo*). (B) STRING network of functional and physical protein-protein interactions. Top: perinuclear LLPS-IDR-containing proteins with 43 members. Bottom: LLPS-IDR-containing proteins with 74 members. Proteins highlighted in cyan are potential hubs using this classification.

Page 27

(C) Combined STRING (only physical interaction shown) and UniProt keywords evaluation of NA-related and cytoskeleton-related processes. Top: LLPS-IDR-containing proteins. Bottom: non-LLPS-IDR-containing proteins. Evidence from literature is assigned with PMID. Legend is shown in the middle.

Page 28

Fig. 7.

Schematic representation of the nuclear cloud of eukaryotic cells. This model illustrates the complex organization of the perinuclear space (shown in light green) of eukaryotic cells. An intricate 3D network of cytoskeletal filaments is found attached to the nuclear membrane (yellow). Several proteins participate in this organization: cytoskeletal (microfilaments in green, microtubules in red and intermediate filaments in blue) and cytoskeletal associated proteins (plectin, alpha-actinin, and others), nesprins, SUNs, among many others. Dynamic biomolecular condensates drove by intrinsically disordered proteins (IDPs), have a higher propensity to be assembled (small green spheres). Different organelles and cellular structures are also present in the nuclear could: mitochondria (orange), lysosomes, endoplasmic reticulum, Golgi, vesicles, centrosome (grey), and myofibers (in muscle cells).

-
_
<u> </u>
_
~
\mathbf{O}
_
-
\leq
\leq
≦a
≤a
Man
a
lanu
lanu
lanu
lanus
lanu
lanusc
lanus
lanusc
lanusc

Author Manuscript

Table 1

(from 1955 to June 2021), and they were then individually examined to check whether each article was describing proteins with a perinuclear localization Perinuclear proteins retrieved from PubMed database. Perinuclear proteins were identified by an in-silico bibliometric analysis in the PubMed database Seventy nine perinuclear proteins were found and classified as cytoskeleton, vesicular traffic, and signaling. The disease context of perinuclear proteins was also included in the table.

Number	Protein	Cellular process	Reference	Disease related	Reference
-	Actin	Cytoskeleton	Khatau et al., 2009	Congenital myopathies	Clarkson et al., 2004
5	Alpha-actinin	Cytoskeleton	[23]	Autoimmune, myopathies, neurodegenerative disorders	Oikonomou et al., 2011
3	Alpha-synuclein	Vesicular trafficking	[50]	Parkinson's disease	Stefanis, 2012
4	Alpha-tubulin	Cytoskeleton	Wu and Akhmanova, 2017	Neurodegenerative disorders	Fourel and Boscheron, 2020
5	Annexin A2	Signaling	Aukrust et al., 2016	Atherosclerosis, inflammatory disorders	Lim and Hajjar, 2021
6	ARP2/3	Cytoskeleton	Thiam et al., 2016	Cancer, inflammatory diseases, psoriasis	Kahr et al., 2017; Molinie and Gautreau, 2017
Ζ	Beta-catenin	Signaling	Kam and Quaranta, 2009	Bone diseases, cancer, diabetes, cardiac diseases	Clevers and Nusse, 2012
8	Beta-tubulin	Cytoskeleton	Wu and Akhmanova, 2017	Neurodegenerative disorders	Fourel and Boscheron, 2020
6	Brain expressed x-linked 3 (Bex3)	Signaling	Kim et al., 2004	Cancer, neurodegenerative disorders	Krizman et al., 1999; Navas-Pérez et al., 2020
10	Calnexin	Signaling	Lakkaraju et al., 2012	Cancer, Parkinson's disease	Kuang et al., 2014; Ryan et al., 2016
11	Calpain-3	Signaling	Andrade Rosa et al., 2020	Limb-girdle muscular dystrophy type 2A	Richard et al., 1995
12	Calreticulin	Signaling	Taguchi et al., 2000	Cancer, fibrosis, wound healing	Gold et al., 2010
13	Centrosome-associated protein	Cytoskeleton	[52]	Cone-rod dystrophy and hearing loss	Kubota et al., 2018
14	Coatomer subunit epsilon (COPE)	Vesicular trafficking	[10]	Atherosclerosis, Parvovirus infection	Chen et al., 2021; Matsumura et al., 2017
15	CREB binding protein (CBP)	Signaling	[10]	Neurodegenerative disorders	Steffan et al., 2000
16	Desmin	Cytoskeleton	[25]	Skeletal and cardiomyopathies	Capetanaki et al., 2015
17	Dynactin	Cytoskeleton	Payne et al., 2003	Neurodegenerative disorders	Puls et al., 2003
18	Dynein	Cytoskeleton	Payne et al., 2003	Neurodegenerative disorders	Hoang et al., 2017
19	EHDI	Vesicular trafficking	Guilherme et al., 2004	Cardiac diseases	Martins-Marques et al., 2020
20	Endophilin B2	Vesicular trafficking	Vannier et al., 2013	Influenza A viral infection	Serfass et al., 2017
21	epsinR	Vesicular trafficking	Hirst et al., 2003	Schizophrenia and psychotic disorders	Pimm et al., 2005
22	Erk1/2	Signaling	Asrih et al., 2011	Cancer, diabetes, inflammatory diseases, obesity	Lawrence et al., 2008

Number	Protein	Cellular process	Reference	Disease related	Reference
23	Filamin	Cytoskeleton	Gay et al., 2011	Pulmonary diseases, skeletal dysplasia	Bartley et al., 2019; Sasaki et al., 2019
24	Formin	Cytoskeleton	Isogai and Innocenti, 2016	Deafness, neurodegenerative disorders, renal diseases	Labat-de-Hoz and Alonso, 2020
25	FOXC1	cytoskeleton	[10]	Cardiac diseases, congenital glaucoma, leukemia	Khalil et al., 2017; Swaminathan et al., 2016
26	Gamma-synuclein	vesicular trafficking	Irina Surgucheva et al., 2006	Neurodegenerative disorders	Ninkina et al., 2009
27	Gamma-tubulin	Cytoskeleton	Moritz et al., 1995	Brain malformations, cancer, myopathies	Alvarado-Kristensson, 2018; Binarová and Tuszynski, 2019
28	Glial fibrillary acidic protein (GFAP)	Cytoskeleton	Buniatian et al., 1996	Alexander disease, autoimmune astrocytopathy	Brenner et al., 2001; Shan et al., 2018
29	Glioma-associated oncogene homolog 1 (Gli1)	Signaling	[22]	Cancer, congenital malformations	Altaba et al., 2007
30	GM130	Signaling	Gangalum et al., 2004	Lysosomal diseases, neurodegenerative disorders	Liu et al., 2017; Roy et al., 2012
31	HSP70	Signaling	Bodega et al., 2002	Cancer, lysosomal diseases, neurodegenerative disorders	Kirkegaard et al., 2010; Turturici et al., 2011
32	Huntingtin	Signaling	Hoffner et al., 2002	Huntington's disease	Tabrizi et al., 2020
33	JunB	Signaling	[10]	Inflammatory disorders, myeloproliferative disorders	Passegué et al., 2004; Thomsen et al., 2013
34	KASH	Cytoskeleton	Tapley and Starr, 2012	Hutchinson-Gilford progeria syndrome, laminopathies	Starr, 2011
35	Keratin	Cytoskeleton	Lee et al., 2012	Epidermolysis bullosa and other epithelial disorders	McLean and Moore, 2011
36	Kinesin	Cytoskeleton	Cai et al., 2001	Ciliopathies, neurodegenerative disorders	Asselin et al., 2020
37	LIM domain only protein 7 (Lmo7)	Signaling	[19]	Cancer, retinal disorders, skeletal and cardiac myopathies	Nakamura et al., 2011; Semenova et al., 2003
38	Microtubule-associated protein (MAP)	Cytoskeleton	Bloom and Vallee, 1983	Neurodegenerative disorders	D'Andrea et al., 2001; Zhang and Dong, 2012
39	Muscle myosin II	Cytoskeleton	Khatau et al., 2009	Cardiac and skeletal myopathies	Parker and Peckham, 2020
40	Myospryn	Cytoskeleton	Kouloumenta et al., 2007	Muscular dystrophies	Benson et al., 2004
41	Nesprin	Cytoskeleton	Lu et al., 2012	Cancer, hearing loss, myopathies, neurodegenerative disorders	Cartwright and Karakesisoglou, 2014
42	Nestin	Cytoskeleton	Lobo et al., 2004	Cancer, cardiac diseases, neurodegenerative disorders	Bernal and Arranz, 2018; Neradil and Veselska, 2015
43	Neurofilament	Cytoskeleton	Lobsiger and Cleveland, 2009	Neurodegenerative disorders	Khalil et al., 2018
44	Non-muscle myosin II	Cytoskeleton	Thomas et al., 2015	Cancer, inflammatory disorders, neurodegenerative disorders, vascular diseases	Newell-Litwa et al., 2015

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2022 August 18.

Author Manuscript

Author Manuscript

Author Manuscript

do Amaral et al.

-
7
±
2
0
~
\leq
<i>с</i> р
5
7
5
0
\overline{O}
⊇.
σ
+

Author Manuscript

do Amaral et al.

Number	Protein	Cellular process	Reference	Disease related	Reference
45	Nuclear pore complex protein	Signaling	Beck and Hurt, 2017	Cancer, neurodegenerative disorders, viral infection	Sakuma and D'Angelo, 2017
46	Nucleoporin (Nup)	Signaling	Ibarra and Hetzer, 2015	Cancer, cardiac diseases, neurodegenerative disorders, viral infection	Nofrini et al., 2016
47	Oxysterol-binding protein 1	Signaling	Nishimura et al., 2013	Conjunctivitis, hearing loss, neurodegenerative disorders	Raychaudhuri and Prinz, 2010
48	Pericentrin	Cytoskeleton	Doxsey et al., 1994	Cancer, ciliopathy, dwarfism, neurodegenerative disorders	Delaval and Doxsey, 2010
49	Pericentriolar material protein 1	Cytoskeleton	Dammermann, and Merdes, 2002	Cancer	Bousquet et al., 2005
50	Patronin	Cytoskeleton	Zheng et al., 2020	Microvillus diseases	Khanal et al., 2016
51	p53	Signaling	[10]	Cancer, neurodegenerative disorders	Vousden and Lane, 2007
52	Peripherin	Cytoskeleton	Pedersen et al., 1993	Retinal degenerative disorders, neurodegenerative disorders	Yuan et al., 2012
53	PERF15	Cytoskeleton	Oko and Morales, 1994	Sperm abnormalities	Selvara et al., 2010
54	PICK1	Signaling	Staudinger et al., 1995	Cancer, neurodegenerative disorders, cardiac diseases	Li et al., 2016
55	Plectin1	Cytoskeleton	Staszewska et al., 2015	Cancer, muscular dystrophies, skin diseases	Bausch et al., 2011; Smith et al., 1996
56	Postacrosomal sheath WW domain-binding protein	Cytoskeleton	Wu et al., 2007	Sperm abnormalities	Nomikos et al., 2014
57	Phospholipase D (PLD)	Signaling	Souza et al., 2014	Autoimmune, cancer, cardiac diseases, infection neurodegenerative disorders	Brown et al., 2017
58	Promyelocytic leukemia protein (PML)	Signaling	Daniel et al., 1993	Cancer, neurodegenerative disorders, viral infection	Bonilla et al., 2002; Rego et al., 2001
59	Prion protein (PrP)	Signaling	Nikles et al., 2008	Neurodegenerative disorders	Watts et al., 2018
60	PTEN	Signaling	[10]	Autism, cancer	Post et al., 2020
61	Rab11	Vesicular trafficking	Vossenkämper et al., 2007	Cancer, diabetes, neurodegenerative disorders	Bhuin and Roy, 2015
62	RAB2	Vesicular trafficking	Oko and Sutovsky, 2009	Cancer, neurodegenerative disorders	L rincz et al., 2017
63	Rabring7	Vesicular trafficking	Mizuno et al., 2003	Cancer, HIV viral infection, neurodegenerative disorders	Mizuno et al., 2003
64	Rac I	Cytoskeletal	Woroniuk et al., 2018	Cancer, cardiovascular diseases neurodegenerative disorders	Marei and Malliri, 2017
65	Rafl	Signaling	Prouty et al., 1998	Cancer, cardiomyopathies, neurodegenerative disorders	Kobayashi et al., 2010
66	Ran-binding protein 2 (RanBP2)	Signaling	[10]	Encephalopathies	Levine et al., 2020

