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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages
BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage'. The
receptor binding and immune-evasion capability of these recently emerged variants
requireimmediate investigation. Here, coupled with structural comparisons of the
spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter
referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the
angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1and BA.4/BA.5
display increased evasion of neutralizing antibodies compared with BA.2 against
plasma fromtriple-vaccinated individuals or fromindividuals who developed a BA.1
infection after vaccination. To delineate the underlying antibody-evasion mechanism,
we determined the escape mutation profiles?, epitope distribution®and
Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against
the receptor-binding domain of the viral spike protein, including 614 antibodies
isolated from people who had recovered from BA.linfection. BA.1infection after
vaccination predominantly recalls humoral immune memory directed against
ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The
resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1and are
enriched on epitopes on spike that do not bind ACE2. However, most of these
cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and
F486V.BA.linfection can also induce new clones of BA.1-specific antibodies that
potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely
evaded by BA.2and BA.4/BA.5 owing to D405N and F486V mutations, and react
weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The
therapeutic neutralizing antibodies bebtelovimab* and cilgavimab’® can effectively
neutralize BA.2.12.1and BA.4/BA.5, whereas the S371F, D405N and R408S mutations
undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results
indicate that Omicron may evolve mutations to evade the humoralimmunity elicited
by BA.linfection, suggesting that BA.1-derived vaccine boosters may not achieve
broad-spectrum protection against new Omicron variants.

The recent emergence and global spread of the SARS-CoV-2 variant
Omicron (B.1.1.529) have posed a critical challenge to the efficacy
of COVID-19 vaccines and neutralizing antibody (NAb) therapy®™.
Owing to multiple mutations to the spike protein, including in the
receptor-binding domain (RBD) and N-terminal domain, Omicron BA.1
infection can resultin substantial NAb evasion®° ™, Omicron subline-
age BA.2 hasrapidly surged worldwide, out-competing BA.1. Compared

withthe RBD of BA.1,BA.2 contains three additional mutations, T376A,
D405N and R408S, and lacks the BA.1 mutations G446S and G496S
(Extended DataFig.1a).S371L on BA.lis also substituted with S371F in
BA.2. The Omicron variants that have emerged more recently contain
similar RBD sequences to BA.2, with the addition of L452 and F486
substitutions—L452Qin BA.2.12.1,L452Min BA.2.13 and L452R/F486Vin
BA.4 and BA.5—and exhibita transmission advantage over BA.2. There
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Fig.1|Structural and receptor-binding characteristics of Omicron
subvariants. a, Surfacerepresentation of S-trimers of BA.1,BA.2, BA.3,BA.2.13,
BA.2.12.1and BA.4/BA.5 (BA.4/5) variants. b, Structural interpretation and
functional verification of the stability of the spike protein of BA.1,BA.2,BA.3,
BA.2.13,BA.2.12.1and BA.4/BA.5 variants. Left, superimposed structures of
spike proteinand the S2domains of BA.1(purple), BA.2 (red) and BA.4/BA.5 (blue).

is an urgent and immediate need to investigate the receptor binding
and immune-evasion capabilities of these new Omicron variants.

Structural analyses of Omicron spike

We expressed and purified the prefusion-stabilized trimeric ecto-
domains of BA.1, BA.2, BA.3, BA.2.12.1, BA.2.13 and BA.4/BA.5 spike
(S-trimer). All the S-trimers contain Gly-Ser-Ala-Ser (GSAS) and 6P muta-
tions along with the T4 fibritin trimerization domain for increased
stability*". We determined the cryo-electron microscopy (cryo-EM)
structures of these S-trimers at overall resolutions of 3.1-3.5 A. Together
with the previously reported BA.1structure', this enabled us to com-
parethestructural differences across Omicronsublineages (Fig.1aand
Extended DataFig.1b).Incontrast to the BA.1S-trimer, whichis stably
maintained in an open conformation with one ‘up’RBD and two ‘down’
RBDs', BA.2 and BA.2.12.1 spike exhibits two conformational states
corresponding to a closed form, with all three RBDs in the down con-
figuration and an open form with one RBD in the up position. Of note,
one RBD in BA.2.13 was clearly disordered, representing a stochastic
movement, which, together with BA.2and BA.2.12.1, suggests structural
heterogeneity inthe S-trimers of BA.2 sublineages. Most BA.3and BA.4
S-trimers adopt closed or semi-closed forms (Fig.1a). The differences
inthe RBD up or down conformation could be allosterically modulated
by mutations and deletionsin the N-terminal domain or near the furin
cleavagesite, but the detailed mechanism remains unclear. The BA.4/
BA.5 spike that we used in our experiments also contains the N658S
mutation, which was present in early BA.4/BA.5 sequences but later
disappeared owing to the lower transmissibility of this variant, and
may correlate with the more closed RBD configurations of the BA.4/
BA.5S-trimer. Of note, S-trimers from the BA.2 sublineage harbour
relatively less compact architectures in the region formed by the

594 | Nature | Vol 608 | 18 August 2022

Thebinding surface areas between S2 subunits of the variants are calculatedin
thetableontheright.c, Thermoflour analysis for these Omicronvariants.
Analyses were performed as biological duplicates. d, Binding affinities of RBDs
of Omicron variants for hACE2 measured by SPR. Analyses were performed as
biological duplicates.

three copies of S2 (Fig.1b). By contrast, BA.1,BA.3 and BA.4/BA.5 spike
possess relatively tight inter-subunit organization with more buried
areas between S2 subunits (Fig. 1b). In line with structural observa-
tions, thermal stability assays also verified that S-trimers from BA.2
sublineages were the least stable among these variants, which might
confer an enhanced fusion efficiency (Fig. 1c).

Next, we measured the binding affinity between human ACE2
(hACE2) and S-trimers of the Omicron variants by surface plasmon
resonance (SPR) (Extended Data Fig.1c). The BA.4/BA.5S-trimer showed
adecreased binding affinity with hACE2 compared with those of the
other Omicron subvariants; however, this measurement could be
misleading, owing to the additional N658S mutation. To exclude the
potential influence of N658S, we also examined the binding affinities of
the RBDs of the Omicron variants for hACE2 (Fig.1d). The RBDs of Delta
(B.1.617.2) and the circulating Omicron subvariants exhibited similar
binding affinities for ACE2, except for the BA.3 RBD, which showed a
lower affinity, similar to that of the ancestral WT strain. Additionally, the
BA.2 subvariants displayed slightly higher binding affinities for hRACE2
than the other Omicron variants. To further explore the molecular
basis for the altered binding affinities of these variants to hACE2, we
performed molecular dynamics simulations based on the cryo-EM
structures and examined the effects of substitutions in the RBD on the
interactionwith hACE2 (Extended Data Fig.1d). Theresults reveal that
the lack of G496S in BA.2 sublineages meant that the hydrogen bond
with hACE2 K353 was regained, increasing their binding capability,
in line with experimental observations revealed by deep mutational
scanning (DMS) assay”. However, a local conformational perturba-
tion surrounding spike residues 444-448 disrupted the hydrophilic
interaction between BA.3 spike (S446) with hACE2 Q42, presumably
owing to the single mutation G446S rather than double mutations of
G446S and G496S (Extended DataFig.1d). Notably, the F486V mutation
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Fig.2|BA.2.12.1,BA.4 and BA.5 exhibit stronger antibody evasion than
BA.2.a-d, Neutralizingtitres against SARS-CoV-2 D614G, Omicron subvariants
and SARS-CoV-1pseudovirusesin plasma from vaccinated and convalescent
individuals. a, Individuals who had received 3 doses of CoronaVac (n = 40).

b, Individuals who had received 2 doses of CoronaVac and 1dose of ZF2001
(n=38).c,Individuals who, after receiving 3 doses of CoronaVac, had been
infected with BA.1and recovered (n=50).d, People who had recovered from
SARS andreceived 2 doses of CoronaVac and1dose of ZF2001 (n = 28). P-values

inBA.4/BA.5 spike decreases hACE2 binding activity owing to reduced
hydrophobicinteraction (Extended Data Fig.1d). We also noted poten-
tial reductions in hydrophilic interactions owing to R493Q reversion.
Notably, two reports claimed recently that BA.4/BA.5 RBD and spike
(S2P) showed higher binding affinity to hACE2 compared with BA.1
and BA.2 spike, owing to L452R and R493Q reversion'®", Despite this
discrepancy, we conclude that BA.2 subvariants and BA.4/BA.5 are able
to maintain high binding affinities for hRACE2.

NAb evasionbyBA.2.12.1, BA.4 and BA.5

To probe NAb evasion by the recently emerged Omicron sublineages,
we performed pseudovirus-neutralization assays using D614G, BA.1,
BA.1.1,BA.2,BA.3,BA.2.12.1, BA.2.13 and BA.4/BA.5 against plasma
obtained fromindividuals who had received three doses of SARS-CoV-2
vaccine, vaccinated individuals who had recovered from BA.linfection,
and vaccinated individuals who had recovered from severe acute res-
piratory syndrome (SARS) (Supplementary Table 1). Plasma samples
were collected four weeks after the booster shot or four weeks after
discharge from hospital following COVID-19 illness. In plasma from
individuals who had received aninactivated virus (CoronaVac) or RBD
protein (ZF2001) booster six months after two doses of CoronaVac,
BA.1,BA.1.1and BA.2 showed no significant difference in resistance
to neutralization by plasma (Fig. 2a,b), concordant with previous
reports?®?, However, we found that BA.2 subvariants BA.2.13 and
BA.2.12.1 showed increased immune-evasion capability over BA.2—
with BA.2.12.1exhibiting greater evasion than BA.2.13—and BA.4/BA.5
exhibiting even greater evasion (Fig. 2a,b). The decrease in neutraliza-
tion was clearer in plasma obtained from individuals infected by BA.1

were calculated using two-tailed Wilcoxon signed-rank tests of paired samples.
Thegeometric meantitreis shown above each group of points. e, Neutralizing
activity against SARS-CoV-2 variants and sarbecoviruses by therapeutic NAbs.
Green, half-maximalinhibitory concentration (ICs,) < 30 ng ml™; white,
30ngml™<ICs,<1,000 ngml™; red,1C5,>1,000 ng ml™;*,1C5, 210,000 ng ml ™.
Allneutralization assays were performed as biological duplicates.*P< 0.05,
**P<0.01,***P<0.001; NS, notssignificant (P> 0.05).

who hadreceived three doses of CoronaVac before infection (Fig. 2c),
despite their significantly higher neutralization titres against D614G
and BA.1compared with the triple-dosed vaccinees who had not been
infected with BA.1 (Extended Data Fig. 2a). The 50% neutralization
titre (NTs,) in plasma of people who had recovered from BA.linfection
against BA.2.13, BA.2.12.1and BA.4/BA.5 was reduced by 2.0-,3.7-and
8-fold, respectively, compared with that for BA.1. Plasma from vac-
cinated individuals who had recovered from SARS infection showed a
marked decrease in neutralization of BA.2 subvariants, BA.3and BA.4/
BA.5 compared with the other vaccinees (Fig. 2d and Extended Data
Fig. 2b). This suggests that mutations in BA.2 sublineages, BA.3 and
BA.4/BA.5 may enable escape from broad sarbecovirus-neutralizing
antibodies, which are substantially enriched in vaccinated people
previously infected with SARS?. Together, these observations indicate
that the BA.2.12.1 and BA.4/BA.5 display more potent and distinct
humoral immune evasion than BA.1.

