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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages 
BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The 
receptor binding and immune-evasion capability of these recently emerged variants 
require immediate investigation. Here, coupled with structural comparisons of the 
spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter 
referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the 
angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 
display increased evasion of neutralizing antibodies compared with BA.2 against 
plasma from triple-vaccinated individuals or from individuals who developed a BA.1 
infection after vaccination. To delineate the underlying antibody-evasion mechanism, 
we determined the escape mutation profiles2, epitope distribution3 and 
Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against 
the receptor-binding domain of the viral spike protein, including 614 antibodies 
isolated from people who had recovered from BA.1 infection. BA.1 infection after 
vaccination predominantly recalls humoral immune memory directed against 
ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The 
resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are 
enriched on epitopes on spike that do not bind ACE2. However, most of these 
cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and 
F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that 
potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely 
evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react 
weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The 
therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively 
neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations 
undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results 
indicate that Omicron may evolve mutations to evade the humoral immunity elicited 
by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve 
broad-spectrum protection against new Omicron variants.

The recent emergence and global spread of the SARS-CoV-2 variant 
Omicron (B.1.1.529) have posed a critical challenge to the efficacy 
of COVID-19 vaccines and neutralizing antibody (NAb) therapy6–9. 
Owing to multiple mutations to the spike protein, including in the 
receptor-binding domain (RBD) and N-terminal domain, Omicron BA.1 
infection can result in substantial NAb evasion3,10–13. Omicron subline-
age BA.2 has rapidly surged worldwide, out-competing BA.1. Compared 

with the RBD of BA.1, BA.2 contains three additional mutations, T376A, 
D405N and R408S, and lacks the BA.1 mutations G446S and G496S 
(Extended Data Fig. 1a). S371L on BA.1 is also substituted with S371F in 
BA.2. The Omicron variants that have emerged more recently contain 
similar RBD sequences to BA.2, with the addition of L452 and F486 
substitutions—L452Q in BA.2.12.1, L452M in BA.2.13 and L452R/F486V in 
BA.4 and BA.5—and exhibit a transmission advantage over BA.2. There 
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is an urgent and immediate need to investigate the receptor binding 
and immune-evasion capabilities of these new Omicron variants.

Structural analyses of Omicron spike
We expressed and purified the prefusion-stabilized trimeric ecto-
domains of BA.1, BA.2, BA.3, BA.2.12.1, BA.2.13 and BA.4/BA.5 spike 
(S-trimer). All the S-trimers contain Gly-Ser-Ala-Ser (GSAS) and 6P muta-
tions along with the T4 fibritin trimerization domain for increased 
stability14,15. We determined the cryo-electron microscopy (cryo-EM) 
structures of these S-trimers at overall resolutions of 3.1–3.5 Å. Together 
with the previously reported BA.1 structure16, this enabled us to com-
pare the structural differences across Omicron sublineages (Fig. 1a and 
Extended Data Fig. 1b). In contrast to the BA.1 S-trimer, which is stably 
maintained in an open conformation with one ‘up’ RBD and two ‘down’ 
RBDs16, BA.2 and BA.2.12.1 spike exhibits two conformational states 
corresponding to a closed form, with all three RBDs in the down con-
figuration and an open form with one RBD in the up position. Of note, 
one RBD in BA.2.13 was clearly disordered, representing a stochastic 
movement, which, together with BA.2 and BA.2.12.1, suggests structural 
heterogeneity in the S-trimers of BA.2 sublineages. Most BA.3 and BA.4 
S-trimers adopt closed or semi-closed forms (Fig. 1a). The differences 
in the RBD up or down conformation could be allosterically modulated 
by mutations and deletions in the N-terminal domain or near the furin 
cleavage site, but the detailed mechanism remains unclear. The BA.4/
BA.5 spike that we used in our experiments also contains the N658S 
mutation, which was present in early BA.4/BA.5 sequences but later 
disappeared owing to the lower transmissibility of this variant, and 
may correlate with the more closed RBD configurations of the BA.4/
BA.5 S-trimer. Of note, S-trimers from the BA.2 sublineage harbour 
relatively less compact architectures in the region formed by the 

three copies of S2 (Fig. 1b). By contrast, BA.1, BA.3 and BA.4/BA.5 spike  
possess relatively tight inter-subunit organization with more buried 
areas between S2 subunits (Fig. 1b). In line with structural observa-
tions, thermal stability assays also verified that S-trimers from BA.2 
sublineages were the least stable among these variants, which might 
confer an enhanced fusion efficiency (Fig. 1c).

Next, we measured the binding affinity between human ACE2 
(hACE2) and S-trimers of the Omicron variants by surface plasmon 
resonance (SPR) (Extended Data Fig. 1c). The BA.4/BA.5 S-trimer showed 
a decreased binding affinity with hACE2 compared with those of the 
other Omicron subvariants; however, this measurement could be 
misleading, owing to the additional N658S mutation. To exclude the 
potential influence of N658S, we also examined the binding affinities of 
the RBDs of the Omicron variants for hACE2 (Fig. 1d). The RBDs of Delta 
(B.1.617.2) and the circulating Omicron subvariants exhibited similar 
binding affinities for ACE2, except for the BA.3 RBD, which showed a 
lower affinity, similar to that of the ancestral WT strain. Additionally, the 
BA.2 subvariants displayed slightly higher binding affinities for hACE2 
than the other Omicron variants. To further explore the molecular 
basis for the altered binding affinities of these variants to hACE2, we 
performed molecular dynamics simulations based on the cryo-EM 
structures and examined the effects of substitutions in the RBD on the 
interaction with hACE2 (Extended Data Fig. 1d). The results reveal that 
the lack of G496S in BA.2 sublineages meant that the hydrogen bond 
with hACE2 K353 was regained, increasing their binding capability, 
in line with experimental observations revealed by deep mutational 
scanning (DMS) assay17. However, a local conformational perturba-
tion surrounding spike residues 444–448 disrupted the hydrophilic 
interaction between BA.3 spike (S446) with hACE2 Q42, presumably 
owing to the single mutation G446S rather than double mutations of 
G446S and G496S (Extended Data Fig. 1d). Notably, the F486V mutation 
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Fig. 1 | Structural and receptor-binding characteristics of Omicron 
subvariants. a, Surface representation of S-trimers of BA.1, BA.2, BA.3, BA.2.13,  
BA.2.12.1 and BA.4/BA.5 (BA.4/5) variants. b, Structural interpretation and 
functional verification of the stability of the spike protein of BA.1, BA.2, BA.3, 
BA.2.13, BA.2.12.1 and BA.4/BA.5 variants. Left, superimposed structures of 
spike protein and the S2 domains of BA.1 (purple), BA.2 (red) and BA.4/BA.5 (blue). 