Number	Protein	Cellular process	Reference	Disease related	Reference
67	Ras	Signaling	Basu et al., 2017	Autoimmune diseases, cancer, neuro- cardiofacial-cutaneous syndromes	Schubbert et al., 2007
68	Refilin	Cytoskeleton	Gay et al., 2011	Chondrocyte disorders	Baudier et al., 2018
69	Retinoblastoma binding protein 2 (RBP2)	Signaling	[10]	Cancer	Maggi et al., 2016
70	Spermatid perinuclear ribonucleic acid-binding protein	Cytoskeleton	Schumacher et al., 1998	Sperm abnormalities	Schumacher et al., 1998
71	Spectraplakin/shot	Cytoskeletal	Sun et al., 2019	Cancer, neurodegenerative disorders, neuromuscular diseases, skin disorders, viral infection	Zhang et al., 2017
72	Proto-oncogene tyrosine- protein kinase (c-Src)	Signaling	Redmond et al., 1992	Cancer, kidney disorders, lens diseases, neurodegenerative disorders	Irby and Yeatman, 2000; Wang and Zhuang, 2017
73	Stat3	Signaling	Bild et al., 2002	Immune diseases, infectious diseases, skin disorders	Vogel et al., 2015
74	STEF/TIAM2	Signaling	Woroniuk et al., 2018	Cancer, immune diseases, neurodegenerative disorders	Maltas et al., 2020
75	Stimulator of interferon genes protein (Sting)	Signaling	Barber, 2015	Cancer, viral infection, inflammatory diseases	Barber, 2015
76	Transcriptional coactivator p300	Signaling	Chen et al., 2007	Cancer, cardiac diseases, diabetes, HIV infection	Liu et al., 2008
TT	TAU	Cytoskeleton	Adamec et al., 2002	Neurodegenerative disorders	Iqbal and Gong, 2016
78	VAMP	Vesicular trafficking	Oishi et al., 2005	Neurodegenerative disorders	Bourassa et al., 2012
62	Vimentin	Cytoskeleton	Tolstonog et al., 2002	Cancer, cataracts, Crohn's disease, rheumatoid arthritis, HIV infection	Danielsson et al., 2018

Author Manuscript

Author Manuscript

-
_
<u> </u>
_
–
_
-
\mathbf{c}
\mathbf{U}
<
0
u
_
_
_
_
<u> </u>
CD .
~
\mathbf{O}
~ /
$\overline{\mathbf{O}}$

Author Manuscript

PScore 4.0. Last column: experimentally proven LLPS as verified in Dataset S1 from [31] or present in original articles cited throughout. HTS, evidence of LLPS based on high-throughput screening. PSP, proteins that contain regions that can mediate LLPS as verified in PhaSePro (https://phasepro.elte.hu/). asterisk: Disorder content predicted by PONDR-VSL2 < 33.33% but present on DisProt database. Blue shade: catGRANULE score 0.5. Yellow shade: Perinuclear human protein sequences from UniProt and from the literature search with disorder content above 33.33% (PONDR-VLS2) and/or reported on DisProt database were evaluated by the catGRANULE algorithm (catG.) and PScore. Text inside brackets in the fifth column indicate the function Perinuclear proteins predicted to be fully or partly disordered show predicted liquid-liquid phase separation propensity and/or experimental evidence. associated with the disordered regions reported in DisProt. Bold font: perinuclear proteins selected by both UniProt search and literature. Marked by Proteins organized by decreasing overall PONDR-VSL2 disorder.

		UniProt proteins					
z	UniProt ID	Protein	%VSL2	%DisProt (disorder function)	catG.	PScore	Evidence of LLPS
	A1KXE4	Myelin-associated neurite-outgrowth inhibitor (Mani)	100.00		-0.4	2.90	Hardenberg et al., 2020 (dataset S1) *HTS
7	015234	Cancer susceptibility candidate gene 3 protein (MLN 51)	100.00	3.00 (protein binding)	1.7	4.67	Hardenberg et al., 2020 (dataset S1) *HTS
ε	076070	Gamma-synuclein	100.00	100.00 (protein binding; molecular recognition assembler)	0.3	<140 aa	
4	Q15004	PCNA-associated factor (PAF15)	100.00	100.00 (protein binding)	0.5	<140 aa	
5	P54259	Atrophin-1	97.90		1.0	5.48	
9	P49454	Centromere protein F (CENP-F)	96.98		1.1	2.82	
7	Q8NC51	Plasminogen activator inhibitor 1 RNA-binding protein (PAI-RBP1)	96.32		2.8	5.39	
8	Q9BV73	Centrosome-associated protein CEP250 (Cep250)	95.45		0.6	0.41	
6	O75190	DnaJ homolog subfamily B member 6	92.94		2.2	8.81	
10	060356	Nuclear protein 1	91.46	100.00 (regulation of phosphorylation and molecular recognition assembler)	0.8	<140 aa	
11	Q96CV9	Optineurin	90.81		0.3	1.49	
12	Q14244	Ensconsin	90.52		0.7	7.30	
13	Q86UE4	Protein LYRIC	90.38		1.5	3.26	
14	Q9NRR5	Ubiquilin-4	88.85		0.5	3.70	Gerson et al., 2021 (PMID: 33431932)