Next, we examined the neutralizing activities of therapeutic anti-
bodies against new Omicron subvariants (Fig. 2e). All seven tested
Omicron subvariants displayed substantial evasion against neutrali-
zation by class 1and class 2 RBD antibodies: the variants evaded neu-
tralization by REGN-10933% (casirivimab), LY-CoV016* (etesevimab),
LY-CoV555% (bamlanivimab), COV2-2196° (tixagevimab) and BRII-196%
(amubarvimab), whereas only BA.4/BA.5 evaded DXP-604>%, which
showed reduced but still competitive efficacy against BA.1and BA.2
subvariants. Two major differences in antigenicity were observed
between BA.1 and BA.2 subvariants. First, NAbs targeting the linear
epitope 440-449%, such as REGN-10987% (imdevimab), COV2-2130°
(cilgavimab,acomponentof Evusheld) and LY-CoV1404 (bebtelovimab*)
could neutralize BA.2 subvariants and BA.4/BA.5. Second, BA.2
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sublineages greatly reduced the efficacy of BA.1-effective broad
sarbecovirus-neutralizing antibodies, including ADG-2? (adintrevimab)
and S309% (sotrovimab), but not the ACE2-mimicking antibody
S2K146%°, which potently neutralized all BA.1and BA.2 sublineages
but showed reduced activity against BA.4/BA.5, similar to DXP-604.
BA.2sublineages’, BA.3and BA.4/BA.5 escaped neutralization by a BRII-
196 and BRII-198 cocktail (amubarvimab plus romlusevimab). Notably,
LY-CoV1404* demonstrated high potency against all tested Omicron
subvariants. Inaddition, our recently developed non-competing anti-
body cocktail comprisingtwo NAbsisolated from vaccinated individuals
who had recovered from SARS, namely BD55-5840 (also known as SA5S;
class 3) and BD55-5514 (also known as SASS; class 1/4), displayed high
potency against the Omicron subvariants and the sarbecoviruses
SARS-CoV-1, Pangolin-GD and RaTG13.

Todelineate the underlying antibody-evasion mechanism of BA.2.13,
BA.2.12.1and BA.4/BA.5, in particular the escape from the humoral
immunity induced by recovery from BA.1infection or recovery from
SARS in vaccinated individuals, we began by isolating RBD-targeting
NAbs from such individuals** (Extended Data Fig. 3a). We isolated
antigen-specificmemory B cells by fluorescence-activated cell sorting
(FACS) of pooled peripheral blood mononuclear cells (PBMCs) using
double WT RBD" selection for triple-vaccinated people, WT RBD* and
SARS-CoV-1RBD" selection for vaccinated individuals who had recov-
ered from SARS and double BA.1RBD" selection for individuals who had
recovered from BA.linfection (Extended Data Fig. 3b). We then per-
formed single-cell V(D)) sequencing (scVDJ-seq) with BA.1IRBD and WT
RBD feature barcodes on CD27°IgM™ antigen-specific memory B cells
(Extended DataFig.3b). We also extracted the productive heavy-light
chain paired V(D)) sequences and expressed the antibodies in vitro as
humanIgG1. We found that the majority of Omicron-reactive memory B
cellsfromtriple-CornonaVac-vaccinated individuals who had recovered
from BA.1linfection could also bind to WT RBD (Fig. 3a). By contrast,
only around a quarter of Omicron-reactive memory B cells isolated
fromunvaccinated individuals who had recovered from BA.linfection
could bind to WT RBD (Fig. 3a). The cross-reactive antigen-binding
property was observed only in IgM"CD27" memory B cells, but not
in IgM*CD27 naive B cells (Extended Data Fig. 2b). V(D)] sequence
analysis revealed significantly higher heavy chain V-domain somatic
hypermutation rates of BA.1and WT cross-reactive B cell receptors
(BCRs) than that of BA.1-specific BCRs (Fig. 3b), which indicates that
the cross-reactive memory B cells were further affinity-matured com-
pared with BA.1-specific memory B cells. Together, these data sug-
gest that post-vaccination infection with Omicron BA.1recalls mainly
WT-induced memory B cells.

To further specify the epitope distribution of NAbs elicited by
post-vaccination BA.linfection, we applied high-throughput yeast
display-based DMS assays** and determined the mutation profiles for
escape for 1,640 RBD-binding antibodies. Among these antibodies,
602 were from individuals who had recovered from WT SARS-CoV-2
or triple vaccinees, 614 were from individuals who had recovered
from post-vaccination BA.1linfection, and 410 SARS-WT SARS-CoV-2
cross-reactive antibodies were from vaccinated individuals who had
recovered from SARS (Supplementary Table 2). We also included 14
antibodies with published DMS profiles in this analysis?>***, Of note,
among the 614 antibodies from individuals who had recovered from
post-vaccination BA.l infection, 102 were BA.1-specific and did not
bind to the WT RBD. The escaping mutation profiles of these 102
BA.1-specific NAbs were determined by DMS based on the BA.1 RBD.
Theremaining 1,538 WT RBD-reactive antibodies were sorted by unsu-
pervised clustering into 12 epitope groups according to their WT-based
mutational escape profiles using ¢-distributed stochastic neighbour
embedding (¢-SNE) (Fig. 3¢), adding 6 additional epitope groups to
our previous classification®.

Groups A-C recapitulate our previous taxonomy?in which the
members target mainly the ACE2-binding motif**~8 (Fig. 3h). Group
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D antibodies, such as REGN-10987, LY-CoV1404 and COV2-2130, bind
tothelinear epitope 440-449 onthe RBD and are divided into D1 and
D2 subgroups. Group D1is more affected by mutations of R346 and
L452, whereas D2 antibodies are not and interact more with P499
(Fig. 3h). Additionally, groups E and F are divided into E1-E3 and
F1-F3, covering the front and back of the RBD and roughly corre-
sponding to class 3 and class 4 antibodies, respectively® (Fig. 3h).
Group El occupies the S309 binding site, whose epitope involves
G339, T345 and R346. Group E2 antibodies bind to the front chest
of RBD*. Group E2.1 binding is most affected by mutations of R346
and A348, whereas E2.2 is most affected by K356 and R357. Groups
E3 (S2H97 site) and F1 (S304 site) bind to highly conserved regions
on the bottom of the RBD, interacting mainly with K462/E516/1.518
and S383/T385/K386, respectively. Antibodies in groups E1-E3 and
F1donotcompete with ACE2 (Fig. 3f), whereas F2 and F3 antibodies
compete with ACE2 and their binding is affected by T376, K378,
D405, R408 and G504, corresponding to class 1/4*°. We tested the
pseuodovirus-neutralizing efficacy of antibodies in each group
against SARS-CoV-1, SARS-CoV-2 D614G, Pangolin-GD and RaTG13,
as well as their ability to bind to 22 sarbecovirus RBDs using ELISA
(Supplementary Tables 2 and 3). Antibodies within the same cluster
shared acommonsarbecovirus neutralization potency and binding
spectrum (Fig. 3g and Extended Data Fig. 4). In total, we identified
five clusters of antibodies exhibiting broad sarbecovirus-binding
ability, namely groups E1, E3, F1, F2 and F3 (Extended Data Fig. 4),
and antibodies in groups E1, F2 and F3 showed potent neutralizing
activity against SARS-CoV-1 (Fig. 3g).

Of note, we found that plasma from individuals who had recovered
from post-vaccination BA.1 infection displayed enrichment of group
E2.1,E2.2 and F1antibodies (Fig. 3d,e), which do not compete for bind-
ing with ACE2 (Fig. 3f). BA.1does not harbour mutations on the epitopes
of these NAb groups, which may explain why post-vaccination BA.1
infection is more likely to stimulate those NAbs. Although they are
notenriched, the ACE2-competing group B and D1 antibodies remain
highly abundant after infection. Since group E2, D1 and B antibodies
are sensitive to mutation at residues 452 and 486 (Fig. 3h), it is highly
probable that BA.2.12.1, BA.2.13 and BA.4/BA.5 can specifically target
those antibodies, rationalizing the large decrease in NT,, of plasma
fromindividuals who haverecovered from BA.linfection against those
variants (Fig. 2c).

To examine our hypothesis, we measured pseudovirus neutraliza-
tion of these NAbs against BA.2.12.1, BA.2.13 and BA.4/BA.5, as well
as the major Omicron variants BA.1, BA.1.1, BA.2 and BA.3 (Extended
Data Fig. 5). NAbs from different epitope groups displayed distinct
neutralizing activities against Omicron subvariants. BA.1-stimulated
antibodies (following recovery from BA.linfection) and WT-stimulated
(following recovery from WT infection or vaccination, with or without
previous SARS-CoV-1infection) showed significantly higher potency
andbreadthin most epitope groups, confirming the increased affinity
maturation of these antibodies (Extended Data Fig. 5).

Omicron subvariants evaded most WT-stimulated group A, B and
C NAbs, although a subset of these antibodies showed broad effec-
tiveness against Omicron (Extended Data Fig. 5). These broad NAbs
were largely enriched by BA.1stimulation, are generally encoded by
similar heavy chainV genes compared with WT-stimulated antibodies
and display higher convergence (Extended Data Fig. 6a,b). These
broad ACE2-competing NAbs in groups A, B and C have been shown
to be enriched in individuals who received a booster dose of mMRNA
vaccine®, which probably accounts for the high neutralizing activity
against Omicron variants in plasma of individuals who had received
three doses of mMRNA vaccine. Nevertheless, BA.1-stimulated group
B and C NAbs were significantly evaded by BA.4 owing to F486V and
L452R RBD mutations, concordant with results from DMS (Extended
Data Fig. 7a,b), which explains the strong humoral immune-evasion
ability of BA.4/BA.5.
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Fig.3|Isolation, characterization, and comprehensive epitope mapping of
SARS-CoV-2RBD antibodies. a, FACS analysis of pooled memory B cells
(IgM~CD27*) from plasma of individuals who have recovered from BA.1
breakthroughinfection after vaccination, vaccinated individuals and
unvaccinated individuals who have recovered from BA.1breakthrough infection.
The percentage of cellsrecognizing WT or BA.1RBD are shown. b, The heavy
chainVdomainsomatic hypermutation (SHM) rate of BA.1-specific (n=968)
and BA.1-WT cross-reactive (n =4,782) BCRs obtained from 10X scVDJ-seq from
individuals who have recovered from BA.1breakthroughinfection after
vaccination. Two-tailed Wilcoxon rank-sum test. Boxes show 25th percentile,
median and 75th percentile, and violin plots show kernel density estimation
curves ofthe distribution. ¢, -SNE and unsupervised clustering of antibodies

Group Dantibodies were most affected by the G446S mutationinBA.1,
BA.1.1and BA.3 (Fig. 4d); these NAbs therefore show higher potency
against BA.2 (Fig.4a,b). However, group D1 antibodies showed reduced
efficacy against L452 substitutions, with L452M (BA.2.13) causing mild
escape,L452Qcausingmoderateescape (BA.2.12.1)andL452R (BA.4/BA.5)
causing severe escape (Fig. 4c,d). By contrast, group D2 antibodies,
especially those stimulated by BA.1 infection, showed exceptional
broad and potent neutralizing activity against all Omicron subvariants,
for example, LY-CoV1404 (Fig. 4b and Extended Data Fig. 5). Notably,

486

ﬁ%mm
Frda

thatbind WT SARS-CoV-2RBD. Twelve epitope groups were identified on the
basis of DMS of 1,538 antibodies. d,e, Epitope distribution and projection of
antibodies from plasmaof individuals who had recovered frominfection with
the WT virus, individuals who have recovered from BA.1breakthroughinfection
after vaccination, and vaccinated individuals who had recovered from SARS.
f, ACE2 competitionlevel determined by competition ELISA (n=1,286) were
projected onto the ¢-SNE. g, Neutralizing activity against SARS-CoV-2 D614G
(n=1,509) and SARS-CoV-1(HKU-39849; n=1,457). h, Average mutational
escapescore projection of each epitope group on SARS-CoV-2RBD

(Protein Data Bank (PDB): 6M0)). All neutralization assays were performed as
biological duplicates.

although group D2 NAbs displayed broad activities, their epitopes are
not conserved among sarbecoviruses (Fig. 4d), similar to those of group
D1, E2.1and E2.2 NAbs. This suggests that their breadth may be aresult
oftheir rarity inindividuals who have recovered frominfection with WT
or BA.1SARS-CoV-2 (Fig. 3f), and these NAbs may be the next target for
SARS-CoV-2to escape by evolving specific mutations on their epitopes.