The binding surface areas between S2 subunits of the variants are calculated in 
the table on the right. c, Thermoflour analysis for these Omicron variants. 
Analyses were performed as biological duplicates. d, Binding affinities of RBDs 
of Omicron variants for hACE2 measured by SPR. Analyses were performed as 
biological duplicates.
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in BA.4/BA.5 spike decreases hACE2 binding activity owing to reduced 
hydrophobic interaction (Extended Data Fig. 1d). We also noted poten-
tial reductions in hydrophilic interactions owing to R493Q reversion. 
Notably, two reports claimed recently that BA.4/BA.5 RBD and spike 
(S2P) showed higher binding affinity to hACE2 compared with BA.1 
and BA.2 spike, owing to L452R and R493Q reversion18,19. Despite this 
discrepancy, we conclude that BA.2 subvariants and BA.4/BA.5 are able 
to maintain high binding affinities for hACE2.

NAb evasion by BA.2.12.1, BA.4 and BA.5
To probe NAb evasion by the recently emerged Omicron sublineages, 
we performed pseudovirus-neutralization assays using D614G, BA.1, 
BA.1.1, BA.2, BA.3, BA.2.12.1, BA.2.13 and BA.4/BA.5 against plasma 
obtained from individuals who had received three doses of SARS-CoV-2 
vaccine, vaccinated individuals who had recovered from BA.1 infection, 
and vaccinated individuals who had recovered from severe acute res-
piratory syndrome (SARS) (Supplementary Table 1). Plasma samples 
were collected four weeks after the booster shot or four weeks after 
discharge from hospital following COVID-19 illness. In plasma from 
individuals who had received an inactivated virus (CoronaVac) or RBD 
protein (ZF2001) booster six months after two doses of CoronaVac, 
BA.1, BA.1.1 and BA.2 showed no significant difference in resistance 
to neutralization by plasma (Fig. 2a,b), concordant with previous 
reports20,21. However, we found that BA.2 subvariants BA.2.13 and 
BA.2.12.1 showed increased immune-evasion capability over BA.2—
with BA.2.12.1 exhibiting greater evasion than BA.2.13—and BA.4/BA.5 
exhibiting even greater evasion (Fig. 2a,b). The decrease in neutraliza-
tion was clearer in plasma obtained from individuals infected by BA.1 

who had received three doses of CoronaVac before infection (Fig. 2c), 
despite their significantly higher neutralization titres against D614G 
and BA.1 compared with the triple-dosed vaccinees who had not been 
infected with BA.1 (Extended Data Fig. 2a). The 50% neutralization 
titre (NT50) in plasma of people who had recovered from BA.1 infection 
against BA.2.13, BA.2.12.1 and BA.4/BA.5 was reduced by 2.0-, 3.7- and 
8-fold, respectively, compared with that for BA.1. Plasma from vac-
cinated individuals who had recovered from SARS infection showed a 
marked decrease in neutralization of BA.2 subvariants, BA.3 and BA.4/
BA.5 compared with the other vaccinees (Fig. 2d and Extended Data 
Fig. 2b). This suggests that mutations in BA.2 sublineages, BA.3 and 
BA.4/BA.5 may enable escape from broad sarbecovirus-neutralizing 
antibodies, which are substantially enriched in vaccinated people  
previously infected with SARS22. Together, these observations indicate  
that the BA.2.12.1 and BA.4/BA.5 display more potent and distinct 
humoral immune evasion than BA.1.

Next, we examined the neutralizing activities of therapeutic anti-
bodies against new Omicron subvariants (Fig. 2e). All seven tested 
Omicron subvariants displayed substantial evasion against neutrali-
zation by class 1 and class 2 RBD antibodies: the variants evaded neu-
tralization by REGN-1093323 (casirivimab), LY-CoV01624 (etesevimab), 
LY-CoV55525 (bamlanivimab), COV2-21965 (tixagevimab) and BRII-19626 
(amubarvimab), whereas only BA.4/BA.5 evaded DXP-60415,27, which 
showed reduced but still competitive efficacy against BA.1 and BA.2 
subvariants. Two major differences in antigenicity were observed 
between BA.1 and BA.2 subvariants. First, NAbs targeting the linear 
epitope 440–4493, such as REGN-1098723 (imdevimab), COV2-21305  
(cilgavimab, a component of Evusheld) and LY-CoV1404 (bebtelovimab4)  
could neutralize BA.2 subvariants and BA.4/BA.5. Second, BA.2 
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596  |  Nature  |  Vol 608  |  18 August 2022

Article
sublineages greatly reduced the efficacy of BA.1-effective broad 
sarbecovirus-neutralizing antibodies, including ADG-228 (adintrevimab)  
and S30929 (sotrovimab), but not the ACE2-mimicking antibody 
S2K14630, which potently neutralized all BA.1 and BA.2 sublineages 
but showed reduced activity against BA.4/BA.5, similar to DXP-604. 
BA.2 sublineages9, BA.3 and BA.4/BA.5 escaped neutralization by a BRII-
196 and BRII-198 cocktail (amubarvimab plus romlusevimab). Notably, 
LY-CoV14044 demonstrated high potency against all tested Omicron 
subvariants. In addition, our recently developed non-competing anti-
body cocktail comprising two NAbs isolated from vaccinated individuals  
who had recovered from SARS, namely BD55-5840 (also known as SA58; 
class 3) and BD55-5514 (also known as SA55; class 1/4), displayed high 
potency against the Omicron subvariants and the sarbecoviruses 
SARS-CoV-1, Pangolin-GD and RaTG13.