Frotein %VSL2 ning protein 1 87.88 stein 4 87.71 stein 4 87.71 stein 4 87.71 stein 4 86.51 stein 5 86.21 stein 5 86.21 stein 5 86.21 drocyte basic protein 84.74 drocyte basic protein 84.34 stein 6 87.34 drocyte basic protein 84.34 stein 6 87.34 stein 6 87.34 stein 2 87.34 stein 6 87.34 stein 12 87.34 stein 12 78.46 stein 12 78.46 stein 12 78.46 stein 12 78.46 stotein 2 88.61 stotein 2 <			UniProt proteins					
Q6NEPJ Serum response factor-binding protein 1 87.38 Q7065 Cytoskeleton-associated protein 4 87.31 Q6845 Dematin 86.91 Q6845 Dematin 86.91 Q7065 Synotilin 86.31 Q917C4 Synotilin 86.31 Q917C4 Synotilin 86.31 Q917C5 Cardionyopathy-associated protein 5 86.31 Q917C4 Institol 1.4.5-triphosphate receptor associated 1 85.40 Q91201 Formin-2 84.47 Q91201 Formin-2 84.43 Q91201 Formin-2 84.43 Q91201 Formin-2 84.43 Q91201 Formin-2 84.43 Q91201 Formin-2 84.44 Q91457 Cardin interact 1 85.40 Q1467 Clathin interact 1 87.40 Q1467	z	UniProt ID	Protein	%VSL2	%DisProt (disorder function)	catG.	PScore	Evidence of LLPS
071065 Cyooskeleton-associated protein 4 87.71 080495 Dematrin 86.91 080497 Syncolilin 86.91 081476 Syncolilin 86.31 081475 Cartionyopathy-associated protein 5 86.31 081587 Cartionyopathy-associated protein 5 86.31 081587 Insoitol 1.4.5 triphosphate receptor associated 1 85.40 091201 Eptim-associated oligodendrocyte basic protein 84.41 091201 Eptim-3 84.43 091201 Eptim-3 84.43 091201 Eptim-3 84.43 091201 Protein transport protein Sec16A 84.43 016077 Clathrin interact 1 87.43 091201 Eptim-3 84.44 091202 Protein transport protein Sec16A 81.40 016073 Adenomators polyposis coli protein 2 81.40 091203 Adenomators polyposis coli protein 2 78.40 091303 Sothin and SH3 domain-containing protein 2 78.40 0914677 Clathrin homeostasis endoplasmic re	15	Q8NEF9	Serum response factor-binding protein 1	87.88		1.0	-0.08	
08495 Dematin 68.91 08417C Synotilin 68.31 08173C Cardionyopathy-associated protein 5 86.21 087467 Inositol 1.4.5-triphosphate receptor associated 1 84.7 087575 Myclin-associated oligodendrocyte basic protein 84.4 091201 Epsin-3 84.4 015027 Protein transport protein Sec 16.4 84.3 091201 Epsin-3 84.3 091201 Clathin interacor 1 82.8 091471 Clathin interacor 1 82.40 091472 Sorbin and SH3 domain-containing protein 2 84.00 091472 Sorbin and SH3 domain-containing protein 2 84.00 091472 Edsin montous polyposis coli protein 2 81.00 0913625 Achonotous polypos	16	Q07065	Cytoskeleton-associated protein 4	87.71		0.8	4.26	
QPHTC4Synotili86.31QPMC4Iositol 1.4.5-triphosphate receptor associated protein 586.21QYG67Inositol 1.4.5-triphosphate receptor associated 185.40QYG75Myelin-associated oligodendrocyte basic protein84.7QPL201Epsin-384.34QH201Epsin-384.34QH201Epsin-384.34QH201Epsin-384.34QH201Epsin-384.34QH201Epsin-384.34QH201Epsin-384.34QH202Cathrin interactor 182.88QH203Adenomatous polytosis coli protein 281.07QH204Adenomatous polytosis coli protein 281.07QH205Sothin and SH3 domain-containing protein 281.07QH205Sothin and SH3 domain-containing protein 281.07QH205Sothin and SH3 domain-containing protein 278.46QH205Sothin and SH3 domain-containing protein 278.40QH205Edsirum homeostasis endoplasmic reticulum protein78.40QH205Edsirum homeostasis endoplasmic reticulum protein78.40QH205Edsirum function factor 3 subunit G76.30QH205Rab effector MyRP76.41QH205Cd-41-interacting protein 476.21QH205Cd-41-interacting protein 476.21QH205Cd-41-interacting protein 476.21QH205Cd-41-interacting protein 476.21QH205Statum-176.21QH205Cds-11-interacting protein 17	17	Q08495	Dematin	86.91		0.3	2.26	
Q8N3K9 Cardiomyopathy-associated protein 5 86.21 QYGF6 Inositol 1.4.5-triphosphare receptor associated 1 85.40 Q13875 Myelin-associated oligodendrocyte basic protein 84.41 QPMC56 Formin-2 84.43 QPM201 Epsin-3 84.34 QPM202 Formin-2 84.34 QPM201 Epsin-3 84.34 QPM201 Epsin-3 84.34 QPM201 Epsin-3 84.34 QPM202 Protein transport protein Sec16A 84.09 QPM201 Epsin-3 84.34 QPM202 Clathrin interactor 1 82.36 QPM203 Sochin and SH3 domain-containing protein 2 84.09 QPM204 Adenomatous polytosis coli protein 2 78.40 QPM205 Sochin and SH3 domain-containing protein 2 78.40 QPM204 Adenomatous polytosis coli protein 2 78.40 QPM205 Sochin and SH3 domain-containing protein 2 78.40 QPM204 Adenomators polytosis coli protein 2 77.65 QPM205 Sochin and SH3 doma	18	Q9H7C4	Syncoilin	86.31		-0.1	-0.63	
097 (6F) Inositol 14,5-triphosphate receptor associated 1 85.40 013875 Myelin-associated oligodendrocyte basic protein 84.4 09N256 Fornin-2 84.44 09H201 Epsin-3 84.34 09H201 Epsin-3 84.34 015027 Protein transport protein Scol6A 84.09 014677 Clathni interactor 1 82.88 014670 Clathni interactor 1 82.88 015027 Protein transport protein Scol6A 84.09 015027 Protein transport protein Scol6A 84.09 015027 Clathni interactor 1 82.88 01503 Adenomators polyposis coli protein 2 81.00 024875 Sorbin and SH3 domain-containing protein 2 81.00 013626 Apoptosis-stimulating of P53 protein 2 78.40 013627 Sorbin and SH3 domain-containing protein 2 78.40 013628 Sorbin and SH3 domain-containing protein 2 78.40 013629 Subtintin-protein ligase TRAIP 78.40 029045 Subdutint-protein ligase TRAIP 78.40	19	Q8N3K9	Cardiomyopathy-associated protein 5	86.21		1.1	1.52	
Q13875Myetim-associated oligodendrocyte basic protein84.7Q9N256Formin-284.44Q9H201Epsin-384.34Q14677Protein transport protein Sec16A84.99Q14677Clathrin interactor 182.88Q15026Protein transport protein 282.12Q5596Aetomatous polyposis coli protein 281.07Q5505Aetomatous polyposis coli protein 281.07Q5505Aetomatous polyposis coli protein 281.07Q5505Aetomatous polyposis coli protein 278.90Q13625Apoptosis endoplasmic reticulum protein78.49Q5047Statim homeostasis endoplasmic reticulum protein78.40Q5045E3 ubiquitin-protein ligase TRAIP78.40Q5045E3 ubiquitin-protein ligase TRAIP78.40Q5045Becll tymphoma/leukemia 1076.21Q5045Becll tymphoma/leukemia 1076.21Q5045Becll tymphoma/leukemia 1076.21Q5047Ranos homolog 176.21Q5047Ranos homolog 176.21Q5047Ranos homolog 176.21Q5047Ranos homolog 176.21Q5047Caci-ating protein 476.21Q5047Caci-ating protein 476.21Q5047Caci-ating protein 476.21Q5047Caci-ating protein 476.21Q5047Caci-ating protein 476.21Q5048Caci-ating protein 476.21Q5049Becolin-brotein kinase LMTKI77.50 <trr>Q5041</trr>	20	Q9Y6F6	Inositol 1,4,5-triphosphate receptor associated 1	85.40		0.8	3.68	
09NZ56 Formin-2 84.44 09H201 Epsin-3 84.04 015027 Protein transport protein Sec 16A 84.09 015027 Protein transport protein Sec 16A 84.09 015027 Clathrin interactor 1 82.88 015027 Clathrin interactor 1 82.88 095996 Protine-rich protein 7 82.12 09575 Sorbin and SH3 domain-containing protein 2 81.00 094875 Sorbin and SH3 domain-containing protein 2 81.00 095996 Apoptosis-stimulating of p53 protein 2 78.90 094875 Sorbin and SH3 domain-containing protein 2 78.40 073521 Apoptosis-stimulating of p53 protein 2 78.40 0918472 E3 ubiquitin-protein ligase TRAIP 78.40 075821 Eukaryotic translation factor 3 suburit G 77.50 075821 Eukaryotic translation initiation factor 3 suburit G 76.43 075821 Eukaryotic translation initiation factor 3 suburit G 76.43 075821 Eukaryotic translation initiation factor 3 suburit G 76.43 075821	21	Q13875	Myelin-associated oligodendrocyte basic protein	84.7		-0.3	2.31	Aggarwal et al., 2013 (PMID: 23762018)
09H201 Epsin-3 84.34 015027 Protein transport protein Sec16A 84.09 014677 Clathrin interactor 1 82.88 014677 Clathrin interactor 1 82.88 081467 Clathrin interactor 1 82.88 081467 Clathrin interactor 1 82.88 081467 Clathrin interactor 1 82.88 08758 Proline-rich protein 7 82.12 094875 Sorbin and SH3 domain-containing protein 2 81.00 094875 Sorbin and SH3 domain-containing protein 2 81.00 094875 Sorbin and SH3 domain-containing protein 2 78.90 094875 Stathmina 2 78.00 78.40 095045 Stathmina 2 78.40 78.40 095045 Stathmin-2 78.00 77.65 095045 Stathmin-2 78.40 77.65 095045 Stathmin-2 78.40 77.65 095045 Stathmin-2 78.40 77.65 095045 Stathmin-2 78.40 77.65 095045 Stathmin-2 76.21 77.65	22	Q9NZ56	Formin-2	84.44		1.4	3.38	
015027 Protein transport protein Sec16A 84.09 021677 Clathrin interactor 1 82.88 021677 Clathrin interactor 1 82.88 087168 Proline-rich protein 7 82.12 085996 Adenomatous polyposis coli protein 2 81.07 094875 Sorbin and SH3 domain-containing protein 2 81.07 094876 Apoptosis-stimulating of p53 protein 2 81.00 094875 Sorbin and SH3 domain-containing protein 2 81.00 094875 Sorbin and SH3 domain-containing protein 2 81.00 094875 Satum homeostasis endoplasmic reticulum protein 78.46 094045 Editum homeostasis endoplasmic reticulum protein 78.46 093045 Satumin-2 78.46 093045 Satumin-2 78.46 093045 Satumin-2 78.46 093045 Satumin-2 78.46 093045 Satumine-2 76.50 075821 Eukaryotic translation factor 3 submit G 76.82 07542 Cac42-interacting protein 4 76.43 07542 <td>23</td> <td>Q9H201</td> <td>Epsin-3</td> <td>84.34</td> <td></td> <td>0.6</td> <td>3.64</td> <td></td>	23	Q9H201	Epsin-3	84.34		0.6	3.64	
014677Clathrin interactor 182.88 024677 Clathrin interactor 182.12 $087B68$ Proline-rich protein 782.12 095966 Adenomatous polyposis coli protein 281.07 09475 Sorbin and SH3 domain-containing protein 281.07 09475 Sorbin and SH3 domain-containing protein 281.07 09475 Sorbin and SH3 domain-containing protein 278.90 09507 Ea kupturin-protein ligase TRAIP78.49 093045 Ea kupturin-protein ligase TRAIP78.46 075821 Eu karyotic translation factor 3 subunit G77.65 075821 Eukaryotic translation initiation factor 3 subunit G76.82 075821 Berefl Tymphoma/Leukemia 1076.82 087420 Rab effector MyRIP76.82 08741 Nanos homolog 175.00 096924 Tunor necrosis factor receptor superfamily member 19L71.63 096924 Tunor necrosis factor receptor superfamily member 19L73.29 00613 Heat shock factor protein 173.29	24	015027	Protein transport protein Sec 16A	84.09		1.2	5.44	
08TB68 Prolime-rich protein 7 82.12 095996 Adenomatous polyposis coli protein 2 81.07 095497 Sorbin and SH3 domain-containing protein 2 81.00 094875 Sorbin and SH3 domain-containing protein 2 81.00 094875 Sorbin and SH3 domain-containing protein 2 81.00 094875 Apoptosis-stimulating of p53 protein 2 78.90 081WX8 Calcium homeostasis endoplasmic reticulum protein 78.40 091045 E3 ubiquitin-protein ligase TRAIP 78.40 093045 Stathmin-2 77.50 075821 Eukaryotic translation initiation factor 3 subunit G 77.50 075821 Eukaryotic translation initiation factor 3 subunit G 77.50 075821 Eukaryotic translation initiation factor 3 subunit G 76.21 075821 Bueflector MyRIP 76.21 075821 Bueflector MyRIP 76.43 075821 Bueflector MyRIP 76.21 075821 Rub frector MyRIP 76.43 015642 Calcium-binding protein 1 76.51 075642 Calcium-bin	25	Q14677	Clathrin interactor 1	82.88		1.1	3.84	
09596 Adenomatous polyposis coli protein 2 81.07 094875 Sorbin and SH3 domain-containing protein 2 81.00 094875 Sorbin and SH3 domain-containing protein 2 81.00 094875 Sorbin and SH3 domain-containing protein 2 81.00 094875 Apoptosis-stimulating of p53 protein 2 78.90 07167 Calcium homeostasis endoplasmic reticulum protein 78.46 098WF2 E3 ubiquitin-protein ligase TRAIP 78.46 099045 Stathmin-2 77.65 093045 Stathmin-2 77.65 093045 Bacell lymphomaleukemia 10 76.21 095999 B-cell lymphomaleukemia 10 76.82 095990 B-cell lymphomaleukemia 10 76.82 095991 B-cell lymphomaleukemia 10 76.21 095992 B-cell lymphomaleukemia 10 76.21 095042 Cad-zinteracting protein 4 76.21 08071 Cad-zinteracting protein 4 76.21 08071 Nanos homolog 1 76.48 090524 Tumor incroreceptor superfamily member 19L 76.50 <	26	Q8TB68	Proline-rich protein 7	82.12		-1.1	2.56	
094875 Sorbin and SH3 domain-containing protein 2 81.00 013625 Apoptosis-stimulating of p53 protein 2 78.90 013625 Apoptosis-stimulating of p53 protein 2 78.90 013625 Calcium homeostasis endoplasmic reticulum protein 78.49 081WX8 Calcium homeostasis endoplasmic reticulum protein 78.49 093045 E3 ubiquitin-protein ligase TRAIP 78.49 093045 Stathmin-2 77.50 093045 Stathmin-2 77.50 075821 Eukaryotic translation initiation factor 3 subunit G 77.50 075821 Eukaryotic translation initiation factor 3 subunit G 76.21 075821 Buerell lymphoma/leukemia 10 76.82 080FW9 Rab effector MyRIP 76.21 080FV1 Rab effector MyRIP 76.21 080FV1 Nanos homolog 1 76.21 080FV1 Nanos homolog 1 75.00 090FV3 Retinenting protein 1 75.00 07502 Calcium-binding protein 1 75.00 080613 Heat shock factor protein kinase LMTK1 75.	27	095996	Adenomatous polyposis coli protein 2	81.07		1.0	2.64	
Q13625 Apotosis-stimulating of p53 protein 2 78.90 Q8IWX8 Calcium homeostasis endoplasmic reticulum protein 78.49 Q9BWF2 E3 ubiquitin-protein ligase TRAJP 78.46 Q9BWF3 E3 ubiquitin-protein ligase TRAJP 78.46 Q9BWF3 E3 ubiquitin-protein ligase TRAJP 78.46 Q9BWF3 Eathmin-2 77.50 Q93045 Stathmin-2 77.50 Q93045 Buedit translation initiation factor 3 submit G 76.82 Q75821 Eukaryotic translation initiation factor 3 submit G 76.82 Q95999 B-cell lymphoma/leukemia 10 76.82 Q8NFW9 Rab effector MyRIP 76.48 Q8NFW1 Nanos homolog 1 76.43 Q8WY41 Nanos homolog 1 76.43 Q8WY41 Nanos homolog 1 76.43 Q9NZU7 Calcium-binding protein 1 74.59 Q9SZMQ8 Serine/Interprotein kinase LMTK 1 73.29 Q0613 Heat shock factor protein 1 73.29	28	094875	Sorbin and SH3 domain-containing protein 2	81.00		0.9	3.21	
Q8IWX8Calcium homeostasis endoplasmic reticulum proteinQ9BWF2E3 ubiquitin-protein ligase TRAIPQ93045Stathmin-2Q93045Stathmin-2O75821Eukaryotic translation initiation factor 3 subunit GO75829B-cell lymphoma/feukemia 10O75821Eukaryotic translation initiation factor 3 subunit GO75821Eukaryotic translation initiation factor 3 subunit GO75821Eukaryotic translation factor 3 subunit GO80FW9Rab effector MyRIPO15642Cdc42-interacting protein 4Q15642Cdc42-interacting protein 4Q80WY41Nanos homolog 1O917Calcium-binding protein 1Q9674Tumor necrosis factor receptor superfamily member 19LQ6673Heat shock factor protein 1Q0613Heat shock factor protein 1	29	Q13625		78.90	52.10 (protein binding)	0.9	2.17	
Q9BWF2E3 ubiquitin-protein ligase TRAIPQ93045Stathmin-2Q93045Stathmin-2O75821Eukaryotic translation initiation factor 3 subunit G05599B-cell lymphoma/leukemia 1009599B-cell lymphoma/leukemia 1005599Rab effector MyRIP05591Cd-42-interacting protein 405642Cd-42-interacting protein 4015642Cd-42-interacting protein 405642Cd-42-interacting protein 4078V14Nanos homolog 108NY41Nanos homolog 109NZU7Calcium-binding protein 1090Z4Tumor necrosis factor receptor superfamily member 19L06613Heat shock factor protein 1000613Heat shock factor protein 1	30	Q8IWX8	Calcium homeostasis endoplasmic reticulum protein	78.49		0.9	5.02	
093045Stathmin-2075821Eukaryotic translation initiation factor 3 subunit G075821Eukaryotic translation initiation factor 3 subunit G095999B-cell lymphoma/leukemia 10095929Rab effector MyRIP015642Cdc42-interacting protein 4015642Cdc42-interacting protein 4015642Cdc42-interacting protein 4015642Cdc42-interacting protein 408WY41Nanos homolog 108WY41Calcium-binding protein 1090214Tumor necrosis factor receptor superfamily member 19L06613Heat shock factor protein 1	31	Q9BWF2	E3 ubiquitin-protein ligase TRAIP	78.46		0.0	1.15	
075821Eukaryotic translation initiation factor 3 subunit G09599B-cell lymphoma/leukemia 1005592B-cell lymphoma/leukemia 1008NFW9Rab effector MyRIP08NFW1Cdc42-interacting protein 4015642Cdc42-interacting protein 408NY41Nanos homolog 108NY41Nanos homolog 108NY41Calcium-binding protein 109NZU7Calcium-binding protein 109SZ4Tumor necrosis factor receptor superfamily member 19L06G13Heat shock factor protein 1	32	Q93045	Stathmin-2	77.65		-0.6	3.92	
095999B-cell lymphoma/leukemia 10Q8NFW9Rab effector MyRIPQ8NFW1Cdc42-interacting protein 4Q15642Cdc42-interacting protein 4Q8WY41Nanos homolog 1Q8WY41Nanos homolog 1Q9NZU7Calcium-binding protein 1Q96Z4Tumor necrosis factor receptor superfamily member 19LQ65MQ8Serine/threonine-protein kinase LMTK1Q00613Heat shock factor protein 1	33	075821	Eukaryotic translation initiation factor 3 subunit G	77.50		0.8	-0.05	Hardenberg et al., 2020 (dataset S1) *HTS
Q8NFW9Rab effector MyRIPQ15642Cdc42-interacting protein 4Q15642Cdc42-interacting protein 4Q8WY41Nanos homolog 1Q8WY41Nanos homolog 1Q9NZU7Calcium-binding protein 1Q96724Tumor necrosis factor receptor superfamily member 19LQ66728Serine/threonine-protein kinase LMTK1Q00613Heat shock factor protein 1	34	095999	B-cell lymphoma/leukemia 10	76.82		-0.2	1.85	
Q15642 Cdc42-interacting protein 4 Q8WY41 Nanos homolog 1 Q8WY2U7 Calcium-binding protein 1 Q9NZU7 Calcium-binding protein 1 Q96Z4 Tumor necrosis factor receptor superfamily member 19L Q6ZMQ8 Serine/threonine-protein kinase LMTK1 Q00613 Heat shock factor protein 1	35	Q8NFW9	Rab effector MyRIP	76.48		0.4	0.89	
Q8WY41 Nanos homolog 1 Q9NZU7 Calcium-binding protein 1 Q969Z4 Tumor necrosis factor receptor superfamily member 19L Q6ZMQ8 Serine/threonine-protein kinase LMTK1 Q0613 Heat shock factor protein 1	36	Q15642	Cdc42-interacting protein 4	76.21		0.7	3.22	
Q9NZU7 Calcium-binding protein 1 Q969Z4 Tumor necrosis factor receptor superfamily member 19L Q6ZMQ8 Serine/threonine-protein kinase LMTK1 Q00613 Heat shock factor protein 1	37	Q8WY41	Nanos homolog 1	75.00		0.2	3.16	
Q969Z4 Tumor necrosis factor receptor superfamily member 19L Q6ZMQ8 Serine/threonine-protein kinase LMTK1 Q00613 Heat shock factor protein 1	38	Q9NZU7	Calcium-binding protein 1	74.59		1.0	2.66	
Q6ZMQ8 Serine/threonine-protein kinase LMTK1 Q00613 Heat shock factor protein 1	39	Q969Z4	Tumor necrosis factor receptor superfamily member 19L	74.19		0.3	3.10	
Q00613 Heat shock factor protein 1	40	Q6ZMQ8	Serine/threonine-protein kinase LMTK1	73.29		1.0	3.79	
	41	Q00613	Heat shock factor protein 1	72.97		0.2	1.45	