Group E2antibodies bind to the chest of the RBD* (Fig. 4a), and their
epitopes are focused around R346, A348, A352, K356, R357 and 1468
(Fig. 4d). Despite similar epitopes, group E2.1 NAbs, especially those

Nature | Vol 608 | 18 August 2022 | 597



Article

a \ d
\g LY- COV‘1404 (DQ)‘ BD-744 (E2.1) h FCO8 (E2.2) E4s4r
=) o7 b o
Y449 ~
N V4495404 Fyo0L) jig TyFa00 & N
T5b6@{19§¢N450 S Tsoax\u&?@‘m " Y Do o, ) %394 -Ff?g L D1
\RASQNA4BF LA 7 %ﬁ@ o N5 % T470 Ll W, h
D442 ‘/}M‘WBY“ ‘ \f? "9§ S443 o 1468 R346 5 Iz{s 8
s {Rs08 346 f" a\\\, @}Rszxe R346:A34 \;251, 4 %‘g
N\ ) < N\ vl N H 2
~L44:€ﬁ§%a7 | jv ° = T?‘*@Kw’é\ JRAG6 JN35AL Q738K 462
\ wasad N ™ > ¢ Aaud N3541 3 g
N N b, AR o2
oot N ¥ SOX ) “ g7 y Psase )
™ . | ‘N Yy S y ~ @ Y
~J Ny P J =S Y
b Epltope group D1 Epitope group D2
033« 88x 85x 28x 6% 83« éix 05x B 4Bx 38« NS NS NS E2.1 452R
1014 e T - - .- - - 1014 oo @ @ @@
. v H 1 - . . .
H H . - L . H - *
3 I T S T L T S , %
o3t HEE S !
LR I S T £ ¥ s + w04 T T # N : H
o A - B T T T Y S T N S N
AL A 3 { S L [ I T S T E2.2 g
g w0 Y MRS OO SN o I A S O T A | B
3 T T T T T T T T T T T T T T 5 X =
S} © PN P WP © SOOI S
3 SO R X K AR & ¢ x ¢ 9 Q,wi” ny\ & T e et =)
£ Epltope group E2.1 Q Epltope group E2.2 & OONOOONITIITITIIIIIFIF IO
o
3 038 N Z8x o08ex LI SR ix NS NS T8x  23x wr BASNKRENSKVEGNYNCIERSS
& oaod g g 101 P BA.1 RAANKRPNSKVSGNYNL | AF
R P os 4 3 % F i g‘ - ¥ N BA.1.1 KAANKRPNSKVSGNYNL | AF
10°7 - = @ t S-SR 3 o1 ) BA.3 RAANKRPNSKVSGNYNL | AFSG
ol & F i‘ ; S T ¥ ;98 BA.2 RAANKRPNSKVGGNYNL I AFSGPT|
. 3 1 k] f : ¢t 2| BA2.13 RAANKRPNSKVGGNYNMIAFSG 3
Lo . : : T 102 @ BA.2.12.1 RAANKRPNSKVGGNYNQIAFSGPT(&
.y 1024 BA.4/BA.5 RAANKRPNSKVGGNYNR | AFSG
R R . : : : : : Delta RAANKRPNSKVGGNYNR | EFSG
IR, N > N P R y > NP RaTG13 TAANKRPKAKEGGNFNL | TYRG
S R S AU S R S S N
F T g T T \»'\ & SO AR S R v{vf‘ X Pangolin-GD TAANKRPNSKVGGNYNL | EFSG
c  Epit D1 Epit ) D2 Epit E2.1 Epit o B2 3 fencoinGX EealARECEEE RES S uNEs
pitope group pitope group pitope group 2. pitope group 3¢ Urbani KPAEKKPRATSTGNYNK I PWDGTT]|
Sr6x NSL o ol @ 2| PC4-127 KPAEKRPRATSTGNYNKIPWGGT Ty
T o - vy = % WIVi TPAEKRPRATQTGNYNK | PWDG I T|E
8x -53x 52x
> 10 - 101 100 e e o R Rs4231 TPAEKRPN GNYNLL INPGTT]|
= | : . , . § ° BM48-31 SPAENMRPN NE--FLEKSGQS|g
g o : s 10 10 e ¢ 4 10 ‘ * [ 4 BtKY72 NPAELRPNSKSGNN--Y | SESGPT|&
g0y . T 1014 ° 107 ‘ T8 1% YN2013 RPAETKPAVG FL-RTDPN
S e 3 # v i 102 102 f s ¢ 102 SC2018 RPAE | KPATG YL-YTDPN|w
E] | : % @ : Rs4237 RPAETKPAQG QYL-RTDPT|3
T q09{ o o . 104 § 1t 3 108 1073 ! 3
& T, ..... e SELI N ,,,, .. ..... o SEL N £ , ..... e LA . Shaanx|2011 R AE K AQG QYL Y D (&)
o N o & o N O 2 o N O & o N o o Rs4247 RPAETKFPATG HYL-YTDPN
> > > »
06\ \?@/ \/"Q/ \/V& OQ’\ \/&;L \y«,;b \/b?g/ 06\ \y@’ \/"Q/ \/&;v OQ’\ v"(o(b vbc‘éb \/&;L

Fig.4|SpikeL452 mutants can evade cross-reactive NAbselicited by BA.1
infection. a, Epitope of representative antibodies in group D1 (C110; PDB:
7K8V), D2 (LY-CoV1404; PDB: 7MMO), E2.1(BD-744; PDB: 7EYQ) and E2.2
(FCO8; PDB: 7DX4). Residues highlighted inred indicate sites that are mutated
inOmicronvariants. b, Neutralizing activity of NAbsingroup D1(n =95),

D2 (n=53),E2.1(n=90)and E2.2 (n =161) against spike-pseudotyped SARS-
CoV-2variants. Thegeometric mean of the fold change inIC,, relative toBA.2 is
shown above each plot. Two-tailed Wilcoxon signed-rank test of paired
samples, incomparison toICs, values versus BA.2. ¢, Neutralizing activity of

stimulated by BA.1, show significantly higher neutralizing potency
than group E2.2 NAbs (Fig. 4b). E2 group NAbs showed broad speci-
ficity against SARS-COV-2 variants but not against BA.2.12.1and BA.4/
BA.5.L452 substitutions canresultinlarge-scale escape of E2.1and E2.2
antibodies (Fig. 4c). Similar to the D1 epitope group, L452Rand L452Q
resultedin considerably increased NAb evasion over L452M (Fig. 4¢). Of
note, DMS does not indicate the sensitivity of the E2.2 epitope group
to L452 substitution (Fig. 4d). Together, our results suggest that Omi-
cron may have evolved mutations at L452 to specifically evade group
D1and E2 NAbs, consequently maximizing humoral immune evasion
afterinfection with Omicron BA.1. Of note, group D1and E2.1antibod-
iesalso showed decreased efficacy against BA.1.1compared with BA.1
(Fig. 4b) as aresult of the R346K mutation, since both groups of NAbs
are sensitive to the R346 substitution (Fig. 4a,d), suggesting a reason
for the high prevalence of BA.1.1in the population after the BA.1wavein
the United States.
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representative potent NAbsin group D1 (n=24),D2 (n=12),E2.1(n=23) and
E2.2 (n=23)against SARS-CoV-2 spike L452 mutants. Geometric mean of the
fold change inICsrelative to D614G is shown above each plot. Two-tailed
Wilcoxonsigned-rank test of paired samples. d, Average escape maps atescape
hotspotsof antibodies in epitope groups D1,D2,E2.1and E2.2, and the
corresponding multiple sequence alignment of various sarbecovirus RBDs.
The height of each aminoacid inthe escape map representsits mutation
escapescore. Sites thatare mutated in Omicron subvariants are marked in
bold. All neutralization assays were performed as biological duplicates.

Omicron escapes broad sarbecovirus NAbs

In total, five clusters of antibodies were found to exhibit broad
sarbecovirus-neutralizing ability with diverse specificity, namely
groups E1, E3, F1, F2 and F3 (Extended Data Fig. 4). Whereas Group E3
and Flantibodies demonstrated weak neutralizing activity against all
variants owingto their highly conserved binding sites (Extended Data
Fig.8a-c), wefoundthatEl, F2and F3 NAbs—which are effective against
BA.1, wererare in individuals after infection with WT SARS-CoV-2 or
Omicron but enriched in vaccinated individuals who had recovered
from SARS infection—displayed a systematic reduction in neutraliza-
tion activity against BA.2 subvariants, BA.3 and BA.4/BA.5 (Figs. 2e
and 5a-c). This observation explains the low NT;, for Omicron sub-
variants other than BA.1in plasma from individuals who had recov-
ered from SARS infection (Fig. 2d). The mechanisms behind the loss
of neutralization by these broad-specificity sarbecovirus antibodies
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Fig.5|BA.2subvariants can escape most broad-specificity
sarbecovirus-neutralizing antibodies. a-c, Neutralizing activity against
SARS-CoV-1and SARS-CoV-2 subvariants by NAbsingroup E1(a; n=70),
F2(b;n=171)and F3 (c; n = 69). The geometric mean of the fold change in ICs,
relative to BA.2isshown above each plot. P-values were calculated using a
two-tailed Wilcoxon signed-rank test of paired samples, compared with the ICs,
forBA.2.d, Theepitope of Group Elantibody BD55-3152 on the BA.1RBD.

e, Overlay of BD55-5840in the complex with BA.1or BA.2RBD.f,g, The epitope
and interactions onthe bindinginterface of BD55-1239 (group F2) (f) and

require investigation, as they may prove to be crucial for developing
broad-spectrum sarbecovirus vaccines and antibody therapies.

To study how BA.2 subvariants, BA.3 and BA.4/BA.5 could system-
atically reduce the neutralization efficacy of group E1 antibodies, we
solved the cryo-EM structures of two group E1 BA.1-neutralizing anti-
bodies, BD55-3152 and BD55-5840, in complex with BA.1spike proteins
using cryo-EM (Fig. 5d and Extended Data Fig. 9a,b). Similar to S309,
the epitope of group El antibodies includes an N-linked glycan on N343
(Fig.5d). Group Elantibodies are also generally sensitive to mutation
0f G339, E340, T345 and especially R346, asindicated by their escaping
mutation profiles (Fig. 5h). Notably, the newly acquired mutations of
BA.2donotoverlap with the shared epitope of E1 antibodies, suggesting
that the systematic reduction in neutralization is not caused by amino
acid substitution and is potentially owing to structural alteration. To
explorethis hypothesis, we further determined the cryo-EM structure
of the prefusion-stabilized BA.2 spike in complex with the BD55-5840
Fab (Fig. 5e). A structural comparison with the BA.1RBD binding to
BD55-5840 described above suggests that the 366-377 hairpin loop
displays significant conformational differences due to S371F and T376A
mutations (Fig. 5e and Extended Data Fig. 9d). The overall positions of
residues 375 and 376 are displaced by more than 3 A, which probably
further decreases the binding of group F2 and F3 NAbs in addition to
the T376A side-chain substitution. As aresult, the bulky phenylalanine
resulting from the S371F mutation interferes with the positioning of the
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BD55-3372 (group F3) (g). Antibody residues are shown in blue,and RBD
residuesareinblackorred. Residues highlighted inred indicate sitesthatare
mutated in Omicron variants. h, Average escape maps of antibodies in epitope
groupsEl,F2and F3,and the corresponding multiple sequence alignment of
various sarbecovirus RBDs. The height of eachamino acid in the escape map
representsits mutation escapescore. Sites thatare mutated in Omicron
subvariants are marked inbold. All neutralization assays were performed as
biological duplicates.

glycan moiety attached to N343, whichin turn shifts the heavy chain of
BD55-5840 upward. This may explain the decreased binding between
BD55-5840 and S309, rationalizing their reduced neutralizing activity
(Fig.5aand Extended DataFig. 9e). The N343 glycanis critically recog-
nized by almost all group E1 NAbs, including S309. Thus, this group of
broad and potent NAbs is probably affected by the S371F mutation in
asystematic manner through displacement of the N343 glycan.