To delineate the underlying antibody-evasion mechanism of BA.2.13, 
BA.2.12.1 and BA.4/BA.5, in particular the escape from the humoral 
immunity induced by recovery from BA.1 infection or recovery from 
SARS in vaccinated individuals, we began by isolating RBD-targeting 
NAbs from such individuals27,31 (Extended Data Fig. 3a). We isolated 
antigen-specific memory B cells by fluorescence-activated cell sorting 
(FACS) of pooled peripheral blood mononuclear cells (PBMCs) using 
double WT RBD+ selection for triple-vaccinated people, WT RBD+ and 
SARS-CoV-1 RBD+ selection for vaccinated individuals who had recov-
ered from SARS and double BA.1 RBD+ selection for individuals who had 
recovered from BA.1 infection (Extended Data Fig. 3b). We then per-
formed single-cell V(D)J sequencing (scVDJ-seq) with BA.1 RBD and WT 
RBD feature barcodes on CD27+IgM− antigen-specific memory B cells 
(Extended Data Fig. 3b). We also extracted the productive heavy-light 
chain paired V(D)J sequences and expressed the antibodies in vitro as 
human IgG1. We found that the majority of Omicron-reactive memory B 
cells from triple-CornonaVac-vaccinated individuals who had recovered 
from BA.1 infection could also bind to WT RBD (Fig. 3a). By contrast, 
only around a quarter of Omicron-reactive memory B cells isolated 
from unvaccinated individuals who had recovered from BA.1 infection 
could bind to WT RBD (Fig. 3a). The cross-reactive antigen-binding 
property was observed only in IgM−CD27+ memory B cells, but not 
in IgM+CD27− naive B cells (Extended Data Fig. 2b). V(D)J sequence 
analysis revealed significantly higher heavy chain V-domain somatic 
hypermutation rates of BA.1 and WT cross-reactive B cell receptors 
(BCRs) than that of BA.1-specific BCRs (Fig. 3b), which indicates that 
the cross-reactive memory B cells were further affinity-matured com-
pared with BA.1-specific memory B cells. Together, these data sug-
gest that post-vaccination infection with Omicron BA.1 recalls mainly 
WT-induced memory B cells.

To further specify the epitope distribution of NAbs elicited by 
post-vaccination BA.1 infection, we applied high-throughput yeast 
display-based DMS assays2,3 and determined the mutation profiles for 
escape for 1,640 RBD-binding antibodies. Among these antibodies, 
602 were from individuals who had recovered from WT SARS-CoV-2 
or triple vaccinees, 614 were from individuals who had recovered 
from post-vaccination BA.1 infection, and 410 SARS–WT SARS-CoV-2 
cross-reactive antibodies were from vaccinated individuals who had 
recovered from SARS (Supplementary Table 2). We also included 14 
antibodies with published DMS profiles in this analysis2,32,33. Of note, 
among the 614 antibodies from individuals who had recovered from 
post-vaccination BA.1 infection, 102 were BA.1-specific and did not 
bind to the WT RBD. The escaping mutation profiles of these 102 
BA.1-specific NAbs were determined by DMS based on the BA.1 RBD. 
The remaining 1,538 WT RBD-reactive antibodies were sorted by unsu-
pervised clustering into 12 epitope groups according to their WT-based 
mutational escape profiles using t-distributed stochastic neighbour 
embedding (t-SNE) (Fig. 3c), adding 6 additional epitope groups to 
our previous classification3.

Groups A–C recapitulate our previous taxonomy3 in which the 
members target mainly the ACE2-binding motif34–38 (Fig. 3h). Group 

D antibodies, such as REGN-10987, LY-CoV1404 and COV2-2130, bind 
to the linear epitope 440–449 on the RBD and are divided into D1 and 
D2 subgroups. Group D1 is more affected by mutations of R346 and 
L452, whereas D2 antibodies are not and interact more with P499 
(Fig. 3h). Additionally, groups E and F are divided into E1–E3 and 
F1–F3, covering the front and back of the RBD and roughly corre-
sponding to class 3 and class 4 antibodies, respectively37 (Fig. 3h). 
Group E1 occupies the S309 binding site, whose epitope involves 
G339, T345 and R346. Group E2 antibodies bind to the front chest 
of RBD35. Group E2.1 binding is most affected by mutations of R346 
and A348, whereas E2.2 is most affected by K356 and R357. Groups 
E3 (S2H97 site) and F1 (S304 site) bind to highly conserved regions 
on the bottom of the RBD, interacting mainly with K462/E516/L518 
and S383/T385/K386, respectively. Antibodies in groups E1–E3 and 
F1 do not compete with ACE2 (Fig. 3f), whereas F2 and F3 antibodies  
compete with ACE2 and their binding is affected by T376, K378, 
D405, R408 and G504, corresponding to class 1/439. We tested the 
pseuodovirus-neutralizing efficacy of antibodies in each group 
against SARS-CoV-1, SARS-CoV-2 D614G, Pangolin-GD and RaTG13, 
as well as their ability to bind to 22 sarbecovirus RBDs using ELISA 
(Supplementary Tables 2 and  3). Antibodies within the same cluster 
shared a common sarbecovirus neutralization potency and binding 
spectrum (Fig. 3g and Extended Data Fig. 4). In total, we identified 
five clusters of antibodies exhibiting broad sarbecovirus-binding 
ability, namely groups E1, E3, F1, F2 and F3 (Extended Data Fig. 4), 
and antibodies in groups E1, F2 and F3 showed potent neutralizing 
activity against SARS-CoV-1 (Fig. 3g).

Of note, we found that plasma from individuals who had recovered 
from post-vaccination BA.1 infection displayed enrichment of group 
E2.1, E2.2 and F1 antibodies (Fig. 3d,e), which do not compete for bind-
ing with ACE2 (Fig. 3f). BA.1 does not harbour mutations on the epitopes 
of these NAb groups, which may explain why post-vaccination BA.1 
infection is more likely to stimulate those NAbs. Although they are 
not enriched, the ACE2-competing group B and D1 antibodies remain 
highly abundant after infection. Since group E2, D1 and B antibodies 
are sensitive to mutation at residues 452 and 486 (Fig. 3h), it is highly 
probable that BA.2.12.1, BA.2.13 and BA.4/BA.5 can specifically target 
those antibodies, rationalizing the large decrease in NT50 of plasma 
from individuals who have recovered from BA.1 infection against those 
variants (Fig. 2c).

To examine our hypothesis, we measured pseudovirus neutraliza-
tion of these NAbs against BA.2.12.1, BA.2.13 and BA.4/BA.5, as well 
as the major Omicron variants BA.1, BA.1.1, BA.2 and BA.3 (Extended 
Data Fig. 5). NAbs from different epitope groups displayed distinct 
neutralizing activities against Omicron subvariants. BA.1-stimulated 
antibodies (following recovery from BA.1 infection) and WT-stimulated 
(following recovery from WT infection or vaccination, with or without 
previous SARS-CoV-1 infection) showed significantly higher potency 
and breadth in most epitope groups, confirming the increased affinity 
maturation of these antibodies (Extended Data Fig. 5).