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2022 August 18.

Author Manuscript

do Amaral et al.

Author Manuscript

		UniProt proteins					
Z	UniProt ID	Protein	%VSL2	%DisProt (disorder function)	catG.	PScore	Evidence of LLPS
42	Q7Z3Z2	Protein RD3	72.82		-1.4	0.08	
43	Q15056	Eukaryotic translation initiation factor 4H	72.18		2.3	5.75	Hardenberg et al., 2020 (dataset S1)
4	Q96A49	Synapse-associated protein 1	72.16		0.2	-0.87	
45	Q8IX12	Cell division cycle and apoptosis regulator protein 1	70.35		0.7	2.09	
46	A2IDD5	Coiled-coil domain-containing protein 78	70.09		0.3	1.47	
47	Q9UGF2	C-Jun-amino-terminal kinase-interacting protein 1	06.69		0.8	2.75	
48	O60583	Cyclin-T2	69.04		0.5	1.49	
49	O15055	Period circadian protein homolog 2	68.37		0.6	3.28	
50	Q08AE8	Protein spire homolog 1	67.72		0.2	1.17	
51	Q96FS4	Signal-induced proliferation-associated protein 1	67.47		0.8	1.26	
52	Q8IZ41	Ras and EF-hand domain-containing protein	67.30		0.8	1.09	
53	P05783	Keratin, type I cytoskeletal 18	67.21		0.5	5.43	
54	Q17RY0	Cytoplasmic polyadenylation element-binding protein 4	66.26		1.3	4.47	
55	O43310	CBP80/20-dependent translation initiation factor	66.22		0.6	2.56	
56	O60271	C-Jun-amino-terminal kinase-interacting protein 4	65.93		1.2	2.26	
57	O75112-6	Isoform 6 of LIM domain-binding protein 3	65.72	70.30 (protein binding)	-0.1	2.53	
58	O14770	Homeobox protein Meis2	65.62		0.8	3.58	
59	Q13137	Calcium-binding and coiled-coil domain-containing protein 2	65.47		0.3	1.86	
60	094972	E3 ubiquitin-protein ligase TRIM37	65.46		0.5	1.65	
61	Q9Y605	MORF4 family-associated protein 1	65.35		-1.1	<140 aa	
62	Q8IXB3	Trafficking regulator of GLUT4 1	64.97		-1.0	-0.85	
63	Q27J81	Inverted formin-2	64.93		0.4	2.99	
64	O43586	Proline-serine-threonine phosphatase-interacting protein 1	64.66		0.2	1.2	
65	Q7Z6J0	E3 ubiquitin-protein ligase SH3RF1	64.53		0.6	1.88	
66	Q86UE8	Serine/threonine-protein kinase tousled-like 2	63.60	26.00 (targeting to the nucleus)	0.0	2.22	
67	Q5U651	Ras-interacting protein 1	62.93		1.1	2.00	
68	P20749	B-cell lymphoma 3 protein	62.78		0.0	3.41	