The epitopes of group F2 and F3 antibodies cover a continuous
surface on the back of the RBD and can only bind to RBDs in the up
configuration (Fig. 2b). To probe how BA.2 escapes group F2 and F3
antibodies, we solved the cryo-EM structure of two representative
BA.1-neutralizing antibodies—BD55-1239 from group F2 and BD55-
3372 from group F3—in complex with BA.1and Delta spike protein,
respectively (Fig. 5f,g and Extended Data Fig. 9a). RBD mutations
on T376, K378 and R408 can lead to escape from neutralization by
group F2 antibodies (Fig. 5h). Indeed, these residues are centred on
the core of the BD55-1239 epitope and are fairly conserved across sar-
becoviruses (Fig. 5h). Notably, D405N and R408S, which are presentin
OmicronBA.2 sublineages, may alter the antigenic surface, disrupting
the binding of F2 antibodies (Fig. 5f) and completely abolishing the
neutralizing capacity of F2 antibodies (Fig. 5b). Similarly, the D405N
and R408S mutations harboured by BA.2 subvariants could interrupt
the heavy chain binding of F3 antibodies, causing large-scale escapes
of BA.1-neutralizing group F3 NAbs (Fig. 5c). These observations were
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f, Averaged escape maps at escape hotspots of the 102 NAbs in the four epitope biological duplicates.

further validated by neutralizing activity against spike-pseudotyped  antibodies. By integrating the analysis of the entire dataset of 1,640
vesicular stomatitis virus (VSV) harbouring D614G/D405N and D614G/  SARS-CoV-2 RBD antibodies, we derived the embedded features of
R408S. As expected, group El antibodies were not affected, whereas  the BA.1-specific NAbs and performed clustering and ¢-SNE analysis
group F2and F3 antibodies displayed significantly decreased activity, (Fig. 6a). The102 NAbs were clustered into four BA.1-specific epitope
following D405N or R408S single substitutions (Extended DataFig.9¢).  groups, which we designated A°™, B°™, D°™ and F3°™, since these
Nevertheless, several group F3 antibodies, such as BD55-5514,arenot  groups are closely related to the corresponding WT epitope groups
sensitive to the D405N and R408S mutations of BA.2, makingthemgood  (Fig. 6a,e). These antibodies all compete for binding with ACE2 and
therapeutic drug candidates (Fig. 2e). In sum, S371F, D405N and R408S  potently neutralize BA.1 but do not neutralize SARS-CoV-2 D614G or
mutations harboured by BA.2 and emerging Omicron variants may  SARS-CoV-1(Fig. 6b-d) because of the differences in the spike protein:
induce large-scale escape of NAbs with broad sarbecovirus specificity, N417K/Y50IN/H505Y for A°™, A484E/K478T for B°™, K440N for D™
whichare critical for the development of broad-specificity sarbecovirus  and R498Q/Y501N for F3°™, as indicated by average escape maps of
antibody therapies and vaccines. each group (Fig. 6e,f). Some of the previously circulating variants

also harbour these same mutations—such as N501Y in Alpha (B.1.1.7),

K417N/E484K/N501Y in Beta (B.1.351) and T478K in Delta—and only
BA.1-specific NAbs exhibit narrow breadths a small subset of the antibodies exhibit neutralizing activity against
In addition to the WT-BA.1 cross-reactive NAbs, we also investigated  these variants (Fig. 6e). Moreover, nearly all of the BA.1-specific NAbs
the epitope distribution of BA.1-specific NAbs that do notreact with  showed poor cross-reactivity against other Omicron subvariants
WT RBD. We built a yeast display variants library based on the BA.1  (Fig. 6d). Specifically, most antibodies in the F3°™ and A°™ groups
RBD, and determined the escape mutation maps of 102 BA.1-specific  are evaded by BA.2 subvariants and BA.3, possibly because of D405N,
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and antibodies in B°™ are evaded by BA.4 because of F486V. Binding
of some group D°™ antibodies may be affected by S446G but were not
detected by DMS; these antibodies were evaded by BA.2 subvariants
and BA.4 (Fig. 6g). To further validate the results obtained by DMS, we
constructed pseudoviruses based on BA.1 harbouring the reverting
spike mutations N417K, K440N, S446G, K478T, A484E, R498Q, Y50IN
and H505Y, as well as BA.1spike(D405N) and BA.1spike(R408S). Virus
expressing BA.1 spike(D405N) did not produce sufficient titres for
further experiments despite multiple attempts. We therefore used BA.2
spike(N405D) instead. We found that the N417K, R498Q, Y501IN and
H505Y reversions indeed led to evasion of most A°™ and F3°™ group
antibodies, consistent with results from DMS (Fig. 6g). K484E and
K478T are the major escaping mutants responsible for the poor breadth
of B°™ NAbs (Fig. 6d). S446G caused a small subset of D°™ antibodies
tolose neutralization potency, whereas R498Q and K440N resultedin
the majority of D°™ NAbs not binding to WT RBD. Of note, expression
of BA.1spike(R408S) did not reduce neutralization by BA.1-specific
NAbs, whereas BA.2 spike(N405D) restored the neutralization potency
of A°""and F3°™ group antibodies against BA.2, indicating that D405N
isthe determinant of their poor cross-reactivityamong BA.2, BA.3, BA.4
and BA.5 sublineages (Fig. 6d,g). These BA.1-specific NAbs displayed
different heavy chainV gene usage compared to WT-reactive antibodies
in the corresponding epitope group. Specifically, antibodies in A°™
and B°™ groups did not show significant convergence. IGHV3-53 and
IGHV3-66 contributes only to asmall subset of group A°™ antibodies.
Instead, group D°™ antibodies were dominated by IGHV2-70 and
IGHV5-51, whereas F°™ was dominated by IGHV4-59 (Extended Data
Fig.10). These three heavy chainVgenes also appearedin WT-reactive
antibodies, but wererelatively rare and did not show significant epitope
enrichment (Extended Data Fig. 6a,b).

Here we have shown that Omicron is continuously evolving under
immune pressure, and rationalized the appearance of R346K (BA.1.1),
L452 substitutions and the F486V mutation, which have enabled
increased immune evasion. In contrast towhen Omicron firstappeared,
new Omicron sublineages are able to target the humoral immunity
induced by Omicronitself, such as by post-vaccination Omicroninfec-
tion. Omicron breakthrough infections mainly recall WT-induced
memory B cells*®*, which in turn narrow the diversity of elicited anti-
bodies and may further drive the appearance of future mutants. These
phenomena pose achallenge to the current herd immunity established
through WT-based vaccination and infection by BA.1and BA.2 variants,
whichis concordant with recent observations*. Similarly, these results
also suggest that Omicron BA.1-based vaccine may not be the ideal
antigen for inducing broad-spectrum protection against emerging
Omicron sublineages.

By combining high-throughput single-cell sequencing and
high-throughput yeast display-based DMS, we have demonstrated the
ability to decipher the complicated humoralimmune repertoire elicited
by Omicroninfectionand the underlyingimmune-evasion mechanism
of L452 and F486 mutations. The ability to dissect the entire humoral
immunity into distinct antibody epitope groups greatly increases the
resolution of antibody and mutational escaperesearch. The antibodies
ineachepitope group show highly concordantattributes and features,
which will facilitate the investigation of the immune-evasion mecha-
nism of circulating variants. This work and the comprehensive data that
we have generated here willinformthe development of broad-spectrum
sarbecovirus vaccines and therapeutic antibodies.
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Methods

Plasma and PBMCisolation
Blood samples were obtained from 40 volunteers who had received 3
doses of CoronaVac, 39 individuals who had received 2 doses of Coro-
naVacand1booster dose of ZF2001, 54 individuals who had recovered
from BA.1linfection who had previously received 3 doses of Corona-
Vac****, and 30 individuals who had recovered from SARS who had
received 2 doses of CoronaVac and 1 dose of ZF2001. The volunteers’
blood samples were obtained four weeks after the booster shot or
four weeks after discharge from the hospital following BA.1infection.
COVID-19disease severity was defined asasymptomatic, mild, moderate,
severe or critical according to the WHO Living Guidance for Clinical
Management of COVID-19. Relevant experiments with plasma from
SARS convalescents and SARS-CoV-2 vaccinees were approved by the
Beijing Ditan Hospital Capital Medical University (ethics committee
archiving no. LL-2021-024-02), the Tianjin Municipal Health Commis-
sion, and the ethics committee of Tianjin First Central Hospital (ethics
committee archiving no.2022N045KY). Writteninformed consent was
obtained from each participantinaccordance with the Declaration of
Helsinki. All participants provided written informed consent for the
collection of information, storage and usage of their clinical samples
forresearchpurpose, and publication of datagenerated from this study.
Whole blood samples were mixed and subjected to Ficoll (Cytiva,
17-1440-03) gradient centrifugation after 1:1dilution in PBS+2% FBS to
isolate plasma and PBMCs. After centrifugation, plasmawas collected
fromupperlayer and cells were collected at the interface. PBMCs were
further prepared by centrifugation, red blood cells lysis (Invitrogen
eBioscience1XRBCLysisBuffer,00-4333-57) and washingsteps.Samples
were stored in FBS (Gibco) with10% DMSO (Sigma) inliquid nitrogen if
not used for downstream processimmediately. Cryopreserved PBMCs
were thawed in DPBS + 2% FBS (Stemcell, 07905).

Ethics statement

This study was approved by the Ethics Committee of Beijing Ditan
Hospital affiliated to Capital Medical University (Ethics committee
archiving No. LL-2021-024-02), the Tianjin Municipal Health Com-
mission, and the Ethics Committee of Tianjin First Central Hospital
(Ethics committee archiving No. 2022N045KY). Informed consent
was obtained from all human research participants.

Antibody isolation and recombinant production

SARS-CoV-1 and SARS-CoV-2 RBD cross-binding memory B cells
were isolated from PBMC of SARS convalescents who had received
SARS-CoV-2vaccine and BA.I-infected convalescents who had been vac-
cinated against COVID-19 prior toinfection. Inbrief, CD19*B cells were
isolated from PBMCs with EasySep Human CD19 Positive Selection Kit
I1(STEMCELL, 17854). Every 10° B cells in 100 pl were then stained with
2.5 plFITCanti-human CD19 antibody (BioLegend, 392508), 2.5 pl FITC
anti-human CD20 antibody (BioLegend, 302304), 3.5 pl Brilliant Violet
421anti-human CD27 antibody (BioLegend, 302824), 3 ul PE/Cyanine7
anti-human IgM antibody (BioLegend, 314532), 0.21 pg biotinylated
Ovalbumin (Sino Biological) conjugated with Brilliant Violet 605
Streptavidin (BioLegend, 405229),0.13 pg SARS-CoV-1biotinylated RBD
protein (His and AVI Tag) (Sino Biological, 40634-V27H-B) conjugated
with PE-streptavidin (BioLegend, 405204), 0.13 pg SARS-CoV-2 bioti-
nylated RBD protein (His and AVI Tag) (Sino Biological, 40592-V27H-B)
conjugated with APC-streptavidin (BioLegend, 405207), and 5 pl
7-AAD (Invitrogen, 00-6993-50). 7-AAD"CD19/CD20"CD27'IgM OVA~
SARS-COV-1RBD*and SARS-CoV-2RBD" cells were sorted witha MoFlo
Astrios EQ Cell Sorter (Beckman Coulter).

SARS-CoV-2 BA.1 RBD-binding memory B cells were isolated from
BA.l-infected convalescents who received SARS-CoV-2. In brief, CD19*
B cells were isolated with EasySep Human CD19 Positive Selection
Kit Il. Every 10° B cells in 100 pl solution were then stained with 3 pl

FITC anti-human CD20 antibody (BioLegend, 302304), 3.5 pl Brilliant
Violet 421 anti-human CD27 antibody (BioLegend, 302824), 2 ul PE/
Cyanine7 anti-human IgM antibody (BioLegend, 314532), 2 ul PE/Cya-
nine7 anti-human IgD antibody (BioLegend, 348210), 0.13 pg bioti-
nylated SARS-CoV-2 BA.1 protein (His and AVI Tag) (Sino Biological,
40592-V49H7-B) conjugated with PE-streptavidin or APC-streptavidin
(TotalSeq-C0971Streptavidin, BioLegend, 405271 and TotalSeq-C0972
Streptavidin, BioLegend, 405273), 0.13 ug SARS-CoV-2 WT biotinylated
RBD protein (His and AVI Tag) conjugated with Brilliant Violet 605
Streptavidin and TotalSeq-C0973 Streptavidin (BioLegend, 405275)
and TotalSeq-C0974 Streptavidin(BioLegend, 405277), 0.21 pug bioti-
nylated Ovalbumin conjugated with TotalSeq-C0975 Streptavidin
(BioLegend, 405279) and 5 pl 7-AAD (Invitrogen, 00-6993-50). 7-AAD
“CD20'CD27'IgM IgD” SARS-CoV-2 BA.1RBD" cells were sorted with a
MoFlo Astrios EQ Cell Sorter. FACS data were analysed using FlowJo
v10.8 (BD Biosciences).