Omicron subvariants evaded most WT-stimulated group A, B and 
C NAbs, although a subset of these antibodies showed broad effec-
tiveness against Omicron (Extended Data Fig. 5). These broad NAbs 
were largely enriched by BA.1 stimulation, are generally encoded by 
similar heavy chain V genes compared with WT-stimulated antibodies  
and display higher convergence (Extended Data Fig. 6a,b). These 
broad ACE2-competing NAbs in groups A, B and C have been shown 
to be enriched in individuals who received a booster dose of mRNA 
vaccine39, which probably accounts for the high neutralizing activity 
against Omicron variants in plasma of individuals who had received 
three doses of mRNA vaccine. Nevertheless, BA.1-stimulated group 
B and C NAbs were significantly evaded by BA.4 owing to F486V and 
L452R RBD mutations, concordant with results from DMS (Extended 
Data Fig. 7a,b), which explains the strong humoral immune-evasion 
ability of BA.4/BA.5.
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Group D antibodies were most affected by the G446S mutation in BA.1, 
BA.1.1 and BA.3 (Fig. 4d); these NAbs therefore show higher potency 
against BA.2 (Fig. 4a,b). However, group D1 antibodies showed reduced 
efficacy against L452 substitutions, with L452M (BA.2.13) causing mild 
escape, L452Q causing moderate escape (BA.2.12.1) and L452R (BA.4/BA.5)  
causing severe escape (Fig. 4c,d). By contrast, group D2 antibodies,  
especially those stimulated by BA.1 infection, showed exceptional 
broad and potent neutralizing activity against all Omicron subvariants, 
for example, LY-CoV1404 (Fig. 4b and Extended Data Fig. 5). Notably, 

although group D2 NAbs displayed broad activities, their epitopes are 
not conserved among sarbecoviruses (Fig. 4d), similar to those of group 
D1, E2.1 and E2.2 NAbs. This suggests that their breadth may be a result 
of their rarity in individuals who have recovered from infection with WT 
or BA.1 SARS-CoV-2 (Fig. 3f), and these NAbs may be the next target for 
SARS-CoV-2 to escape by evolving specific mutations on their epitopes.

Group E2 antibodies bind to the chest of the RBD35 (Fig. 4a), and their 
epitopes are focused around R346, A348, A352, K356, R357 and I468 
(Fig. 4d). Despite similar epitopes, group E2.1 NAbs, especially those 
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that bind WT SARS-CoV-2 RBD. Twelve epitope groups were identified on the 
basis of DMS of 1,538 antibodies. d,e, Epitope distribution and projection of 
antibodies from plasma of individuals who had recovered from infection with 
the WT virus, individuals who have recovered from BA.1 breakthrough infection 
after vaccination, and vaccinated individuals who had recovered from SARS.  
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projected onto the t-SNE. g, Neutralizing activity against SARS-CoV-2 D614G 
(n = 1,509) and SARS-CoV-1 (HKU-39849; n = 1,457). h, Average mutational 
escape score projection of each epitope group on SARS-CoV-2 RBD  
(Protein Data Bank (PDB): 6M0J). All neutralization assays were performed as 
biological duplicates.
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stimulated by BA.1, show significantly higher neutralizing potency 
than group E2.2 NAbs (Fig. 4b). E2 group NAbs showed broad speci-
ficity against SARS-COV-2 variants but not against BA.2.12.1 and BA.4/
BA.5. L452 substitutions can result in large-scale escape of E2.1 and E2.2 
antibodies (Fig. 4c). Similar to the D1 epitope group, L452R and L452Q 
resulted in considerably increased NAb evasion over L452M (Fig. 4c). Of 
note, DMS does not indicate the sensitivity of the E2.2 epitope group 
to L452 substitution (Fig. 4d). Together, our results suggest that Omi-
cron may have evolved mutations at L452 to specifically evade group 
D1 and E2 NAbs, consequently maximizing humoral immune evasion 
after infection with Omicron BA.1. Of note, group D1 and E2.1 antibod-
ies also showed decreased efficacy against BA.1.1 compared with BA.1 
(Fig. 4b) as a result of the R346K mutation, since both groups of NAbs 
are sensitive to the R346 substitution (Fig. 4a,d), suggesting a reason 
for the high prevalence of BA.1.1 in the population after the BA.1 wave in 
the United States.

Omicron escapes broad sarbecovirus NAbs
In total, five clusters of antibodies were found to exhibit broad 
sarbecovirus-neutralizing ability with diverse specificity, namely 
groups E1, E3, F1, F2 and F3 (Extended Data Fig. 4). Whereas Group E3 
and F1 antibodies demonstrated weak neutralizing activity against all 
variants owing to their highly conserved binding sites (Extended Data 
Fig. 8a–c), we found that E1, F2 and F3 NAbs—which are effective against 
BA.1, were rare in individuals after infection with WT SARS-CoV-2 or 
Omicron but enriched in vaccinated individuals who had recovered 
from SARS infection—displayed a systematic reduction in neutraliza-
tion activity against BA.2 subvariants, BA.3 and BA.4/BA.5 (Figs. 2e 
and 5a–c). This observation explains the low NT50 for Omicron sub-
variants other than BA.1 in plasma from individuals who had recov-
ered from SARS infection (Fig. 2d). The mechanisms behind the loss 
of neutralization by these broad-specificity sarbecovirus antibodies 
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require investigation, as they may prove to be crucial for developing 
broad-spectrum sarbecovirus vaccines and antibody therapies.