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Page 35

NHurbonHoldHoldPerformNo.PerformNo.PerformNo.PerformNo.PerformNo.Perform <th< th=""><th> </th><th></th><th>UniProt proteins</th><th>proteins</th><th></th><th></th><th></th><th></th></th<>			UniProt proteins	proteins				
QPICIS Melanoma-sevociated antigen E1 0.2.3 0.3 QPHZ Differentially expressed in PCPF 6 hounolog 61.9 0.3 3.3 VID Darf hounolog subfamily A member 1 0.46 0.3 0.3 QUPT C-Jum-amino-terminal kinase-interacting protein 3 0.08 0.45 0.3 QUPT Amyloid-ben A precursor protein binding family A member 1 0.01 0.05 0.3 0.3 QUPT Amyloid-ben A precursor protein binding family A member 1 0.01 0.01 0.3 0.3 QUPTO Amyloid-ben A precursor protein binding family A member 1 0.01 0.3 0.3 0.3 QUPTO Amyloid-ben A precursor protein binding family A member 1 0.05 0.3	Z	UniProt ID	Protein	%VSL2	%DisProt (disorder function)	catG.	PScore	Evidence of LLPS
QH4E3 Differentially expressed in PDCP 6 homolog 0.01 0.2 3.32 731689 Dan homolog subtimity A member 1 0.46 0.4	69	Q9HCI5	Melanoma-associated antigen E1	62.38		0.6	2.70	
P31680 Dual honolog subfamily A member 1 0.46 15 345 QUPT K Cum-amino-terminal kinase-interacting protein 3 0.88 0.81 0.81 0.81 QU210 Anyloid-ben AI A precurse protein hinding family A member 1 0.61 0.81 0.8 345 QU210 Anyloid-ben AI A precurse protein hinding family A member 1 0.61 0.81 0	70	Q9H4E7	Differentially expressed in FDCP 6 homolog	61.97		0.2	3.32	
Qi UPTo Cum-mino-terminal kinace-intencting protein 3 6.053 123 3.45 Q0210 Amyloid beta At precursor protein kinace interacting protein 3 0.031 0.031 0.031 0.03 1.45 Q17502 Protein TAMALIN 0.031 0.041 0.05	71	P31689	DnaJ homolog subfamily A member 1	61.46		1.6	0.72	Hardenberg et al., 2020 (dataset S1) *HTS
Q02410 Amyloid-been Amerone protein binding family a member 1 Q0.81 G.0.81 L44 Q7562 Prein TAMLIN 00.75 0.75 2.87 Q1550 Dual specificity rests-specific protein kinase 1 0.69 0.55 2.87 Q9704 Dexing protein 1 0.69 0.59 0.50 0.5 2.87 Q10709 Densing protein 1 0.60 0.53 0.69 0.5 0.5 0.5 Q10709 Clusterin 0.50 0.75 0.75 0.75 0.10 0.5 0.3 Q10716 Hundigui-interacting protein 1-clued protein 0.64 0.5 0.26 0.3 0.26 0.26 0.3 0.26	72	Q9UPT6	C-Jun-amino-terminal kinase-interacting protein 3	60.85		1.2	3.45	
QTAG2 Pretin TAMALIN 60.7 9.8 4.56 Q15569 Dual specificity testis-specific protein kinnee 1 60.54 0.5 2.87 Q9704 Docking protein 1 60.50 0.5 2.97 Q9704 Paraneluma vesicle-ssociated protein kinnee 1 60.50 0.5 2.90 Q9704 Paraneluma vesicle-ssociated protein 3 5.97 0.0 2.00 Q10909 Charterin 5.97 0.0 0.0 2.00 Q10900 Charterin vesicle-ssociated protein 1-elated protein 5.96 0.0 2.01 Q10910 Charterin vesicle-ssociated protein 1-elated protein 5.96 0.0<	73	Q02410	Amyloid-beta A4 precursor protein binding family A member 1	60.81		0.8	1.43	
Q15560 Dual specificity testis-specific protein kinase 1 60.54 287 Q97041 Decking protein 1 60.57 60.57 20 Q9RX73 Paramema vesicle-associated protein 9.973 20.1 2.02 Q9RX97 Paramema vesicle-associated protein 9.967 -0.1 2.02 Q10909 Chunker 9.969 -0.1 2.01 Q11050 Unustrin-interacting protein 1-related protein 9.957 -0.1 2.02 Q1503 R15C-hading complex submit TARP2 88.46 -0.12 2.03 Q1504 Transmemore protein 134 -0.12 2.03 2.03 Q1504 Transmemore protein 134 -0.12 2.03 2.03	74	Q7Z6J2	Protein TAMALIN	60.76		0.8	4.56	
09704 Docking protein 1 06.50 0.53 100 09RX07 Pharmaleman vesicle-associated protein 59.73 -0.1 2.00 170909 Clusterin 59.69 -0.1 2.01 170907 Pumileman vesicle-associated protein 59.67 -0.1 2.03 057146 Huntingrin-interacting protein 1-related protein 59.46 -0.1 2.03 057146 Huntingrin-interacting protein 1-related protein 58.14 -0.1 2.03 057146 Huntingrin-interacting protein 1-related protein 58.14 -0.1 2.03 057147 Transmerbrane protein 134 58.14 -0.1 2.03 2.03 05163 RSC-londing comblex submit TARBP2 58.14 -0.1 2.03 2.03 01633 RSC-londing comblex submit TARBP2 58.14 58.2 -0.1 2.03 01645 Transmerbane protein 134 Transmerbane protein 134 58.16 -0.2 1.25 01645 Syndhomile protein 47 Stand Interaction 20 57.3 2.02 2.02	75	Q15569	Dual specificity testis-specific protein kinase 1	60.54		0.5	2.87	
Q9BXy1 Plasmalerman vecide-associated protein 901 201 201 201 P10909 Clusterin 59.69 -01 106 QFBT2 Pumilio homolog 2 59.57 -01 106 QFBT3 Pumilio homolog 2 59.57 -01 107 QFBT4 Huntingrin-interacting protein 1-related protein 25 (SNAP23) 59.46 04 21 QFBT3 RSC-loading complex submit TARBP2 58.74 02 23 QFBV3 RSC-loading complex submit TARBP2 58.74 02 23 QFHC4 Transmembrane protein 134 58.74 02 23 QFHC4 Standuham protein 44 58.18 02 23 QFM25 Standuham protein 47 57.3 57.3 23 QFM25 Standuham protein 47 57.3 57.3 23 23 QFM25 Standuham protein kinase N3 56.92 03 24 25 QFM25 Standuham protein kinase N3 Standuham protein kinase N3 25.13 23 2	76	Q99704	Docking protein 1	60.50		0.5	1.90	
P10906 Clusterin 59,69 -0.1 10,60 GRTB27 Pumilio homolog 2 9,97 9,97 9,37 Ox5146 Humingrin-intencting protein 1-related protein 9,946 0.2 33 Ox5146 Humingrin-intencting protein 1-related protein 59,46 0.2 10 213 Ox5146 Humingrin-intencting protein 1-related protein 25 (SNAP25) 58.74 0.2 10 213 Ox5043 RtSC-loading complex submit TARBP2 58.74 58.74 0.2 10 213 Ox5043 Transmembrane protein 134 S8.74 58.18 0.2 10 213 Ox9143 RtSC-loading protein 25 (SNAP25) 58.18 57.33 0.2 12 Ox9144 Transmembrane protein 134 Transmembrane protein 35 57.33 0.2 12 Ox9145 Rty promine molecute exchange factor 2 S7.33 0.2 12 12 Ox9145 Rty promine molecute exchange factor 2 S7.33 0.2 12 12 Ox915 Semine mucleotin	LL	Q9BX97	Plasmalemma vesicle-associated protein	59.73		-0.1	2.20	
GFTB32 Punitio honolog 2 55.5 1.2 3.33 OT5146 Huntingtin-interacting protein 1-related protein 54.6 0.4 0.1 P6080 Symposonal-associated protein 25 (SNAP25) 52.2 0.4 1.12 P6080 Symposonal-associated protein 25 (SNAP25) 52.2 0.4 1.12 P1563 RISC-bading complex submit TARBP2 58.4 0.2 1.2 1.2 P15040 Transmehrane protein 134 58.4 0.2 1.2 1.2 P150401 Transmehrane protein 134 58.1 0.2 1.2 1.2 P15041 PDZ and LIM domain protein 44 57.3 57.3 0.2 1.2 OPVGR Symposonal-associated protein 47 Symposonal state st	78	P10909	Clusterin	59.69		-0.1	1.06	
05146 Huningtin-interacting protein 1-related protein 04 61 P6080 Synaptocomal-associated protein 52 04 -112 P6080 Synaptocomal-associated protein 58/A 02 139 015633 RISC-loading complex subuit TARBP2 58/A 02 139 020163 Transmembrane protein 134 02 139 030470 PDZ and LIM domain protein 58/A 02 139 040428 Rap guanine moteoide exchange factor 58/A 02 130 0501 Synaptosomal-associated protein 47 02 135 04572 Serine threonine-protein kinase N3 57.3 57.3 03 140 05018 Synaptosomal-associated protein 47 57.3 57.3 03 150 04572 Serine threonine-protein kinase N3 57.3 57.3 03 161 05018 Amyloid-beta A4 precursor bioinding family A member 3 57.4 57.3 17 23 05018 Monoindy-beta A4 precursor bioinding family A mem	6L	Q8TB72	Pumilio homolog 2	59.57		1.2	3.33	
P60880 Synaptosonal-associated protein 25 (SNAP25) 59.22 0.4 -1.12 Q15G33 RISC-loading complex submit TARBP2 88.46 0.2 1.39 QPHOK4 Transmembrane protein 134 58.46 0.2 1.39 QPHOK3 Paramembrane protein 134 58.46 0.2 1.30 QPHOK4 Paramembrane protein 134 58.46 0.2 1.32 P50479 Paramembrane protein 134 58.18 0.32 1.37 QPV4G8 Rap guanine muclotide exchange factor 2 57.33 0.3 1.61 QPV4G8 Sap quanine muclotide exchange factor 2 57.33 0.3 1.61 QPV4G8 Sap quanine muclotide exchange factor 2 57.33 0.3 1.61 QPV4G8 Sap quanine muclotide exchange factor 2 57.33 0.3 1.61 QPV4G8 Sap quanine muclotide exchange factor 2 57.3 0.3 1.61 QPV4G8 Sap quanine muclotide exchange factor 2 57.3 0.3 1.61 QPV4G8 Sap quanine muclotide exchange factor 2 57.3	80	075146	Huntingtin-interacting protein 1-related protein	59.46		0.4	0.51	
Q15633 RISC-Loading complex subunit TARBP2 58.74 0.2 1.39 QPHGK4 Transmembrane protein 134 58.46 0.2 0.32 P50479 Transmembrane protein 134 58.16 0.3 2.71 P50470 Rap guanine protein 134 58.18 0.3 2.71 Q9VGK8 Rap guanine nucleotide exchange factor 2 57.37 0.3 2.73 Q9YGK9 Rap guanine nucleotide exchange factor 2 57.33 0.3 1.61 Q9YGK9 Senie/threonine-protein kinase N3 56.92 0.3 1.61 Q6P5Z2 Senie/threonine-protein kinase N3 56.92 0.3 1.61 Q7D15 Senie/threonine-protein kinase N3 56.92 0.3 1.61 Q7D18 Amyloid-beat Alprecursor protein kinase N3 55.19 0.3 1.61 Q9018 Amyloid-beat Alprecursor protein binding family A member 3 55.13 0.3 1.12 Q9021 Plockstrin homology domain-containing family A member 3 55.13 0.3 1.12 Q9122 Plockstrin homology domain-containing	81	P60880		59.22		0.4	-1.12	
QPH6X4 Transmembrane protein 134 S8.46 0.2 0.32 P50479 PDX and LIM domain protein 4 S8.18 0.8 2.71 Q9Y4G8 Rap guanine nucleotide exchange factor 2 57.37 0.8 2.73 Q5XQ1 Symptosomal-associated protein 47 57.33 -0.2 1.0 2.78 Q5XQ1 Symptosomal-associated protein 47 57.3 57.3 -0.2 1.0 2.32 Q5XQ1 Symptosomal-associated protein 47 57.3 57.3 0.3 2.23 Q5018 Amyloid-beta A4 precursor protein kinase N3 55.13 0.1 2.24 Q90187 Prestrin homology domain-containing family A member 3 57.17 0.3 2.42 Q91827 Destrut Nonology domain-containing family A member 3	82	Q15633	RISC-loading complex subunit TARBP2	58.74		0.2	1.39	
P60479 PDZ and LIM domain protein 4 58.18 0.8 271 Q9Y4G8 Rap guanine nucleotide exchange factor 2 57.33 1.0 278 Q5SQN1 Synaptosomal-associated protein 47 57.33 -0.2 1.25 Q5SQN2 Strine nucleotide exchange factor 2 57.33 -0.2 1.26 Q5SQN1 Synaptosomal-associated protein 47 56.92 0.3 1.61 Q6P5Z2 Serine/thronine-protein kinase N3 55.19 0.3 1.61 Q7815 AmP-specific 3′, 5′-cyclic phosphodiesterae 4A 55.19 0.3 1.61 Q6N23 Rene/thronine-protein kinase N3 55.13 0.3 1.25 Q6N24 Amyloid-beta Ad precursor protein binding family A member 3 55.13 0.3 1.25 Q6N24 Polekith homology domain-containing family G member 5 54.13 0.3 1.25 Q5N240 Merlin Polekith advolues 2 54.62 0.0 1.07 Q5N240 Merlin Dipenturbation advolues 2 54.62 0.0 1.07 Q5N34	83	Q9H6X4	Transmembrane protein 134	58.46		0.2	0.32	
09Y4G8Rap guanine nucleotide exchange factor 2 57.3 10 2.78 $05SQN1$ Synaptosonal-associated protein 47 57.33 -0.2 125 $06F5Z2$ Serine/threonine-protein kinase N3 56.92 0.3 1.61 27815 Serine/threonine-protein kinase N3 55.92 0.3 1.61 27815 CMP-specific $3'.5'$ cyclic phosphodiestense $4A$ 55.19 0.3 0.3 09018 Amyloid-beta A4 precursor protein binding family A member 3 55.13 0.3 0.3 094827 Pleketrin homology domain-containing family G member 5 54.77 0.6 3.42 094827 MerlinSerie A4 precursor protein binding family G member 5 54.77 0.6 3.42 075604 Werlin carboxyl-terminal hydrolase 2 53.72 0.8 0.9 0.75 075614 Wo preparenting protein 44 53.47 0.8 0.9 0.9 075614 Wo repreterminal hydrolase 2 53.72 0.8 0.9 0.9 075614 Wo repreterminal hydrolase 2 53.72 0.9 0.9 0.9 075614 Wo repreterming protein 44 53.46 0.9 0.9 0.9 0.9 007504 Wo repreterming protein 44 0.8 0.9 0.9 0.9 0.9 007504 Wo repreterming protein 0.9 0.9 0.9 0.9 0.9 007504 Wo repreterming protein 0.9 0.9 0.9 0.9 000187 Prepreterming protein $0.$	84	P50479	PDZ and LIM domain protein 4	58.18		0.8	2.71	
GSGQH Synaptosonal-associated protein 47 -0.2 1.25 Q6P5Z2 Serine/threonine-protein kinase N3 56.92 0.3 1.61 P27815 Serine/threonine-protein kinase N3 56.92 0.3 1.61 P27815 CAMP-specific 3', 5' -cyclic phosphodiesterase 4A 55.19 0.3 1.61 D6018 Amyloid-beta A4 precursor protein binding family A member 3 55.13 0.3 1.12 096018 Amyloid-beta A4 precursor protein binding family A member 3 55.13 0.3 1.12 096018 Amyloid-beta A4 precursor protein binding family A member 3 55.13 0.3 1.12 094827 Pecketrin homology domain-containing family G member 5 54.77 0.6 0.0 0.0 175504 Merlin Merlin 54.62 0.0 0.0 0.0 0.0 1755041 Ubiquitin carboxyl-terminal hydrolase 2 53.72 0.0 0.	85	Q9Y4G8	Rap guanine nucleotide exchange factor 2	57.37		1.0	2.78	
Q6P5Z2 Serine/threonine-protein kinase N3 S6.92 O.3 I.61 P27815 CAMP-specific 3',5'-cyclic phosphodiesterase 4A 55.19 0.3 1.01 3.23 096018 Amyloid-beta A4 precursor protein binding family A member 3 55.13 0.3 1.12 096018 Amyloid-beta A4 precursor protein binding family A member 3 55.13 0.3 1.12 096018 Peckstrin homology domain-containing family A member 3 55.13 0.3 1.12 096018 Peckstrin homology domain-containing family A member 3 55.13 0.3 1.12 097820 Peckstrin homology domain-containing family A member 5 54.77 0.6 1.07 075604 Ubiquitin carboxyl-terminal hydrolase 2 53.72 0.0 1.07 075604 Ubiquitin carboxyl-terminal hydrolase 2 53.45 0.0 1.07 075604 Ubiquitin carboxyl-terminal hydrolase 2 53.45 0.9 2.13 075113 WD repeat-containing protein 44 52.74 0.9 2.13 081X03 Potein KIBRA 52.74 0.5 <	86	Q5SQN1	Synaptosomal-associated protein 47	57.33		-0.2	1.25	
P27815 cAMP-specific 3',5'-cyclic phosphodiesterase 4A 55.19 0.1 3.23 096018 Amyloid-beta A4 precursor protein binding family A member 3 55.13 0.3 1.12 096018 Amyloid-beta A4 precursor protein binding family A member 3 55.13 0.3 1.12 094827 Pecketrin homology domain-containing family G member 5 54.62 0.6 3.42 075604 Ubiquitin carboxyl-terminal hydrolase 2 53.72 0.0 0.0 0.0 075604 Ubiquitin carboxyl-terminal hydrolase 2 53.72 0.0 0.0 0.0 0.0 051SH3 WD repeat-ontaining protein 44 53.45 0.9 2.13 0.0 0.0 0.0 0.0 081X03 Potein KIBRA 52.74 53.75 0.0	87	Q6P5Z2	Serine/threonine-protein kinase N3	56.92		0.3	1.61	
096018 Amyloid-beta A4 precursor protein binding family A member 3 55.13 0.3 094827 Pleckstrin homology domain-containing family G member 5 54.77 0.6 P35240 Merlin 54.62 0.6 075604 Ubiquitin carboxyl-terminal hydrolase 2 53.72 0.8 051SH3 WD repeat-containing protein 44 53.45 0.8 081X03 Protein KIBRA 52.74 0.5	88	P27815	cAMP-specific 3',5'-cyclic phosphodiesterase 4A	55.19		0.1	3.23	Hardenberg et al., 2020 (dataset S1) *HTS
094827 Pleckstrin homology domain-containing family G member 5 54.77 0.6 P35240 Merlin 54.62 0.0 075604 Ubiquitin carboxyl-terminal hydrolase 2 53.72 0.3 075813 WD repeat-containing protein 44 53.45 0.8 081X03 Protein KIBRA 52.74 0.5	89	096018	Amyloid-beta A4 precursor protein binding family A member 3	55.13		0.3	1.12	
P35240 Merlin 54.62 0.0 075604 Ubiquitin carboxyl-terminal hydrolase 2 53.72 0.8 Q51SH3 WD repeat-containing protein 44 53.45 0.9 Q81X03 Protein KIBRA 52.74 0.5	90	094827	Pleckstrin homology domain-containing family G member 5	54.77		0.6	3.42	
075604 Ubiquitin carboxyl-terminal hydrolase 2 53.72 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.5	91	P35240	Merlin	54.62		0.0	1.07	
Q5JSH3 WD repeat-containing protein 44 53.45 0.9 Q8IX03 Protein KIBRA 52.74 0.5	92	075604	Ubiquitin carboxyl-terminal hydrolase 2	53.72		0.8	3.40	
Q8IX03 Protein KIBRA 52.74 0.5	93	Q5JSH3	WD repeat-containing protein 44	53.45		0.9	2.13	
	94	Q8IX03	Protein KIBRA	52.74		0.5	3.32	