Sorted B cells were then processed with Chromium Next GEM Single
Cell V(D)) Reagent Kits v1.1 following the manufacturer’s user guide
(10x Genomics, CG000208).Inbrief, sorted cells were resuspended in
PBS after centrifugation. Gel beads-in-emulsion (GEMs) were obtained
with 10X Chromium controller and then subjected to reverse tran-
scription. After GEM-RT clean up, reverse transcription products were
subject to preamplification. After amplification and purification with
SPRIselect Reagent Kit (Beckman Coulter, B23318) of reverse transcrip-
tion products, BCR sequences (paired V(D)) were enriched with 10X
BCR primers. After library preparation, libraries were sequenced by
Novaseq 6000 platform running Novaseq 6000 S4 Reagent Kit v1.5
300 cycles (Illumina, 20028312) or NovaSeq XP 4-Lane Kit v1.5
(Ilumina, 20043131).

B cell RNA and feature barcode data analysis

Using Cell Ranger (v6.1.1) pipeline, the mRNA fastq reads were pro-
cessed and aligned to the human GRCh38 genome for gene expression
profile. Genes expressed in fewer than 10 cells and cells expressing
fewer than100 genes or high-level mitochondria genes were removed
to filter out low-quality data. Raw counts were normalized and scaled
with Seurat*® (v4.0.3), while principal components analysis and uniform
manifold approximation and projection were performed for cluster
and visualization. Cell types were identified using SingleR* (v1.6.1)
withMonaco human immune data*®. Feature barcode reads were also
counted by Cell Ranger (v6.1.1) as antibody capture library, and a cell
was considered to bind the corresponding antigen of dominant feature
barcodes (>25% in this cell).

Antibody sequence analysis

The antibody sequences obtained from10X Genomics V(D)) sequenc-
ingwere aligned to GRCh38 reference and assembled asimmunoglobu-
lin contigs by the Cell Ranger (v6.1.1) pipeline. Non-productive contigs
and B cells that had multiple heavy chain or light chain contigs were
filtered out of the analysis. V(D)) gene annotation was performed using
NCBI IgBlast (v1.17.1) with the IMGT reference. Mutations on V(D))
nucleotide sequences were calculated by using the igpipeline, which
compared the sequences to the closest germline genes and counted the
number of different nucleotides. For antibodies from public sources
whose original sequencing nucleotide sequences were not all acces-
sible, the antibody amino acid sequences were annotated by IMGT/
DomainGapAlign*® (v4.10.2) with default parameters. V-] pairs were
visualized with the R package circlize (v0.4.10).

DMS library construction

DMS libraries were constructed as previously described?. In brief,
SARS-CoV-2 RBD mutantlibraries were constructed from Wuhan-Hu-1
RBD sequence (GenBank: MN908947, residues N331-T531), and Omicron
RBD mutant libraries were created in a similar way based on Wuhan-Hu-1
RBD sequence with the addition of G339D, S371L, S373P, S375F, K417N,
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N440K, G446S,S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y and
Y505H mutations. Duplicate libraries were produced independently,
theoretically containing 3,819 possible amino acid mutations. Each
RBD mutant was barcoded with aunique 26-nucleotide (N26) sequence
and Pacbio sequencing was used toidentify the correspondence of RBD
mutant and N26 barcode. After mutant library transformation, ACE2
binders were enriched for downstream mutation profile experiments.

High-throughput antibody-escape mutation profiling
The magnetic-activated cell sorting-based antibody-escape mutation
profiling system*” was used to characterize mutation escape pro-
file for NAbs. In brief, ACE2-binding mutants were induced overnight
for RBD expression and washed followed with two rounds of Protein A
antibody-based negative selectionand MYC tag-based positive selection to
enrich RBD-expressing cells. Protein A antibody-conjugated products were
prepared following the protocol for Dynabeads Protein A (ThermoFisher,
10008D) andincubated withinduced yeast libraries at room temperature
for 30 minwithshaking. MYCtag-based positive selection was performed
according to the manufacturer’sinstructions (Thermo Fisher, 88843).
After three rounds of sequential cell sorting, the obtained cells were
recovered overnight. Plasmids were extracted from pre- and post-sort
yeast populations by 96-Well Plate Yeast Plasmid Preps Kit (Coolaber,
PE053). The extracted plasmids were then used to amplify N26 barcode
sequences by PCR. The final PCR products were purified with1IXAMPure
XP magnetic beads (Beckman Coulter, A63882) and submitted to 75bp
single-end sequencing at lllumina Nextseq 500 platform.

Processing of DMS data

Single-end Illumina sequencing reads were processed as previously
described. In brief, reads were trimmed to 16 or 26 bp and aligned to
the reference barcode-variant dictionary with dms_variants package
(v0.8.9). Escape scores of variants were calculated as F x (1 ,,/N,p)/
(ny et/ Nrer), Where ny ., and ny ¢ is the number of reads represent-
ing variant X, and N,;, and N,.¢are the total number of valid reads in
antibody-selected (ab) and reference (ref) library, respectively. Fis a
scale factor defined as the 99th percentiles of escape fraction ratios.
Variants detected by less than six reads in the reference library were
removed to avoid sampling noise. Variants containing mutations with
ACE2 binding below —2.35 or RBD expression below -1 were removed
as well, according to data previously reported. For BA.1 RBD-based
libraries, due to the lack of corresponding ACE2-binding and RBD
expression data, we used the RBD expression of Beta RBD-based DMS
asfilter instead®, and did not perform the ACE2-binding filter. Muta-
tionsonresidues that use different amino acids in Betaand BA.1 were
not filtered, except R493P, S496P, R498P, H505P and all mutations on
F375, which were excluded in the analysis owing to low expression.
Finally, global epistasis models were built using dms_variants pack-
age to estimate mutation escape scores. For most antibodies, at least
two independent assays were conducted and single mutation escape
scores were averaged across all experiments that pass quality control.

Antibody clustering and visualization

Site total escape scores, defined as the sum of escape scores of all
mutations ata particular site on RBD, were used to evaluate theimpact
of mutations on each site for each antibody. Each of these scores is
considered as a feature of a certain antibody and used to construct a
feature matrix A,.,, for downstream analysis, where Nis the number of
antibodies and M is the number of features (valid sites). Informative
sites were selected using sklearn.feature_selection.VarianceThreshold
of scikit-learn Python package (v0.24.2) with the variance threshold as
0.1.Then, the selected features were L2-normalized across antibodies
using sklearn.preprocessing.normalize. The resulting matrix is
referred as A’y,,,, where M’ is the number of selected features. The
dissimilarity of two antibodies i, jis defined as 1- Corr(4’,4’), where
Corr(x,y) is the Pearson’s correlation coefficient of vectors x and y.

We used sklearn.manifold.MDS to reduce the number of features from
M’ to D =20 with multidimensional scaling under the above metric.
Antibodies are clustered into 12 epitope groups using sklearn.cluster.
KMeans of scikit-learn in the resulting D-dimensional feature space.
Finally, these D-dimensional representations of antibodies were further
embedded into two-dimensional space for visualization with ¢-SNE
using sklearn.manifold. TSNE of scikit-learn. For the 102 BA.1-specific
antibodies that were assayed with BA.1RBD-based yeast display library,
the 20-dimensional embedding was generated using multidimen-
sional scaling (MDS) with the DMS profile of all 1,640 antibodies, but
clustering and t-SNE were conducted independently. To project these
antibodies onto the ¢-SNE space of 1,538 antibodies assayed by WT
RBD-based DMS, we calculated the pairwise Euclidean distance between
102 antibodies using BA.1RBD-based DMS and 1,538 antibodies using
WT RBD-based DMS in the 20-dimensional MDS space. The position
ofeach BA.1-specific antibody in the original t-SNE space is defined as
the average position of its ten nearest antibodies using WT RBD-based
DMS. All t-SNE plots were generated by R package ggplot2 (v3.3.3).

Pseudovirus-neutralization assay

SARS-CoV-2 spike (GenBank: MN908947), Pangolin-GD spike (GISAID:
EPI_ISL_410721), RaTG13 spike (GISAID: EPI_ISL_402131), SARS-CoV-1
spike (GenBank: AY278491), Omicron BA.1spike (A67V,H69del, V70del,
T951, G142D, V143del, Y144del, Y145del, N211del, L2121, ins214EPE,
G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K,
E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y,
N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L98IF), BA.2
spike (GISAID: EPLISL_7580387, T191, L24S, del25-27, G142D, V213G,
G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K,
G446S,S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G,
H655Y,N679K, P681H, N764K, D796Y, Q954H, N969K), BA.1.1 spike
(BA.1+R346K), BA.3 spike (A67V, del69-70, T95I, G142D, V143del,
Y144del, Y145del, N211del, L2121, G339D, S371F, S373P, S375F, D405N,
K417N, N440K, G446S, S477N, T478K, E484A, Q493R, Q498R, N501Y,
Y505H, D614G, H655Y,N679K, P681H, N764K, D796Y, Q954H, N969K),
BA.2.12.1spike (BA.2+L452Q+S704L), BA.2.13 spike (BA.2+L452M) and
BA.4 spike (T191,124S, del25-27, del69-70, G142D, V213G, G339D, S371F,
S373P, S375F, T376A, D405N, R408S, K417N, N440K, G446S, L452R,
S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y,
N679K, P681H, N764K, D796Y, Q954H, N969K) plasmids were con-
structed using the pcDNA3.1 vector. G*AG-VSV virus (VSV G pseudo-
typed virus, Kerafast) was used to infect 293T cells (American Type
Culture Collection (ATCC), CRL-3216), and spike protein-expressing
plasmid was used for transfection at the same time. After culture, the
supernatant containing pseudovirus was collected, filtered, aliquoted,
and frozen at —80 °C for further use.

Pseudovirus detection of Pangolin-GD and RaTG13 was performed
in 293T cells overexpressing human angiotensin-converting enzyme
2 (293T-hACE2 cells). Other pseudovirus-neutralization assays were
performed using the Huh-7 cell line (Japanese Collection of Research
Bioresources (JCRB), 0403).

Monoclonal antibodies or plasma were serially diluted (fivefold or
threefold) in DMEM (Hyclone, SH30243.01) and mixed with pseudovirus
in96-well plates. After incubationat 5% CO,and 37 °Cfor1h, digested
Huh-7 cell (JCRB, 0403) or 293T-hACE2 cells (ATCC, CRL-3216) were
seeded. After 24 h of culture, supernatant was discarded and D-luciferin
reagent (PerkinElmer, 6066769) was added toreactin the dark, and the
luminescence value was detected using amicroplate spectrophotom-
eter (PerkinElmer, HH3400). IC;, was determined by a four-parameter
logistic regression model using PRISM (version 9.0.1).

ELISA

To detect the broad-spectrum binding of the antibodies among
Sarbecovirus, we used a panel of 20 synthesized sarbecovirus RBDs
(Sino Biological Technology) (Supplementary Table 3). According to the



sequence of 20 RBDs, aset of nested primers was designed. The coding
sequences were obtained by the overlap PCR with a 6x His tag sequence
tofacilitate protein purification. The purified PCR products were ligated
to the secretory expression vector pCMV3 with CMV promoter, and
thentransformed into Escherichia coliXL1-blue competent cells. Mono-
clones with correct transformation were cultured and expanded, and
plasmids were extracted. Healthy HEK293F cells were passaged into a
new cell culture and grownin suspension at 37 °C,120 RPM, 8% CO2 to
logarithmic growth phase and transfected with the recombinant con-
structs by using liposomal vesicles as DNA carrier. After transfection,
the cell cultures were followed to assess the kinetics of cell growth and
viability for 7 days. The cell expression supernatant was collected, and
after centrifugation, passed through a Ni column for affinity purifica-
tion. The molecular size and purity of eluted protein was confirmed by
SDS-PAGE. Productionlot numbers and concentration information of
the 20 sarbecovirus proteins are shown in Supplementary Table 4. WT
RBD used here was SARS-CoV-2 (2019-nCoV) Spike RBD-His Recombi-
nant Protein (Sino Biological, 40592-VO8H).

Apanel of 21sarbecovirus RBDs (Supplementary Table 3) in PBS was
pre-coated onto ELISA plates (NEST, 514201) at4 °C overnight. The plates
were washed and blocked. Then1pg ml™ purified antibodies or serially
diluted antibodies were added and incubated at room temperature
for 20 min. Next, Peroxidase-conjugated AffiniPure Goat Anti-Human
IgG (H+L) (JACKSON, 109-035-003) was applied and incubated at
room temperature for 15 min. Tetramethylbenzidine (TMB) (Solarbio,
54827-17-7) was added onto the plates. The reaction was terminated
with 2 M H,SO, after 10 min incubation. Absorbance was measured at
450 nmusing Ensight Multimode Plate Reader (PerkinElmer, HH3400).
ELISA A,;, measurements at different antibody concentrations for a
particular antibody-antigen pair were fit to the model y = Ac"/(c" + E")
using the R package mosaic (v1.8.3), where yis the A 5, value and cis
the corresponding antibody concentration. A, Eand nare parameters,
where Eis the desired EC,, value for the specific antibody and antigen.