To study how BA.2 subvariants, BA.3 and BA.4/BA.5 could system-
atically reduce the neutralization efficacy of group E1 antibodies, we 
solved the cryo-EM structures of two group E1 BA.1-neutralizing anti-
bodies, BD55-3152 and BD55-5840, in complex with BA.1 spike proteins 
using cryo-EM (Fig. 5d and Extended Data Fig. 9a,b). Similar to S309, 
the epitope of group E1 antibodies includes an N-linked glycan on N343 
(Fig. 5d). Group E1 antibodies are also generally sensitive to mutation 
of G339, E340, T345 and especially R346, as indicated by their escaping 
mutation profiles (Fig. 5h). Notably, the newly acquired mutations of 
BA.2 do not overlap with the shared epitope of E1 antibodies, suggesting 
that the systematic reduction in neutralization is not caused by amino 
acid substitution and is potentially owing to structural alteration. To 
explore this hypothesis, we further determined the cryo-EM structure 
of the prefusion-stabilized BA.2 spike in complex with the BD55-5840 
Fab (Fig. 5e). A structural comparison with the BA.1 RBD binding to 
BD55-5840 described above suggests that the 366–377 hairpin loop 
displays significant conformational differences due to S371F and T376A 
mutations (Fig. 5e and Extended Data Fig. 9d). The overall positions of 
residues 375 and 376 are displaced by more than 3 Å, which probably 
further decreases the binding of group F2 and F3 NAbs in addition to 
the T376A side-chain substitution. As a result, the bulky phenylalanine 
resulting from the S371F mutation interferes with the positioning of the 

glycan moiety attached to N343, which in turn shifts the heavy chain of 
BD55-5840 upward. This may explain the decreased binding between 
BD55-5840 and S309, rationalizing their reduced neutralizing activity 
(Fig. 5a and Extended Data Fig. 9e). The N343 glycan is critically recog-
nized by almost all group E1 NAbs, including S309. Thus, this group of 
broad and potent NAbs is probably affected by the S371F mutation in 
a systematic manner through displacement of the N343 glycan.

The epitopes of group F2 and F3 antibodies cover a continuous 
surface on the back of the RBD and can only bind to RBDs in the up 
configuration (Fig. 2b). To probe how BA.2 escapes group F2 and F3 
antibodies, we solved the cryo-EM structure of two representative 
BA.1-neutralizing antibodies—BD55-1239 from group F2 and BD55-
3372 from group F3—in complex with BA.1 and Delta spike protein, 
respectively (Fig. 5f,g and Extended Data Fig. 9a). RBD mutations 
on T376, K378 and R408 can lead to escape from neutralization by 
group F2 antibodies (Fig. 5h). Indeed, these residues are centred on 
the core of the BD55-1239 epitope and are fairly conserved across sar-
becoviruses (Fig. 5h). Notably, D405N and R408S, which are present in 
Omicron BA.2 sublineages, may alter the antigenic surface, disrupting 
the binding of F2 antibodies (Fig. 5f) and completely abolishing the 
neutralizing capacity of F2 antibodies (Fig. 5b). Similarly, the D405N 
and R408S mutations harboured by BA.2 subvariants could interrupt 
the heavy chain binding of F3 antibodies, causing large-scale escapes 
of BA.1-neutralizing group F3 NAbs (Fig. 5c). These observations were 
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further validated by neutralizing activity against spike-pseudotyped 
vesicular stomatitis virus (VSV) harbouring D614G/D405N and D614G/
R408S. As expected, group E1 antibodies were not affected, whereas 
group F2 and F3 antibodies displayed significantly decreased activity,  
following D405N or R408S single substitutions (Extended Data Fig. 9c). 
Nevertheless, several group F3 antibodies, such as BD55-5514, are not 
sensitive to the D405N and R408S mutations of BA.2, making them good 
therapeutic drug candidates (Fig. 2e). In sum, S371F, D405N and R408S 
mutations harboured by BA.2 and emerging Omicron variants may 
induce large-scale escape of NAbs with broad sarbecovirus specificity, 
which are critical for the development of broad-specificity sarbecovirus 
antibody therapies and vaccines.

BA.1-specific NAbs exhibit narrow breadths
In addition to the WT–BA.1 cross-reactive NAbs, we also investigated 
the epitope distribution of BA.1-specific NAbs that do not react with 
WT RBD. We built a yeast display variants library based on the BA.1 
RBD, and determined the escape mutation maps of 102 BA.1-specific 

antibodies. By integrating the analysis of the entire dataset of 1,640 
SARS-CoV-2 RBD antibodies, we derived the embedded features of 
the BA.1-specific NAbs and performed clustering and t-SNE analysis 
(Fig. 6a). The 102 NAbs were clustered into four BA.1-specific epitope 
groups, which we designated AOmi, BOmi, DOmi and F3Omi, since these 
groups are closely related to the corresponding WT epitope groups 
(Fig. 6a,e). These antibodies all compete for binding with ACE2 and 
potently neutralize BA.1 but do not neutralize SARS-CoV-2 D614G or 
SARS-CoV-1 (Fig. 6b–d) because of the differences in the spike protein:  
N417K/Y501N/H505Y for AOmi, A484E/K478T for BOmi, K440N for DOmi 
and R498Q/Y501N for F3Omi, as indicated by average escape maps of 
each group (Fig. 6e,f). Some of the previously circulating variants 
also harbour these same mutations—such as N501Y in Alpha (B.1.1.7), 
K417N/E484K/N501Y in Beta (B.1.351) and T478K in Delta—and only 
a small subset of the antibodies exhibit neutralizing activity against 
these variants (Fig. 6e). Moreover, nearly all of the BA.1-specific NAbs 
showed poor cross-reactivity against other Omicron subvariants 
(Fig. 6d). Specifically, most antibodies in the F3Omi and AOmi groups 
are evaded by BA.2 subvariants and BA.3, possibly because of D405N, 
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and antibodies in BOmi are evaded by BA.4 because of F486V. Binding 
of some group DOmi antibodies may be affected by S446G but were not 
detected by DMS; these antibodies were evaded by BA.2 subvariants 
and BA.4 (Fig. 6g). To further validate the results obtained by DMS, we 
constructed pseudoviruses based on BA.1 harbouring the reverting 
spike mutations N417K, K440N, S446G, K478T, A484E, R498Q, Y501N 
and H505Y, as well as BA.1 spike(D405N) and BA.1 spike(R408S). Virus 
expressing BA.1 spike(D405N) did not produce sufficient titres for 
further experiments despite multiple attempts. We therefore used BA.2 
spike(N405D) instead. We found that the N417K, R498Q, Y501N and 
H505Y reversions indeed led to evasion of most AOmi and F3Omi group 
antibodies, consistent with results from DMS (Fig. 6g). K484E and 
K478T are the major escaping mutants responsible for the poor breadth 
of BOmi NAbs (Fig. 6d). S446G caused a small subset of DOmi antibodies 
to lose neutralization potency, whereas R498Q and K440N resulted in 
the majority of DOmi NAbs not binding to WT RBD. Of note, expression 
of BA.1 spike(R408S) did not reduce neutralization by BA.1-specific 
NAbs, whereas BA.2 spike(N405D) restored the neutralization potency 
of AOmi and F3Omi group antibodies against BA.2, indicating that D405N 
is the determinant of their poor cross-reactivity among BA.2, BA.3, BA.4 
and BA.5 sublineages (Fig. 6d,g). These BA.1-specific NAbs displayed 
different heavy chain V gene usage compared to WT-reactive antibodies  
in the corresponding epitope group. Specifically, antibodies in AOmi 
and BOmi groups did not show significant convergence. IGHV3-53 and 
IGHV3-66 contributes only to a small subset of group AOmi antibodies.  
Instead, group DOmi antibodies were dominated by IGHV2-70 and 
IGHV5-51, whereas FOmi was dominated by IGHV4-59 (Extended Data 
Fig. 10). These three heavy chain V genes also appeared in WT-reactive 
antibodies, but were relatively rare and did not show significant epitope 
enrichment (Extended Data Fig. 6a,b).