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2022 August 18.

do Amaral et al.

Author Manuscript

		UniProt proteins					
z	UniProt ID	Protein	%VSL2	%DisProt (disorder function)	catG.	PScore	Evidence of LLPS
95	P19525	Interferon-induced, double-stranded RNA-activated protein kinase (eIF-2a protein kinase)	52.63		1.2	0.20	Hardenberg et al., 2020 (dataset S1) *HTS
96	Q07912	Activated CDC42 kinase 1	52.41	4.00 (protein binding)	0.6	3.11	
97	Q9UBP0	Spastin	50.81		0.7	1.79	
98	Q99828	Calcium and integrin-binding protein 1	50.79		-0.6	1.76	Hardenberg et al., 2020 (dataset S1) *PSP
66	Q06787	Fragile X mental retardation protein 1 (FMRP)	50.63	41.00	1.5	4.70	Hardenberg et al., 2020 (dataset S1)
$\begin{array}{c} 10\\ 0\end{array}$	P22059	Oxysterol-binding protein 1	50.31		1.3	2.54	
10	Q8IWQ3	Serine/threonine-protein kinase BRSK2	50.14		0.0	3.09	
10	A1L4K1	Fibronectin type III and SPRY domain-containing protein 2	50.07		0.4	1.21	
30 II	Q9BYT3	Serine/threonine-protein kinase 33	50.00		0.4	1.08	
10 4	Q8IWE4	DCN1-like protein 3	49.01		0.6	2.77	
5	Q8NFU3	Thiosulfate: glutathione sulfurtransferase	48.70		-0.7	<140 aa	
$\begin{array}{c} 10\\ 6\end{array}$	Q9H2J4	Phosducin-like protein 3	48.54		0.1	-0.68	
$\frac{10}{7}$	Q13459	Unconventional myosin-IXb	48.49		1.0	2.89	
10 8	014976	Cyclin-G-associated kinase	48.44		0.0	2.29	
10 9	Q12840	Kinesin heavy chain isoform 5A	48.26		0.9	3.08	
11 0	P32456	Guanylate-binding protein 2	47.21		0.4	-0.09	
Ξ-	P60321	Nanos homolog 2	47.10		0.7	<140 aa	
11	Q9H0R5	Guanylate-binding protein 3	47.06		0.3	0.00	
з 11 С	043426	Synaptojanin-1	46.73		6.0	3.36	

Page 37

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2022 August 18.