Antibody and ACE2 competition for RBD

Omicron RBD (Sino Biological, 40592-VO8H121) protein in PBS was
immobilized on the ELISA plates at 4 °C overnight. The coating solu-
tion was removed and washed 3 times with PBST and the plates were
then blocked for 2 h. After blocking, the plates were washed 5 times,
and the mixture of ACE2-biotin (Sino Biological, 10108-H27B-B) and
serially diluted competitor antibodies was added followed by 30 min
incubation at room temperature. Peroxidase-conjugated Streptavidin
(JacksonImmunoResearch, 016-030-084) was added into each well for
another 20 min incubation at room temperature. After washing the
platesfive times, TMB (Solarbio, 54827-17-7) was added into each well.
After 10 min, the reaction was terminated with2 MH,SO,. Absorbance
was measured at 450 nm using Ensight Multimode Plate Reader
(PerkinElmer, HH3400). The ACE2 competition coefficient was cal-
culated as (B—A)/B, where Bis the A5, value with 0.3 pg ml™ antibody
and A s the A 5, value with 6 pg ml™ antibody.

Biolayer interferometry

Biolayer interferometry assays were performed on Octet RED 384
Protein Analysis System (Fortebio) according to the manufacturer’s
instructions. To measure the binding affinities, monoclonal antibodies
wereimmobilized onto Protein A biosensors (Fortebio) and the fourfold
serial dilutions of Omicron S-trimer (BA.1and BA.2) in PBS were used
as analytes. Datawere collected with Octet Acquisition 9.0 (Fortebio)
and analysed by Octet Analysis 9.0 (Fortebio) and Octet Analysis Studio
12.2 (Fortebio).

S-trimer thermal stability assay

The thermal stability assay was performed to detect the exposed hydro-
phobicresidues withan MX3005 qPCRinstrument (Agilent) with SYPRO
Red (Invitrogen) as fluorescent probes. We set up 25 pl reaction system

(pH 8.0) containing 5 pg of target protein (S-trimer of Omicron line-
age), 1000x SYPRO Red, and ramped up the temperature from 25°C
t099 °C. Fluorescence wasrecordedintriplicate at aninterval of 1°C.

Surface plasmon resonance

Human ACE2 wasimmobilized onto CM5 sensor chips using aBiacore 8K
(GEHealthcare). Serial dilutions of purified S-trimer or RBD of Omicron
lineages wereinjected, ranging in concentrations from100 to 6.25 nM.
Theresponse units were recorded at room temperature using BlAcore
8K Evaluation Software (v3.0.12.15655; GE Healthcare), and the result-
ing datawere fitted toa1:1binding model using BIAcore 8K Evaluation
Software (v3.0.12.15655; GE Healthcare).

Protein expression and purification for cryo-EM study

The S6P expression construct encoding the SARS-CoV-2 spike ectodo-
main (residues 1-1208) with six stabilizing Pro substitutions (F817P,
A892P, A899P, A942P, K986P and V987P) and a GSAS substitution for the
furin cleavage site (residues 682-685) was previously described™. The
Delta-specific mutations (T19R, G142D, 156del, 157del, R158G, L452R,
T478K, D614G, P681R, D950N) were introduced into this construct
using site-directed mutagenesis. The S6P expression construct contain-
ing the Omicron BA.1 mutations (A67V, H69del, V70del, T951, G142D,
V143del, Y144del, Y145del, N211del, L2121, ins214EPE, G339D, S371L,
S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R,
G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H,
N764K, D796Y, N856K, Q954H, N969K, L981F) were assembled from
three synthesized DNA fragments. The S6P expression construct con-
tainingthe Omicron BA.2 mutations (T191,L24S, del25-27, G142D, V213G,
G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K,
G446S,S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G,
H655Y,N679K, P681H,N764K, D796Y, Q954H, N969K) were assembled
fromthree synthesized DNA fragments. The S6P expression construct
containing the Omicron BA.4/BA.5 mutations (T19I, L24S, del25-27,
del69-70, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N,
R408S, K417N, N440K, G446S, L452R, S477N, T478K, E484A, F486V,
Q498R, N501Y, Y505H, D614 G, H655Y, N658S, N679K, P681H, N764K,
D796Y, Q954H, N969K) were assembled from three synthesized DNA
fragments®. For protein production, these expression plasmids, as well
asthe plasmids encoding the antigen-binding fragments (Fabs) of the
antibodies described here, were transfected into the HEK293F cells
using polyethylenimine (Polysciences). The conditioned media were
collected and concentrated using a Hydrosart ultrafilter (Sartorius),
and exchanged into the binding buffer (25 mM Tris, pH 8.0, and 200 mM
NaCl). Protein purifications were performed using the Ni-NTA affinity
method, followed by gel filtration chromatographies using either a
Superose 6 increase column (for the spike proteins) or aSuperose 200
increase column (for the Fabs). The final buffer used for all proteinsis
20 mM HEPES, pH 7.2, and 150 mM NacCl.

Cryo-EM data collection, processing and structure building

Samples for cryo-EM study were prepared essentially as described'>>
(Supplementary Table 4). All EM grids were evacuated for 2 min and
glow-discharged for 30 susing a plasmacleaner (Harrick PDC-32G-2).
Four microliters of spike protein (0.8 mg ml™) was mixed with the
same volume of Fabs (1 mg ml™ each), and the mixture was immedi-
ately applied to glow-discharged holy-carbon gold grids (Quantifoil,
R1.2/1.3)inanFEIVitrobot IV (4 °Cand100% humidity). Data collection
was performed using either a Titan Krios G3 equipped with aK3 direct
detection camera, or a TitanKrios G2 withaK2 camera, both operating
at300 kV. Data processing was carried out using cryoSPARC (v3.2.1)*%,
After 2D classification, particles withgood qualities were selected for
global 3D reconstruction and then subjected to homogeneous refine-
ment. Toimprove the density surrounding the RBD-Fab region, UCSF
Chimera (v1.16)** and Relion (v3.1)*> were used to generate the masks,
and local refinement was then performed using cryoSPARC (v3.2.1).
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Coot (v0.8.9.2)* and Phenix (v1.20)*” were used for structural modelling
and refinement. Figures were prepared using USCF ChimeraX (v1.3)%®
and Pymol (v2.4.0, Schrédinger, LLC.).

Molecular dynamics simulation

Models of the RBD from BA.1, BA.2, BA.3, BA.2.13, BA.2.12.1 and BA.4
in complex with ACE2 were firstly referred to the cryo-EM structure
of BA.1-hACE2 (PDB code: 7WGB) and then checked with the WHAT IF
web interface (https://swift.cmbi.umcn.nl/) to remove atomic clashes.
After that, the structures were simulated with GROMACS-2021%. In brief,
the OPLS force field with TIP3P water model was selected to prepare
the dynamic system. After that Na® and CI” ions were added into the
system to make the system electrically neutral. Then, energy mini-
mization using the steepest descent algorithm was carried out until
the maximum force of 1,000 k] mol™ was achieved. NVT ensemble
via the Nose-Hoover method at 300 K and NPT ensemble at 1 bar
with the Parinello-Rahman algorithm were employed successively
to make the temperature and the pressure equilibrated, respectively.
Finally, molecular dynamics production runs of 10 ns were performed
with random initial velocities and periodic boundary conditions.
Thenon-bonded interactions were treated using Verlet cut-off scheme,
while the long-range electrostatic interactions were treated using
particle mesh Ewald method®. The short-range electrostatic and
van der Waals interactions were calculated with a cut-off of 12 A.
All sixmodels were simulated in the same protocol.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Processed mutation escape scores can be downloaded from https://
github.com/jianfcpku/SARS-CoV-2-RBD-DMS-broad. Raw llluminaand
PacBio sequencing dataare available on NCBISequence Read Archive
BioProject PRINA804413. We used vdj_GRCh38 _alts_ensembl-5.0.0 as
thereference for V(D)) alignment, which canbe obtained from https://
support.10xgenomics.com/single-cell-vdj/software/downloads/latest.
IMGT/DomainGapAlignis based on the built-in lastest IMGT antibody
database, and we set the ‘Species’ parameter as ‘Homo sapiens’and kept
the others at the default settings. Public DMS datasets involved in the
study from literature can be downloaded from https://media.githu-
busercontent.com/media/jbloomlab/ SARS2_RBD_Ab_escape_maps/
main/ processed_data/escape_data.csv. Cryo-EM density maps have
been deposited in the Electron Microscopy Data Bank with accession
codes EMD-33210, EMD-33211, EMD-33212, EMD-33213, EMD-33323,
EMD-33324, EMD-33325, EMD-32732, EMD-32738, EMD-32734, EMD-
32718 and EMD-33019. Structural coordinates have been deposited
inthe Protein Data Bank with accession codes 7XIW, 7XIX, 7XI1Y, 7XIZ,
7XNQ, 7XNR, 7XNS, 7WRL, 7WRZ, 7WRO, 7WR8 and 7X6A.

Code availability

Pythonand R scripts for analysing escaping mutation profile dataand
reproducing figures in this manuscript are available at https://github.
com/jianfcpku/SARS-CoV-2-RBD-DMS-broad.
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Extended DataFig.1|Structuresand ACE2binding of emerging Omicron

subvariants spike glycoprotein. a, Mutations on the spike glycoprotein of

SARS-CoV-2 Omicronsubvariants. Residues that are notidenticalamong
Omicronsubvariantsare colored red. b, Workflow to generate cryo-EM

structure of BA.2,BA.3,BA.2.13,BA.2.12.1, BA.4/5 spike glycoprotein trimer

withS6Pand R683A, R685A substitutions. ¢, Binding affinities of Omicron
variants spike trimers to hACE2 measured by SPR. SPR analyses were
conductedinbiological duplicates. d, MD simulated interactions between
hACE2 and RBD of Omicron variants. Structures of the RBD from Omicron
variantsand hACE2 are shownasribbons.
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Extended DataFig. 2| Differentimmunity backgrounds lead to distinct

humoralimmunity against Omicron subvariants. NT50 against SARS-CoV-2,

SARS-CoV-1D614G and Omicron subvariants spike-pseudotyped VSV by
plasmasamples froma, individuals who received 3 doses CoronaVac with
(n=50) orwithout (n=40) BA.1breakthroughinfection; b, individuals who
received 2doses CoronaVacand ZF2001 booster with (n =28) or without

(n=38) previous SARS-CoV-linfection; ¢, individuals who received 3 doses
CoronaVac (n=40) or2doses CoronaVac with ZF2001 booster (n = 38). P-values
were calculated using two-tailed Wilcoxon rank-sum tests and labeled above
thebars. n.s., notsignificant, p > 0.05. All neutralization assays were conducted
inbiological duplicates. Geometric means are labeled. Error bars refer to
geometric standard deviations.



Antigen barcode N -~ 2
Q v V(D)J library P
4 N7
;i — &o — > i
m Antigen barcode library
- B Cell Gel bead — Antibody expression
10X Chromium 5' RNA

RBD-PE

Antibody drug ACE2 competition ”
candidates *.
ok

Sarbecovirus ELISA !