Here we have shown that Omicron is continuously evolving under 
immune pressure, and rationalized the appearance of R346K (BA.1.1), 
L452 substitutions and the F486V mutation, which have enabled 
increased immune evasion. In contrast to when Omicron first appeared, 
new Omicron sublineages are able to target the humoral immunity 
induced by Omicron itself, such as by post-vaccination Omicron infec-
tion. Omicron breakthrough infections mainly recall WT-induced 
memory B cells40,41, which in turn narrow the diversity of elicited anti-
bodies and may further drive the appearance of future mutants. These 
phenomena pose a challenge to the current herd immunity established 
through WT-based vaccination and infection by BA.1 and BA.2 variants, 
which is concordant with recent observations42. Similarly, these results 
also suggest that Omicron BA.1-based vaccine may not be the ideal 
antigen for inducing broad-spectrum protection against emerging 
Omicron sublineages.

By combining high-throughput single-cell sequencing and 
high-throughput yeast display-based DMS, we have demonstrated the 
ability to decipher the complicated humoral immune repertoire elicited 
by Omicron infection and the underlying immune-evasion mechanism 
of L452 and F486 mutations. The ability to dissect the entire humoral 
immunity into distinct antibody epitope groups greatly increases the 
resolution of antibody and mutational escape research. The antibodies 
in each epitope group show highly concordant attributes and features, 
which will facilitate the investigation of the immune-evasion mecha-
nism of circulating variants. This work and the comprehensive data that 
we have generated here will inform the development of broad-spectrum 
sarbecovirus vaccines and therapeutic antibodies.
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Methods

Plasma and PBMC isolation
Blood samples were obtained from 40 volunteers who had received 3 
doses of CoronaVac, 39 individuals who had received 2 doses of Coro-
naVac and 1 booster dose of ZF2001, 54 individuals who had recovered 
from BA.1 infection who had previously received 3 doses of Corona-
Vac43,44, and 30 individuals who had recovered from SARS who had 
received 2 doses of CoronaVac and 1 dose of ZF2001. The volunteers’ 
blood samples were obtained four weeks after the booster shot or 
four weeks after discharge from the hospital following BA.1 infection. 
COVID-19 disease severity was defined as asymptomatic, mild, moderate,  
severe or critical according to the WHO Living Guidance for Clinical 
Management of COVID-1945. Relevant experiments with plasma from 
SARS convalescents and SARS-CoV-2 vaccinees were approved by the 
Beijing Ditan Hospital Capital Medical University (ethics committee 
archiving no. LL-2021-024-02), the Tianjin Municipal Health Commis-
sion, and the ethics committee of Tianjin First Central Hospital (ethics 
committee archiving no. 2022N045KY). Written informed consent was 
obtained from each participant in accordance with the Declaration of 
Helsinki. All participants provided written informed consent for the 
collection of information, storage and usage of their clinical samples 
for research purpose, and publication of data generated from this study.

Whole blood samples were mixed and subjected to Ficoll (Cytiva, 
17-1440-03) gradient centrifugation after 1:1 dilution in PBS+2% FBS to 
isolate plasma and PBMCs. After centrifugation, plasma was collected 
from upper layer and cells were collected at the interface. PBMCs were 
further prepared by centrifugation, red blood cells lysis (Invitrogen  
eBioscience 1X RBC Lysis Buffer, 00-4333-57) and washing steps. Samples  
were stored in FBS (Gibco) with 10% DMSO (Sigma) in liquid nitrogen if 
not used for downstream process immediately. Cryopreserved PBMCs 
were thawed in DPBS + 2% FBS (Stemcell, 07905).

Ethics statement
This study was approved by the Ethics Committee of Beijing Ditan 
Hospital affiliated to Capital Medical University (Ethics committee 
archiving No. LL-2021-024-02), the Tianjin Municipal Health Com-
mission, and the Ethics Committee of Tianjin First Central Hospital  
(Ethics committee archiving No. 2022N045KY). Informed consent  
was obtained from all human research participants.

Antibody isolation and recombinant production
SARS-CoV-1 and SARS-CoV-2 RBD cross-binding memory B cells 
were isolated from PBMC of SARS convalescents who had received 
SARS-CoV-2 vaccine and BA.1-infected convalescents who had been vac-
cinated against COVID-19 prior to infection. In brief, CD19+ B cells were 
isolated from PBMCs with EasySep Human CD19 Positive Selection Kit 
II (STEMCELL, 17854). Every 106 B cells in 100 μl were then stained with 
2.5 μl FITC anti-human CD19 antibody (BioLegend, 392508), 2.5 μl FITC 
anti-human CD20 antibody (BioLegend, 302304), 3.5 μl Brilliant Violet 
421 anti-human CD27 antibody (BioLegend, 302824), 3 μl PE/Cyanine7 
anti-human IgM antibody (BioLegend, 314532), 0.21 μg biotinylated 
Ovalbumin (Sino Biological) conjugated with Brilliant Violet 605 
Streptavidin (BioLegend, 405229), 0.13 μg SARS-CoV-1 biotinylated RBD 
protein (His and AVI Tag) (Sino Biological, 40634-V27H-B) conjugated 
with PE-streptavidin (BioLegend, 405204), 0.13 μg SARS-CoV-2 bioti-
nylated RBD protein (His and AVI Tag) (Sino Biological, 40592-V27H-B) 
conjugated with APC-streptavidin (BioLegend, 405207), and 5 μl 
7-AAD (Invitrogen, 00-6993-50). 7-AAD−CD19/CD20+CD27+IgM−OVA− 
SARS-COV-1 RBD+ and SARS-CoV-2 RBD+ cells were sorted with a MoFlo 
Astrios EQ Cell Sorter (Beckman Coulter).