Author Manuscript

		UniProt proteins					
z	UniProt ID	Protein	%VSL2 %Dis	%DisProt (disorder function)	catG.	PScore	Evidence of LLPS
Ξ4	Q6PIW4	Fidgetin-like protein 1	46.59		0.7	1.18	
5 11	Q12982	BCL2/adenovirus E1B 19 kDa protein-interacting protein 2	46.5		0.3	-0.12	
11 6	Q14764	Major vault protein	45.35		0.6	2.10	Hardenberg et al., 2020 (dataset S1) *PSP
11	010N60	DEAD-Box Helicase 4 (DDX4)	45.03		1.8	6.77	Hardenberg et al., 2020 (dataset S1)
∷∞	075312	Zinc finger protein ZPR1	44.66		0.2	0.49	
11 9	Q96S99	Pleckstrin homology domain-containing family F member 1	44.44		-0.3	66:0	
$\begin{array}{c} 12\\ 0\end{array}$	Q9HAU5	Regulator of nonsense transcripts 2	44.42 16.00 (_j	16.00 (protein binding)	1.0	2.39	
12	Q8IYI6	Exocyst complex component 8	44.00		0.4	0.52	
2 12	Q8NI35	InaD-like protein	43.70		1.5	1.36	
12 3	095295	SNARE-associated protein Snapin	43.38		-0.1	<140 aa	
4 12	Q9BUZ4	TNF receptor-associated factor 4	43.19		0.1	1.14	
5 5	Q684P5	Rap1 GTPase-activating protein 2	43.01		1.2	1.95	
12 6	Q15078	Cyclin-dependent kinase 5 activator 1	42.67		-0.2	-0.74	
12	Q92993	Histone acetyltransferase KAT5	42.50		0.5	0.46	
12 8	Q96QA5	Gasdermin-A	41.80		0.3	0.24	
12 9	Q9UBF8	Phosphatidylinositol 4-kinase beta	41.54		0.5	0.36	
$\begin{array}{c} 13\\ 0\end{array}$	Q01628	Interferon-induced transmembrane protein 3	41.35		-1.4	<140 aa	
13	075140	GATOR complex protein DEPDC5	41.24		0.7	1.76	

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2022 August 18.

do Amaral et al.

т

ı

т

NoIndexInd			UniProt proteins					
QP(064) Migenetoring forme kinne kinne kinne Q1 24 24 QPU30 Transin-score informating protein 1 Q1 24 24 QPU30 Minimizatione exhinit TRM112-like protein Q0 24 24 QPU30 Minimizatione exhinit TRM112-like protein Q0 24 24 QPU30 Minimizatione exhinit TRM112-like protein Q0 24 24 QPU31 Rote three exhinit TRM112-like protein Q0 24 24 QPU31 Rote three exhinit TRM112-like protein Q0 24 24 QPU31 Lope three exhinit TRM112-like protein Q0 24 24 QPU31 Lope three protein 100 295 24 24 24 QPU32 Insult-like protein 2 mRN-binding protein 1 24 24 24 24 QPU32 Insult-like protein 2 mRN-binding protein 1 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24<	z	UniProt ID	Protein		disorder on)	catG.	PScore	Evidence of LLPS
QTAM3 Tanchin-succined force X-intencting protein 1 40.43 204 204 QU130 Multim-stories submit TRM113 Like protein 40.00 205 204 Q1445 Ro OTPae-servicing protein 10 39.54 204 205 Q1317 Scritter/fractor for third protein 10 39.54 204 204 Q0711 Lequerin 39.64 205 204 Q0712 Transmembrane PMX 2 39.64 204 204 Q0713 Lequerin 39.64 205 204 Q0714 Lequerin 39.64 205 204 Q0715 Transmembrane protein 100 39.54 204 204 Q0716 Instant-related protein 5 38.40 204 204 Q0715 Bain protein 10 37.34 27.41 205 204 Q0715 Bain protein 10 Bain protein 10 37.41 27.41 204 204 Q0705 Bain protein 10 Bain protein 10 37.41 27.41 204 204	2 13	Q9Y6R4	Mitogen-activated protein kinase kinase kinase 4	40.8		0.8	2.56	
QU130 Mutimactional methyltrankferase sthuir TRM112 like protein 400 -0.8 <140 a.	3 13	Q2TAA8	Translin-associated factor X-interacting protein 1	40.43		0.4	0.32	
AIA450 Rio CIPPae-activiting protein 10 395 16 183 Q1171 Serine three orien in more protein kinase PAK 2 393 949 203 193	4 [3	Q9UI30	Multifunctional methyltransferase subunit TRM112-like protein	40.00		-0.8	<140 aa	
Q1317 Seinethreonine-protein kinace PAK 2 989 043 O60711 Leupwin 3964 -0.2 109 O80712 Leupwin 39.55 -0.3 1.3 2.40a Q9N23 Traamenbrane protein 100 39.55 -0.3 2.40a 2.40a Q9N243 Insulin-like growth factor 2 mRNA-binding protein 1 39.17 28.40 -0.3 2.40a Q9N245 Brain protein 130 38.40 38.40 2.41 2.40a Q95415 Brain protein 13 37.47 38.40 -0.7 2.40a Q95415 Brain protein 13 Myoubluin-telated protein 5 37.47 2.41 2.40a Q95415 Brain protein 13 Myoubluin-telated protein 5 37.47 2.41 2.41 Q95415 Brain protein 14 Myoubluin-telated protein 5 37.47 2.41 2.41 Q95415 Brain protein 14 Myoubluin-telated protein 5 37.47 2.41 2.41 Q15021 B1 abquinin-telated protein 5 Myoubluinin-telated protein 5 37.45 2.41 2.41 Q15031 High affinit/CONP-specific 3	5 5	A1A4S6	Rho GTPase-activating protein 10	39.95		0.6	1.83	
06011 Leupati 9.64 -0.2 1.04 26WV29 Transmehrene protein 100 9.55 -1.3 <140 and	13 6	Q13177	Serine/threonine-protein kinase PAK 2	39.89		0.4	0.89	
Q9NV29 Tarsmenbrane protein 100 39.55 -1.3 <140 at	13	O60711	Leupaxin	39.64		-0.2	1.09	
QPXZR insulin-like growth factor 2 mRNA-binding protein 1 39.17 05 17 QP6HPD Dedicator of cytokinesis protein 6 38.59 05 17 17 QP51F Brain protein 15 38.40 38.40 07 23 140 OP51F8 Myoubularin-telated protein 5 37.47 37.47 07 140 16 OP50F8 Myoubularin-telated protein 5 37.46 74 07 16 16 OP50F8 Myoubularin-telated protein 5 37.46 37.46 07 16 16 OP50F8 High affinity cGMP-specific 3'.5'-cyclic phosphoditesterae 9A 37.46 72 16 16 OF60F9 Protein-tyrosien ligase NEURL1 37.35 37.35 15 16 OF60F9 Protein-tyrosien ligase NEURL1 37.36 17 16 16 OF60F9 Protein-tyrosien ligase NEURL1 37.35 16 16 16 OF60F9 Protein-tyrosien ligase NEURL1 37.35 17 16 16 16 OF60F9 Protein-tyrosien ligase NEURL2 Protein-tyrosien ligase NEURL2	8 13	Q9NV29	Transmembrane protein 100	39.55		-1.3	<140 aa	
060HP0 Dedicator of cytokinesis protein 6 0.5 17 095415 Brain protein 13 38.40 -0.7 240 095416 Moutubularin-related protein 5 37.47 0.7 237 076050 E3 ubquitin-related protein 5 37.46 0.7 237 076050 E3 ubquitin-related protein 5 37.46 0.7 237 076050 E3 ubquitin-protein ligase NEURL1 37.46 0.2 1.69 076053 High affinity CGMP-specific 3',5'-cyclic phosphodiesterase 9A 37.46 0.2 1.69 076083 High affinity CGMP-specific 3',5'-cyclic phosphodiesterase 9A 37.46 0.3 1.64 076083 High affinity CGMP-specific 3',5'-cyclic phosphodiesterase 9A 37.46 0.7 1.69 076083 High affinity CGMP-specific 3',5'-cyclic phosphodiesterase 9A 37.35 0.3 1.64 076084 Protein-tyrosine kinase 2-beta 37.35 0.3 1.64 1.64 071020 Casein kinase I isoform delta 37.35 0.3 1.64 1.64 073103 Protein-tyrosine kinase I isoform delta 0.7 0.3 1.64 <td>9</td> <td>8IZN6Ò</td> <td>insulin-like growth factor 2 mRNA-binding protein 1</td> <td>39.17</td> <td></td> <td>0.8</td> <td>0.50</td> <td>Hardenberg et al., 2020 (dataset S1)</td>	9	8IZN6Ò	insulin-like growth factor 2 mRNA-binding protein 1	39.17		0.8	0.50	Hardenberg et al., 2020 (dataset S1)
05415 Brain protein 13 -0.7 <140 aa	$^{14}_{0}$	096HP0	Dedicator of cytokinesis protein 6	38.59		0.5	1.7	
095248 Myoubularin-lated protein 5 37.47 0.7 2.37 076050 E3 ubiquitin-protein ligase NEURL1 37.46 0.2 1.69 076050 E3 ubiquitin-protein ligase NEURL1 37.46 0.2 1.69 076051 High affinity GMP-specific 3', 5'-cyclic phosphodiesterase 9A 37.46 0.2 1.69 076053 Protein-tyrosine kinase 2-beta 37.36 37.36 0.3 1.54 081430 Protein-tyrosine kinase 2-beta 37.36 0.3 37.35 0.3 1.54 081430 Casein kinase 2-beta 37.35 37.35 0.3 1.54 081730 Casein kinase 1 isoform delta 37.35 0.3 1.54 081740 Probable 18S rRNA (guanine-N (7))-methyltransferase 37.01 0.7 0.3 0.3 081742 Sodium chanel protein type 5 submit alpha 36.61 0.4 0.5 3.69 080FP9 Guanylarenting protein 4 0.64 0.64 0.64 0.4 0.5 0.4	4 -	095415	Brain protein I3	38.40		-0.7	<140 aa	
076050 E3 ubiquitin-protein ligase NEURL1 37.46 0.5 1.69 076083 High affinity GGMP-specific 3', 5'-cyclic phosphodiesterase 9A 37.44 -0.2 1.09 071639 Protein-tyrosite kinase 2-beta 37.36 0.3 1.54 07439 Protein-tyrosite kinase 2-beta 37.36 0.3 1.54 074309 Casein kinase 2-beta 37.35 0.3 1.54 074309 Pashe I isoform delta 37.35 0.3 1.54 074309 Probable I SS rRNA (guarine-N (7))-methyltransferase 37.01 0.7 0.39 074304 Sofut channel protein type 5 submit alpha 36.61 0.3 36.9 07409 Guanylare-binding protein 4 36.41 0.3 36.9	4.0	095248	Myotubularin-related protein 5	37.47		0.7	2.37	Hardenberg et al., 2020(dataset S1) *HTS
076083 High affinity GMP-specific 3'.5'-cyclic phosphodiesterase 9A 37.44 -0.2 1.09 014289 Protein-tyrosine kinase 2-beta 37.36 0.3 1.54 P48730 Casein kinase 2-beta 37.35 0.3 2.53 043709 Probable 18S rRNA (guanine-N (7))-methyltransferase 37.01 0.7 0.39 043704 Probable 18S rRNA (guanine-N (7))-methyltransferase 37.01 0.7 0.39 043709 Probable 18S rRNA (guanine-N (7))-methyltransferase 36.61 0.3 0.39 043709 Probable 18S rRNA (guanine-N (7))-methyltransferase 37.01 0.7 0.39 041524 Sodium channel protein type 5 subunit alpha 36.61 0.3 0.3 0.3 050FP9 Guanylate-binding protein 4 36.41 0.3 0.3 0.42	4 m	O76050	E3 ubiquitin-protein ligase NEURL1	37.46		0.2	1.69	
Q14289 Protein-tyrosine kinase 2-beta 0.3 1.54 P48730 Casein kinase I isoform delta 37.35 0.9 2.53 P48730 Casein kinase I isoform delta 37.35 0.9 2.53 O43709 Probable 18S rRNA (guanine-N (7))-methyltransferase 37.01 0.7 0.39 O43704 Sodium channel protein type S submit alpha 36.61 0.5 36.9 36.9 O45P9 Guanylate-binding protein 4 36.41 0.3 0.42 0.42	44	O76083	High affinity cGMP-specific 3',5'-cyclic phosphodiesterase 9A	37.44		-0.2	1.09	Hardenberg et al., 2020 (dataset S1) *HTS
P48730Casein kinase I isoform delta37.350.92.53043709Probable 18S rRNA (guanine-N (7))-methyltransferase37.010.70.39014524Sodium channel protein type S submit alpha36.610.53.69056Pp9Guanylate-binding protein 436.410.30.42	4.0	Q14289	Protein-tyrosine kinase 2-beta	37.36		0.3	1.54	
043709Probable 18S rRNA (guanine-N (7))-methyltransferase37.010.70.39014524Sodium channel protein type 5 subunit alpha36.610.53.69096PP9Guanylate-binding protein 436.410.30.42	49	P48730	Casein kinase I isoform delta	37.35		0.0	2.53	Hardenberg et al., 2020 (dataset S1) *HTS
Q14524Sodium channel protein type 5 subunit alpha36.610.5Q96PP9Guanylate-binding protein 40.3	4	O43709	Probable 18S rRNA (guanine-N (7))-methyltransferase	37.01		0.7	0.39	Hardenberg et al., 2020 (dataset S1) *HTS
Q96PP9 Guanylate-binding protein 4 0.3	<u>4</u> 8	Q14524	Sodium channel protein type 5 subunit alpha	36.61		0.5	3.69	
	9 4	берр9	Guanylate-binding protein 4	36.41		0.3	0.42	