Humoral immune

¢ Neutralizati ¢ o Q >
response landscape eutralization ' : Q a — :
7

i i BA.1 BA.2.13 ' i
against Omicron BA11 BA 2121 ' Escaped |
BA.2 BA.4/5

Evasion mechanism BA.3 ‘
Cryo-EM structures

b 100K 100K 5
CD20+live-2
80K 80K 4 83.0
< = 60K = 60K = a
3 & 3 3
(%) [} o
» Y g0k ? 40k A "~
singlets 1 singlets 2
98.6 99.5
20K 20K
0 T T T T 0 T T T T
40K 60K 80K 100K 20K 40K 60K 80K 100K 0 20K 40K 60K 80K 100K
FSC-A FSC-H SSC-H CD20-FITC
»
>
S e
g < 2
o Q w }
s Q 8 WTin BA.1*
o ['4 N
Q - BA.1 RBD+ 3 1024 755
3 3
< 0.23 3
oM
101 :
100 Sk 1 T T Sk 1 ™
100 10 102 10a 104 10
IgM,IgD-PE/Cy7 BA.1 RBD-PE WT RBD-BV605
IgM-, CD27+ IgM+, CD27- IgM-, CD27-
10° a1 Q
0.070 0.056
(&) O O O
o o o o
< < < <
[a] o o o
5] 7] 7] 7]
['4 o o o
z z Z z
23] o o 2]
10O 101 102 103 104 105
WT RBD-BV605 WT RBD-BV605 WT RBD-BV605 WT RBD-BV605
Extended DataFig. 3 | Workflow for the isolation and characterization of high-throughput deep mutational scanning. b, FACS strategy toenrich
SARS-CoV-2RBD antibodies. a, Overall schematic of antibody identification BA.1/WT cross-reactive memory B cells or BA.1-specific memory B cells.

by single cell VD] sequencing with feature barcodes and epitope analysis by



Article

BJO1 PC4-127 Sin852 GZ-C Urbani
© ; b e e
[Z]
-~ O =
295| M n M n n
© S
S S| g 840 X ® 40 e 39 9" o J9
°Z | G’ G * G’
.‘.. ~ ., & e . a8, &
- * ~ »
WIV1 LYRa11 Rs7327 Rs4231
°
Q Y
i) .
o QS
SREl M [ 4! " "
238 |4 0 o o8 o +8 "o g
co2|t” £ L ‘i
[
x @ ., & . @ 8, @ .
< .
b ’
RaTG13 Pangolin-GD Pangolin-GX
° "
2P g "X & . v\“
g N3 § Fgx A & +° g d ¥,
'6“ élg § ] £ 5%
2k
<
(%)
BM48-31 BtKY72
D
[
?% o M
S5
E (3] : y
83 | O *
=&}
<3 .
YN2013 Rs4247 Shaanxi2011 Anlong112 Rp3
(=] L. o s ¢ y
£ “3 il # L
N
=9 o, 9 o, . ®
o
o s
O o
<>
538 $C2018 zc45 zxc21
€ w®
cm
.g ELISA OD450
< ¥ ¥ ’ -
0 4
. .

Extended DataFig.4 |ELISAreactivity against 22 sarbecovirus RBD. Shades of red indicate ELISA OD450 for each antibody against various sarbecoviruses

fromdifferent clades.




O BA.1-stimulated A WT-stimulated
D614G - - - - -2 |= = == ns. ns. _ n.s. _ns._ _ _ _ns_ _
p<0.0001 |  p=0.022 0=0015 ' p=000094!  p=0.0089 p=0.48 |~ p=0015 p=0.135" | p<0.0001 p=0.23 0=0.68 p=094 °,
10‘ 0.0082 0.04 1 0.0032 0.0091 0.0085 0.044 ! IO.(214 0.995 0.0933 0.911 0.013 0.025 0.068 0.19 29 18 | 6 2.2 4.1 4.4 0.93 0.28 063 0.14»1
2000 B PO0ee BUDIT DOD80 9.0 P Y e P O T S T (PR S PP JRs R ST R
10°1 ! A T ¥ s ' § £ ‘ ! .
1] e | B | 2 ! $ 2 . I { ! | i - |
10 2 1 8 ! I ! i_ LI ! N | |
< 1 1 °
10—3. ’ ! ‘ { 11 1 } . ! : 1 1
107°1...% ... [ SO SOPTTTTITD TRLLTN NI PTY TN JOTTIL TS, S oo ) L
T T T
A 1 B c |, bt | D2 E1 | E24 E22 '  E3 1, F2 F3
BAA1 1 : | ! ! ns. | ns. | ns.
p<0.0001 |  p<0.0001 p<0.0001 p<0.0001 ! p<0.0001 p=0.0011 | p<0.0001 p=0.33 I p=0.87 p<0.0001 p<0.0001 p=0.57 |
0.023 4. 1 0.007 29 0.044 6? 11005 371 00087 071 0039 1.1 0.16 1 23 311 57 5.6 7 92 !18 5.8 057 25 .
101 AR e I T % @ A L@ B N LT EEREE SEREE TREEH g AR PO B
R X ; ! 4
10° 4 A | i L 1 q 3 I ’ : — :
cly gt ot ' S B
1071 z ! - 1 I P - I 1 $ 1
°
100 8.0 1 A R e ] L) RO URTUNUUTPUOUO e Ll
T T
A ! B C 1 D1 | D2 E1 : E2.1 E22 | E3 F1 1 F2 F3 1
1
) BA.2 11 1 ns. n.s. 1 ns. |
= p<0.00017 | p<0.0001 p<0.0001 || p<0.0001 ~  p<0.0001  p=000023 ' p<0.0001 p=049 | p=0.98 p<0.0001 | p<0.0001 p=0.25 |
2 0.018 49 1 0.0064 3.2 0.04 64 | |0A015 0.86l 0.0024 0.17 0.051 16 | 015 12 2.4 2.9 . 6.2 5.9 7 9.4 | 6.3 9.8 0.7 2
TR B T A o S LT Iy [ S N - -
2 1004 ° S 1 : ° 1 1§ 1 ’ 'y : s 4 _ :
| |
% 107" 1 ‘ 1 * .} 1 : 'i‘ t I it : ! ¢ 2!
2 107 PN 1 . 1 & | | z!
3 10°1. 8 e EUTUI O T N T A RTINS TR PO IOUUUURURUOT
° T T
3 A | B C I D1 1 D2 E1  E241 E2.2 1 E3 F1 ! F2 F3 :
n 1 |
a BA.2.12.1 1 . ! ! ns. n.s. | ns. |
p<0.0001 | p<0.0001 p<0.0001 p<0.0001 | p<0.0001 p=0.00037 | p<0.0001 p=0.066 |  p=0.83 p<0.0001 0<0.0001 p=053 |
0.019 5.1 1 0.0072 3.2 023 7.2 110098 1.6 0.0035 0.17 0048 15 043 28 3.4 5 1 6.1 6 6.9 9 I 66 9.7 10 5 |
1k 2 g I L
1
1 X | | I
1 | . 1 1
1 | | | I
1 X | | I
¥ : ' ' : ]
1 " |
1 I
BA.4/5 1l ns. | | ns. | n.s. 1 ns. !
p<0.00017 | p<0.0001 p=0.0006 || p=0.39 |  p<0.0007 p=0.00023 ' p=0.00015 p=022 | p=099 p<0.0001 | p<0.0001 p=0.53 1
0.082 6.2 I 21 9.3 4.2 8.8 1 2.2 2.8 . 0.0028 0.16 0058 1.7 | 19 6.7 4.7 5.9 ) 6.1 6 7 9.3 | 6.2 9.8 10 52,
10" o A PR Fllg.oopl PR Aeeens PR S TTu s S S o= —
Attt IRR R R
1 T |
107" 1 } ! H 11 e 2 1 : H a 1 1 A 1
1071 A : g | | | | L
1078 Ll [ A NPT Jor ettt e ittt e | FOTT PO UOTUPTTN
§ 1
A B (o] I p1 D2 E1 1 E21 E2.2 | E3 F1 ! F2 F3 |
1
_________ -k o - e e e e e e M4 L e e e o o=

Extended DataFig. 5|Neutralizing activities of antibodies elicited by
SARS-CoV-2BA.lorwildtype. Neutralizing activity against SARS-CoV-2
D614G and Omicron subvariants pseudovirus by antibodies of each epitope
group from BA.1convalescents (BA.1-stimulated.A,n=30;B,n=41;C,n=20;
D1,n=49;D2,n=17;E1,n=11;E2.1,n=64;E2.2,n=122;E3,n=57;F1,n=80;
F2,n=13;F3,n=2),and fromwildtype convalescents or vaccinees
(WT-stimulated.A,n=98;B,n=55;C,n=88;D1,n=46;D2,n=36;E1,n=59;

E2.1,n=26;E2.2,n=39;E3,n=68;F1,n=97;F2,n=158;F3,n=67). Geometric
meantiters (GMT) are annotated above each group of points, and error bars
indicate geometric standard deviation. P-values were calculated using
two-tailed Wilcoxon rank-sum tests and labeled above the bars. n.s., not
significant, p>0.05.NAbsinthe boxed epitope groups showed substantial
neutralization potency changes against BA.2.12.1or BA.4/5 compared to BA.1.
Allneutralization assays were conducted in biological duplicates.
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Extended DataFig.7| Comparison of BA.1-stimulated and WT-stimulated

*, p<0.05* p<0.01;*** p<0.001; n.s., not significant, p > 0.05. All

antibodiesingroup A, Band C. a, Neutralizingactivity against SARS-CoV-2
D614G and Omicron subvariants by BA.1-stimulated (A,n=30;B,n=41;C,
n=20)and WT-stimulated (A, n=98; B, n=55;C,n=88) antibodiesin Group A, B
and C. Geometric mean of IC50 fold changes compared to IC50 against BA.2 are
annotated above the bars. P-values were calculated using a two-tailed Wilcoxon
signed-rank test of paired samples, in comparison to IC50 against BA.2.

neutralization assays were conducted inbiological duplicates. b, Averaged
escapemaps atescape hotspots of BA.1-stimulated and WT-stimulated
antibodiesingroup A, Band C, and corresponding MSA of various sarbecovirus
RBDs. Height of each amino acid in the escape maps representsits mutation
escapescore. Mutated sitesin Omicron variants are marked inbold.
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were conducted inbiological duplicates. b, Epitope of representative
antibodiesingroup E3 (S2H97, PDB: 7M7W) and F1(S304, PDB: 7JWO0). Residues
highlightedinred indicate mutated sitesin Omicron variants. ¢, Averaged
escapemaps atescape hotspots of antibodiesingroup E3and F1,and
corresponding MSA of various sarbecovirus RBDs. Height of each amino acid in
the escape mapsrepresentsits mutation escape score. Mutated sitesin
Omicronvariants are marked inbold.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
/N 0nly common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
Z~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Pseudovirus neutralization and ELISA data were collected by microplate spectrophotometer (PerkinElmer, HH3400).
Biolayer interferometry data were collected with Octet Acquisition 9.0 (Fortebio).
FACS data was collected by Summit 6.0 (Beckman Coulter).
SPR data were obtained with BlAcore 8K Evaluation Software (v3.0.12.15655)
Cryo-EM data collection was performed using either a Titan Krios G3 equipped with a K3 direct detection camera, or a Titan Krios G2 with a K2
camera.
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Data analysis Neutralization assays data were analyzed using PRISM (versions 9.0.1) as described in Methods.
BLI data analyses were done by Octet Analysis 9.0 (Fortebio) and Octet Analysis Studio 12.2 (Fortebio).
SPR data were fitted with Biacore 8K Evaluation Software (v3.0.12.15655).
FACS data were analyzed by FlowJo 10.8.
V(D)J sequence data were analyzed using Cell Ranger (v6.1.1) and IMGT/DomainGapAlign (v4.10.2), and R packages Seurat (v4.0.3), SingleR
(v1.6.1).
Illumina barcodes sequencing data from deep mutational scanning experiments were analyzed using custom scripts (https://github.com/
jianfcpku/SARS-CoV-2-RBD-DMS-broad) and Python package dms_variants (v0.8.9).
Logo plots were generated by Python package logomaker (version 0.8) and R package ggseqlogo (version 0.1). For unsupervised clustering, we
utilized Python package scikit-learn (version 0.24.2) to perform multidimensional scaling (MDS), k-means clustering and t-Distributed
Stochastic Neighbor Embedding (t-SNE) embedding. 2D t-SNE plots are generated by ggplot2 (version 3.3.3).
Multiple sequence alignments of sarbecovirus RBD were generated using ClustalOmega (version 1.2.4).
Cryo-EM data processing was carried out using cryoSPARC (v3.2.1), UCSF Chimera (v1.16) and Relion (v3.1). MD-simulation based on cryo-EM
structures was carried out using GROMACS-2021. Coot (v0.8.9.2) and Phenix (v1.20) were used for cryo-EM structural modeling and
refinement. Structure figures were prepared using USCF ChimeraX (v1.3) and Pymol (v2.6.0a0).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Processed mutation escape scores can be downloaded at https://github.com/jianfcpku/SARS-CoV-2-RBD-DMS-broad. Raw lllumina and PacBio sequencing data are
available on NCBI Sequence Read Archive BioProject PRINA804413. We used vdj_GRCh38_alts_ensembl-5.0.0 as the reference of V(D)J alignment, which can be
obtained from https://support.10xgenomics.com/single-cell-vdj/software/downloads/latest. IMGT/DomainGapAlign is based on the built-in lastest IMGT antibody
database, and we let the “Species” parameter as “Homo sapiens” while kept the others as default. Public deep mutational scanning datasets involved in the study
from literature could be downloaded at https://media.githubusercontent.com/media/jbloomlab/SARS2_RBD_Ab_escape_maps/main/processed_data/
escape_data.csv. Public structures involved in this manuscript were downloaded from Protein Data Bank with accession codes 6M0J, 7K8V, 7MMO, 7EY0, 7DX4,
7M7W, 7JW0, 7WPB, 7WGB.