SARS-CoV-2 BA.1 RBD-binding memory B cells were isolated from 
BA.1-infected convalescents who received SARS-CoV-2. In brief, CD19+ 
B cells were isolated with EasySep Human CD19 Positive Selection 
Kit II. Every 106 B cells in 100 μl solution were then stained with 3 μl 

FITC anti-human CD20 antibody (BioLegend, 302304), 3.5 μl Brilliant 
Violet 421 anti-human CD27 antibody (BioLegend, 302824), 2 μl PE/
Cyanine7 anti-human IgM antibody (BioLegend, 314532), 2 μl PE/Cya-
nine7 anti-human IgD antibody (BioLegend, 348210), 0.13 μg bioti-
nylated SARS-CoV-2 BA.1 protein (His and AVI Tag) (Sino Biological, 
40592-V49H7-B) conjugated with PE-streptavidin or APC-streptavidin 
(TotalSeq-C0971 Streptavidin, BioLegend, 405271 and TotalSeq-C0972 
Streptavidin, BioLegend, 405273), 0.13 μg SARS-CoV-2 WT biotinylated 
RBD protein (His and AVI Tag) conjugated with Brilliant Violet 605 
Streptavidin and TotalSeq-C0973 Streptavidin (BioLegend, 405275) 
and TotalSeq-C0974 Streptavidin(BioLegend, 405277), 0.21 μg bioti-
nylated Ovalbumin conjugated with TotalSeq-C0975 Streptavidin 
(BioLegend, 405279) and 5 μl 7-AAD (Invitrogen, 00-6993-50). 7-AAD
−CD20+CD27+IgM−IgD− SARS-CoV-2 BA.1 RBD+ cells were sorted with a 
MoFlo Astrios EQ Cell Sorter. FACS data were analysed using FlowJo 
v10.8 (BD Biosciences).

Sorted B cells were then processed with Chromium Next GEM Single 
Cell V(D)J Reagent Kits v1.1 following the manufacturer’s user guide 
(10x Genomics, CG000208). In brief, sorted cells were resuspended in 
PBS after centrifugation. Gel beads-in-emulsion (GEMs) were obtained 
with 10X Chromium controller and then subjected to reverse tran-
scription. After GEM-RT clean up, reverse transcription products were 
subject to preamplification. After amplification and purification with 
SPRIselect Reagent Kit (Beckman Coulter, B23318) of reverse transcrip-
tion products, BCR sequences (paired V(D)J) were enriched with 10X 
BCR primers. After library preparation, libraries were sequenced by 
Novaseq 6000 platform running Novaseq 6000 S4 Reagent Kit v1.5 
300 cycles (Illumina, 20028312) or NovaSeq XP 4-Lane Kit v1.5  
(Illumina, 20043131).

B cell RNA and feature barcode data analysis
Using Cell Ranger (v6.1.1) pipeline, the mRNA fastq reads were pro-
cessed and aligned to the human GRCh38 genome for gene expression 
profile. Genes expressed in fewer than 10 cells and cells expressing 
fewer than 100 genes or high-level mitochondria genes were removed 
to filter out low-quality data. Raw counts were normalized and scaled 
with Seurat46 (v 4.0.3), while principal components analysis and uniform 
manifold approximation and projection were performed for cluster 
and visualization. Cell types were identified using SingleR47 (v1.6.1) 
with Monaco human immune data48. Feature barcode reads were also 
counted by Cell Ranger (v6.1.1) as antibody capture library, and a cell 
was considered to bind the corresponding antigen of dominant feature 
barcodes (>25% in this cell).

Antibody sequence analysis
The antibody sequences obtained from 10X Genomics V(D)J sequenc-
ing were aligned to GRCh38 reference and assembled as immunoglobu-
lin contigs by the Cell Ranger (v6.1.1) pipeline. Non-productive contigs 
and B cells that had multiple heavy chain or light chain contigs were 
filtered out of the analysis. V(D)J gene annotation was performed using 
NCBI IgBlast (v1.17.1) with the IMGT reference. Mutations on V(D)J 
nucleotide sequences were calculated by using the igpipeline, which 
compared the sequences to the closest germline genes and counted the 
number of different nucleotides. For antibodies from public sources 
whose original sequencing nucleotide sequences were not all acces-
sible, the antibody amino acid sequences were annotated by IMGT/
DomainGapAlign49 (v4.10.2) with default parameters. V–J pairs were 
visualized with the R package circlize (v0.4.10).

DMS library construction
DMS libraries were constructed as previously described3. In brief, 
SARS-CoV-2 RBD mutant libraries were constructed from Wuhan-Hu-1 
RBD sequence (GenBank: MN908947, residues N331–T531), and Omicron 
RBD mutant libraries were created in a similar way based on Wuhan-Hu-1 
RBD sequence with the addition of G339D, S371L, S373P, S375F, K417N, 
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N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y and 
Y505H mutations. Duplicate libraries were produced independently, 
theoretically containing 3,819 possible amino acid mutations. Each 
RBD mutant was barcoded with a unique 26-nucleotide (N26) sequence 
and Pacbio sequencing was used to identify the correspondence of RBD 
mutant and N26 barcode. After mutant library transformation, ACE2 
binders were enriched for downstream mutation profile experiments.

High-throughput antibody-escape mutation profiling
The magnetic-activated cell sorting-based antibody-escape mutation  
profiling system3,17 was used to characterize mutation escape pro-
file for NAbs. In brief, ACE2-binding mutants were induced overnight 
for RBD expression and washed followed with two rounds of Protein A 
antibody-based negative selection and MYC tag-based positive selection to 
enrich RBD-expressing cells. Protein A antibody-conjugated products were 
prepared following the protocol for Dynabeads Protein A (Thermo Fisher, 
10008D) and incubated with induced yeast libraries at room temperature 
for 30 min with shaking. MYC tag-based positive selection was performed 
according to the manufacturer’s instructions (Thermo Fisher, 88843).