		UniProt proteins					
z	UniProt ID	Protein	%VSL2	%DisProt (disorder function)	catG.	PScore	Evidence of LLPS
15 0	Q8TEB7	E3 ubiquitin-protein ligase RNF128	36.21		0.5	0.72	
15 -	P07101	Tyrosine 3-monooxygenase	35.98		0.1	0.04	
215	Q9Y6D6	Brefeldin A-inhibited guanine nucleotide-exchange protein 1	35.59		0.6	1.43	
3 IS	Q9UK39	Nocturnin	35.50		-0.4	1.03	
15 4	Q9UM54	Unconventional myosin-VI	35.32		1.0	1.24	
5 5	Q9UN36	Protein NDRG2	35.31		0.3	0.14	
15 6	P04626	Receptor tyrosine-protein kinase erbB-2	35.14	21.40	0.6	2.79	
15	Q9Y2K6	Ubiquitin carboxyl-terminal hydrolase 20	35.01		0.6	1.08	
8 8	014966	Ras-related protein Rab-7L1	34.98		-0.4	-0.79	
15 9	Q14999	Cullin-7	34.98		0.6	1.72	
$^{16}_{0}$	Q9UDY8	Mucosa-associated lymphoid tissue lymphoma translocation protein 1	34.71		0.4	3.00	
16	Q8TEY7	Ubiquitin carboxyl-terminal hydrolase 33	34.61		0.6	0.93	
16 2	Q9UPY3	Endoribonuclease Dicer (DICER)	34.44		0.7	1.58	
3 I6	P26572	Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase	34.38		0.0	0.62	
16 4	015162	Phospholipid scramblase 1	33.65		0.0	4.02	
16 5	*Q86WV6	Stimulator of interferon genes protein (STING)	27.97	9.50 (protein binding)	-0.2	-0.48	Yu et al., 2021 (PMID: 33833429)
16 6	*Q92905	COP9 signalosome complex subunit 5	27.84	9.90 (protein binding)	0.3	-0.23	
16 7	*P12931	Proto-oncogene tyrosine-protein kinaske Src	27.43	15.70 (protein binding; lipid binding	0.6	1.06	

		UniProt proteins					
Z	UniProt ID	Protein	%VSL2	%DisProt (disorder function)	catG.	PScore	Evidence of LLPS
				and regulation of phosphorylation)			
16 8	*P20591	Interferon-induced GTP-binding protein Mx1	25.53	7.70	0.4	0.05	
16 9	*P01112	GTPase HRas	22.22	10.60	0.0	-0.29	
$\begin{array}{c} 17\\ 0\end{array}$	*P07948	Tyrosine-protein kinase Lyn	21.29	12.10 (protein binding and molecular recognition effector)	0.6	0.49	Hardenberg et al., 2020 (dataset S1) *HTS
17 1	*Q06609	DNA repair protein RAD51 homolog 1	15.63	18.29 (NA binding)	0.2	0.52	Hardenberg et al., 2020 (dataset S1)
		Literature proteins					
17 2	Q00994	Brain expressed x-linked 3 (Bex3)	100		0.8	<140 aa	Do Amaral et al., 2020 (PMID: 32142787)
17 3	P08151	Glioma-associated oncogene homolog 1 (Gli1)	96.75		1.4	5.01	
17 4	Q08379	GM130	92.22		0.6	1.21	
17 5	Q14677	EpsinR	82.88		1.1	3.84	
17 6	P17275	JunB	81.56		1.8	3.66	
17 7	Q09472	Histone acetyltransferase p300 (p300)	77.55	6.90	1.1	4.67	
17 8	Q92793	CREB-binding protein (CBP)/p300	76.58	25.10 (protein binding)	1.1	3.67	Zhang et al., 2021 (PMID: 34326347)
17 9	P04637	P53	68.19	48.10 (DOT; protein binding)	0.1	1.99	Hardenberg et al., 2020 (dataset S1)
$ \begin{array}{c} 18\\ 0 \end{array} $	P04156	Prion (PrP)	67.79	40.30 (entropic chain)	2.1	12.9	Hardenberg et al., 2020 (dataset S1)
$^{18}_{1}$	P23763	VAMP	62.71		-0.7	<140 aa	Hardenberg et al., 2020 (dataset S1) *PSP
18 2	P52948	Nuclear pore complex protein (Nup98)	61.81	8.20	1.3	5.81	Hardenberg et al., 2020 (dataset S1)
3 18 3	P27824	Calnexin	54.39		0.8	0.59	

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2022 August 18.

do Amaral et al.

-	
~	
_	
_	
-	
-	
\mathbf{c}	
\sim	
_	
~	
\geq	
a	
la l	
Aar	
a	
a	
anu	
anus	
anu	
anus	
anus	
anus	
anusc	
anus	
anusc	
anuscri	
anusc	
anuscri	

		UniProt proteins					
z	UniProt ID	Protein	%VSL2	%DisProt (disorder function)	catG.	catG. PScore	Evidence of LLPS
4 <mark>1</mark> 8	P29590	Promyelocytic leukemia protein (PML)	53.06		-0.1	2.18	Hardenberg et al., 2020 (dataset S1) *HTS
5 18	Q8WWI1	LIM domain only 7 (Lmo7)	52.53		1.0	3.66	
18 6	P27797	Calreticulin	52.04	95.90	1.2	1.13	
18	P29375	Retinoblastoma-binding protein 2 (RBP2)	48.28	10.50	0.6	2.90	
<u>8</u> %	Q8IVF5	STEF/TIAM2	46.38		1.2	2.62	
18 9	P37840	Alpha-synuclein	37.14	100.00 (molecular recognition effector)	1.1	-0.31	Ray et al., 2020 (PMID: 32514159)
$\begin{array}{c} 19\\ 0 \end{array}$	Q9Y4L5	Rabring7	35.53		0.2	2.29	
$\frac{19}{1}$	*P20807	Calpain-3	30.33	6.30 (inhibitor)	0.0	0.45	
$^{19}_{2}$	*P04049	Rafl	26.70	2.90	0.3	1.81	Hardenberg et al., 2020 (dataset S1)
19 3	*P07355	Annexin A2	16.81	9.40 (DOT; protein binding; molecular recognition effector)	0.4	-1.05	Hardenberg et al., 2020 (dataset S1) *HTS

Table 3

Main characteristics of the nuclear cloud. The main proteins, structures, organelles and functions of the perinuclear space are described.

Characteristics and functions of the perinuclear space

Perinuclear cytoskeleton: 3D network of cytoskeletal filaments, including a perinuclear actin cap (MFs) and a high number of actin-associated proteins; MTOC/centrosome, network of MTs and MAPs; web of IFs and plectins (IF-associated proteins)

Perinuclear membranous organelles: ER, Golgi, mitochondria, lysosomes, vesicles

Perinuclear proteins: structural (cytoskeletal), vesicular trafficking and signaling proteins, including several IDPs

Perinuclear functions:

Provide a structural support for the nucleus Spatial organization of the perinuclear space Serve as a hub for the positioning of several organelles Control of nuclear size Control of nuclear position Regulation of the molecular traffic between the nucleus and the cytoplasm Processing of RNA molecules Regulation of protein synthesis and PTMs Regulation of signaling pathways Provide a dynamic interaction between the nucleus and other organelles

Disease context: alterations in the expression of perinuclear proteins can lead to several pathological conditions, such as neurodegenerative disorders, cancer, cardiac and skeletal myopathies, immune/inflammatory diseases, and skin disorders

ER = endoplasmic reticulum, IDPs = intrinsically disordered proteins, IFs = intermediate filaments, MAPs = microtubule-associated proteins, MFs = microfilaments, MTs = microtubules, MTOC = microtubule-organizing center, PTMs = post-translational modification of proteins.