Cryo-EM density maps have been deposited in the Electron Microscopy Data Bank with accession codes EMD-33210, EMD-33211, EMD-33212, EMD-33213,
EMD-33323, EMD-33324, EMD-33325, EMD-32732, EMD-32738, EMD-32734, EMD-32718, and EMD-33019, respectively. Structural coordinates have been
deposited in the Protein Data Bank with accession codes 7XIW, 7XIX, 7XIY, 7XIZ, 7XNQ, 7XNR, 7XNS, 7WRL, 7WRZ, 7WRO, 7WR8 and 7X6A.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size A total of 1640 antibodies were characterized in the manuscript. No sample size calculation was performed. The sample size of this study was
chosen to obtain sufficient antibodies in each epitope group.
Plasma samples were obtained from 40 volunteers who received 3 doses of CoronaVac, 38 individuals who received 2 doses of CoronaVac and
1 booster dose of ZF2001, 50 BA.1 convalescents who had received 3 doses of CoronaVac before BA.1 infection, and 28 SARS convalescents
who received 2 doses of CoronaVac and 1 dose of ZF2001. No sample size calculation was performed. All samples obtained were analyzed.

Data exclusions 457 antibodies were excluded from the study because of insufficient antibody or meaningless deep mutation screening results, which defined
as no mutations scored two times of the median score.

Replication Experimental assays were performed in biological duplicate according to or exceeding standards in the field.
Specifically, we perform MACS-based mutation screening using two independently synthesized mutant libraries. We conducted all
neutralization and ELISA assays in biological replicates. SPR and BLI measurements are all performed in at least two biological replicates. All
replicates for neutralization, ELISA, SPR and BLI assays are successful.

Randomization  Randomization was not required since we were applying a uniform set of measurements across the panel of monoclonal antibodies and
plasma. As this is an observational study, randomization is not relevant.

Blinding Blinding was not required since we were applying a uniform set of measurements across the panel of monoclonal antibodies and plasma. As
this is an observational study, investigators were not blinded.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Antibodies

Antibodies used ELISA: goat anti-human IgG(H+L)HRP (JACKSON, 109-035-003)
The enriched B cells were stained with FITC anti-human CD19 antibody (BioLegend, 392508), FITC anti-human CD20 antibody
(BioLegend, 302304), Brilliant Violet 421 anti-human CD27 antibody (BioLegend, 302824), PE/Cyanine7 anti-human IgM antibody
(BioLegend, 314532), PE/Cyanine7 anti-human IgD antibody(BioLegend, 348210), biotinylated SARS-CoV-2 BA.1 protein (His & AVI
Tag) (SinoBiological, 40592-V49H7-B) conjugated with PE-streptavidin (BioLegend, 405204), APC-streptavidin (BioLegend, 405207),
TotalSeq™-C0971 Streptavidin (BioLegend, 405271), and TotalSeq™-C0972 Streptavidin (BioLegend, 405273), SARS-CoV-2
biotinylated RBD protein (His & AVI Tag) conjugated with Brilliant Violet 605™ Streptavidin, TotalSeq™-C0973 Streptavidin(BiolLegend,
405275), TotalSeq™-C0974 Streptavidin(BioLegend, 405277), biotinylated Ovalbumin conjugated with TotalSeq™-C0975
Streptavidin(BioLegend, 405279) and 7-AAD (Invitrogen, 00-6993-50).
All human antibodies were expressed using HEK293F cell lines with codon-optimized cDNA and human IgG1 constant regions in
house. The detailed sequence could be found in Supplementary material.

Validation In this manuscript, we tested 1640 human IgG1 antibodies. All antibodies were expressed using HEK293F cell lines with codon-
optimized cDNA and human IgG1 constant regions. All antibodies' species and specificity to RBD were validated by ELISA. All
antibodies neutralization ability was verified by VSV-based pseudotyped virus assays. Details and sequences for all SARS-CoV-2
antibodies evaluated in this study is included in Supplementary Table 2.

Reactivity and specificity of the primary antibodies listed above is based on the information on manufacturer's websites:

Goat anti-human IgG(H+L)HRP (JACKSON, 109-035-003): Based on immunoelectrophoresis and/or ELISA, the antibody reacts with
whole molecule human IgG. It also reacts with the light chains of other human immunoglobulins. No antibody was detected against
non-immunoglobulin serum proteins. The antibody may cross-react with immunoglobulins from other species.

FITC anti-human CD19 antibody was validated by successful staining and FC analysis according to the manufacturer's website https://
www.biolegend.com/en-us/products/fitc-anti-human-cd19-antibody-16221 and previous publication: Riquelme SA, et al. 2020. Cell
Metabolism. 31(6):1091-1106.e6.

FITC anti-human CD20 antibody was validated by successful staining and FC analysis according to the manufacturer's website https://
www.biolegend.com/en-us/products/fitc-anti-human-cd20-antibody-558 and previous publication: Mishra A, et al. 2021. Cell.
184(13):3394-3409.€20.

Brilliant Violet 421 anti-human CD27 antibody was validated by successful staining and FC analysis according to the manufacturer's
website https://www.biolegend.com/en-us/products/brilliant-violet-421-anti-human-cd27-antibody-7276 and previous publication:
Dugan HL, et al. 2021. Immunity. 54(6):1290-1303.e7.

PE/Cyanine7 anti-human IgM antibody was validated by successful staining and FC analysis according to the manufacturer's website
https://www.biolegend.com/en-us/products/pe-cyanine7-anti-human-igm-antibody-12467 and previous publication: Shehata L, et al.
2019. Nat Commun. 10:1126.

PE/Cyanine7 anti-human IgD antibody was validated by successful staining and FC analysis according to the manufacturer's website
https://www.biolegend.com/en-us/products/pe-cyanine7-anti-human-igd-antibody-6996 and previous publication: Ahmed R et al.
2019. Cell. 177(6):1583-1599.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) HEK293F for antibody and sarbecovirus RBD production was received from ThermoFisher (R79007);
EBY100 (Yeast) was received from ATCC (ATCCMYA-4941);
Huh-7 for pseudovirus assays was received from Japanese Collection of Research Bioresources (JCRB 0403) ;
293T-hACE2 cells for pseudovirus assays was received from ATCC (CRL-3216) ;
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Authentication No authentication was performed beyond manufacturer standards;




Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Not tested for mycoplasma contamination;

No commonly misidentified cell lines were used in the study.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Plasma samples were obtained from 40 volunteers who received 3 doses of CoronaVac, 38 individuals who received 2 doses
of CoronaVac and 1 booster dose of ZF2001, 50 BA.1 convalescents who had received 3 doses of CoronaVac before BA.1
infection, and 28 SARS convalescents who received 2 doses of CoronaVac and 1 dose of ZF2001. For the CoronaVac-boosted
cohort, individuals were vaccinated by 2 doses of CoronaVac and boosted with CoronaVac six months after the second dose.
The blood samples were obtained 4 weeks after the booster dose (21-59 years old, 9/40 male, 31/40 female). For the
ZF2001-boosted cohort, individuals were vaccinated by 2 doses of CoronaVac and boosted with ZF2001 six months after the
second dose. The blood samples were obtained 4 weeks after the booster dose (20-57 years old, 11/38 male, 27/38 female).
For the BA.1 breakthrough infection cohort, the blood samples were obtained 4 weeks after hospitalization discharge (23-63
years old, 28/50 male, 22/50 female, 24/50 diagnosed as mild COVID-19, 26/50 diagnosed as moderate COVID-19, all
received 2 doses of CoronaVac and a CoronaVac booster dose six months after the second dose before infection). We
presume all individuals were infected by BA.1 since these individuals were infected during the BA.1 wave in Tianjin, China in
Jan 2022. A total of 430 patients were confirmed infected and no other lineages were detected beside BA.1 by sequencing in
that wave. For the SARS convalescents, all individuals were infected by SARS-CoV-1 in 2003 in Beijing, China and vaccinated
by 2 doses of CoronaVac and boosted with ZF2001 six months after the second dose. The blood samples were collected 4
weeks after the booster dose (39-76 years old, 10/28 male, 18/28 female).

Detailed population characteristics and vaccination profiles are described in Supplementary Table 1.

Patients were recruited on the basis of SARS-CoV-1 infection, BA.1 infection and SARS-CoV-2 vaccination. The only exclusion
criteria used were HIV or other debilitating diseases. All SARS convalescents were infected by SARS-CoV-1 in 2003; thus, the
average age of this cohort is older than other cohorts involved in this study. This may cause a systematically lower humoral
immunity response in the SARS convalescents cohort.

This study was approved by the Ethics Committee of Beijing Ditan Hospital affiliated to Capital Medical University (Ethics
committee archiving No. LL-2021-024-02), the Tianjin Municipal Health Commission, and the Ethics Committee of Tianjin First
Central Hospital (Ethics committee archiving No. 2022N045KY). Written informed consent was obtained from each
participant in accordance with the Declaration of Helsinki. All participants provided written informed consent for the
collection of information, and that their clinical samples were stored and used for research. Data generated from the
research were agreed to be published.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

IE The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|X| All plots are contour plots with outliers or pseudocolor plots.

|X| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Whole blood samples from SARS-CoV-2, SARS convalescents or vaccinees were mixed and subjected to Ficoll (Cytiva,
17-1440-03) gradient centrifugation after 1:1 dilution in PBS+2% FBS. After centrifugation, plasma was collected from upper
layer and cells were harvested at the interface, respectively. PBMCs were further prepared through centrifugation, red blood
cells lysis (InvitrogenTM eBioscienceTM 1X RBC Lysis Buffer, 00-4333-57) and washing steps. Samples were stored in FBS
(Gibco) with 10% DMSO (Sigma) in liquid nitrogen if not used for downstream process immediately. Cryopreserved PBMCs
were thawed in DPBS+2% FBS (Stemcell, 07905). On the day of sorting, B cells were enriched using CD19+ B cell isolation kit
according to the manufacturer’s instructions (STEMCELL, 19054). Enriched B cells were then stained with FITC anti-human
CD20 antibody, Brilliant Violet 421™ anti-human CD27 antibody, PE/Cyanine7 anti-human IgM antibody, PE/Cyanine7 anti-
human IgD antibody(BioLegend, 348210), biotinylated SARS-CoV-2 BA.1 protein (His & AVI Tag) (SinoBiological, 40592-
V49H7-B) conjugated with PE-streptavidin, APC-streptavidin, TotalSeq™-C0971 Streptavidin (BioLegend, 405271), and
TotalSeq™-C0972 Streptavidin (BioLegend, 405273), SARS-CoV-2 biotinylated RBD protein (His & AVI Tag) conjugated with
Brilliant Violet 605™ Streptavidin, TotalSeq™-C0973 Streptavidin(BioLegend, 405275), TotalSeq™-C0974
Streptavidin(BioLegend, 405277), biotinylated Ovalbumin conjugated with TotalSeq™-C0975 Streptavidin(BioLegend, 405279)
and 7-AAD.

Astrios EQ (BeckMan Coulter)
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Software Summit 6.0 (Beckman Coulter) for cell sorting; FlowJo 10.8 for data analysis.
Cell population abundance Memory B cell purity post-sorting is over 90% as measured by 10x sequencing.

Gating strategy 7-AAD-, CD20+, CD27+, IgM-, 1gD-, SARS-CoV-2 BA.1 RBD+ B cells were sorted on an Astrios EQ (BeckMan Coulter) into PBS
containing 30% FBS. The detailed FSC/SSC gating scheme is showed in Extended Data Figure 2. Gates are drown to define
positive cells on the basis of unvaccinated healthy donor control.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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