After three rounds of sequential cell sorting, the obtained cells were 
recovered overnight. Plasmids were extracted from pre- and post-sort 
yeast populations by 96-Well Plate Yeast Plasmid Preps Kit (Coolaber, 
PE053). The extracted plasmids were then used to amplify N26 barcode 
sequences by PCR. The final PCR products were purified with 1X AMPure 
XP magnetic beads (Beckman Coulter, A63882) and submitted to 75bp 
single-end sequencing at Illumina Nextseq 500 platform.

Processing of DMS data
Single-end Illumina sequencing reads were processed as previously 
described. In brief, reads were trimmed to 16 or 26 bp and aligned to 
the reference barcode-variant dictionary with dms_variants package 
(v0.8.9). Escape scores of variants were calculated as F × (nX,ab/Nab)/
(nX,ref/Nref), where nX,ab and nX,ref is the number of reads represent-
ing variant X, and Nab and Nref are the total number of valid reads in 
antibody-selected (ab) and reference (ref) library, respectively. F is a 
scale factor defined as the 99th percentiles of escape fraction ratios. 
Variants detected by less than six reads in the reference library were 
removed to avoid sampling noise. Variants containing mutations with 
ACE2 binding below −2.35 or RBD expression below −1 were removed 
as well, according to data previously reported. For BA.1 RBD-based 
libraries, due to the lack of corresponding ACE2-binding and RBD 
expression data, we used the RBD expression of Beta RBD-based DMS 
as filter instead50, and did not perform the ACE2-binding filter. Muta-
tions on residues that use different amino acids in Beta and BA.1 were 
not filtered, except R493P, S496P, R498P, H505P and all mutations on 
F375, which were excluded in the analysis owing to low expression. 
Finally, global epistasis models were built using dms_variants pack-
age to estimate mutation escape scores. For most antibodies, at least 
two independent assays were conducted and single mutation escape 
scores were averaged across all experiments that pass quality control.

Antibody clustering and visualization
Site total escape scores, defined as the sum of escape scores of all 
mutations at a particular site on RBD, were used to evaluate the impact 
of mutations on each site for each antibody. Each of these scores is 
considered as a feature of a certain antibody and used to construct a 
feature matrix AN×M for downstream analysis, where N is the number of 
antibodies and M is the number of features (valid sites). Informative 
sites were selected using sklearn.feature_selection.VarianceThreshold 
of scikit-learn Python package (v0.24.2) with the variance threshold as 
0.1. Then, the selected features were L2-normalized across antibodies  
using sklearn.preprocessing.normalize. The resulting matrix is 
referred as A′N×M′, where M′ is the number of selected features. The 
dissimilarity of two antibodies i, j is defined as 1 − Corr(A′i,A′j), where 
Corr(x,y) is the Pearson’s correlation coefficient of vectors x and y.  

We used sklearn.manifold.MDS to reduce the number of features from 
M′ to D = 20 with multidimensional scaling under the above metric. 
Antibodies are clustered into 12 epitope groups using sklearn.cluster.
KMeans of scikit-learn in the resulting D-dimensional feature space. 
Finally, these D-dimensional representations of antibodies were further 
embedded into two-dimensional space for visualization with t-SNE 
using sklearn.manifold.TSNE of scikit-learn. For the 102 BA.1-specific 
antibodies that were assayed with BA.1 RBD-based yeast display library, 
the 20-dimensional embedding was generated using  multidimen-
sional scaling (MDS) with the DMS profile of all 1,640 antibodies, but 
clustering and t-SNE were conducted independently. To project these 
antibodies onto the t-SNE space of 1,538 antibodies assayed by WT 
RBD-based DMS, we calculated the pairwise Euclidean distance between 
102 antibodies using BA.1 RBD-based DMS and 1,538 antibodies using 
WT RBD-based DMS in the 20-dimensional MDS space. The position 
of each BA.1-specific antibody in the original t-SNE space is defined as 
the average position of its ten nearest antibodies using WT RBD-based 
DMS. All t-SNE plots were generated by R package ggplot2 (v3.3.3).

Pseudovirus-neutralization assay
SARS-CoV-2 spike (GenBank: MN908947), Pangolin-GD spike (GISAID: 
EPI_ISL_410721), RaTG13 spike (GISAID: EPI_ISL_402131), SARS-CoV-1 
spike (GenBank: AY278491), Omicron BA.1 spike (A67V, H69del, V70del, 
T95I, G142D, V143del, Y144del, Y145del, N211del, L212I, ins214EPE, 
G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, 
E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, 
N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F), BA.2 
spike (GISAID: EPI_ISL_7580387, T19I, L24S, del25-27, G142D, V213G, 
G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, 
G446S, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, 
H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K), BA.1.1 spike 
(BA.1+R346K), BA.3 spike (A67V, del69-70, T95I, G142D, V143del, 
Y144del, Y145del, N211del, L212I, G339D, S371F, S373P, S375F, D405N, 
K417N, N440K, G446S, S477N, T478K, E484A, Q493R, Q498R, N501Y, 
Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K), 
BA.2.12.1 spike (BA.2+L452Q+S704L), BA.2.13 spike (BA.2+L452M) and 
BA.4 spike (T19I, L24S, del25-27, del69-70, G142D, V213G, G339D, S371F, 
S373P, S375F, T376A, D405N, R408S, K417N, N440K, G446S, L452R, 
S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, 
N679K, P681H, N764K, D796Y, Q954H, N969K) plasmids were con-
structed using the pcDNA3.1 vector. G*ΔG-VSV virus (VSV G pseudo-
typed virus, Kerafast) was used to infect 293T cells (American Type 
Culture Collection (ATCC), CRL-3216), and spike protein-expressing 
plasmid was used for transfection at the same time. After culture, the 
supernatant containing pseudovirus was collected, filtered, aliquoted, 
and frozen at −80 °C for further use.

Pseudovirus detection of Pangolin-GD and RaTG13 was performed 
in 293T cells overexpressing human angiotensin-converting enzyme 
2 (293T-hACE2 cells). Other pseudovirus-neutralization assays were 
performed using the Huh-7 cell line ( Japanese Collection of Research 
Bioresources ( JCRB), 0403).

Monoclonal antibodies or plasma were serially diluted (fivefold or 
threefold) in DMEM (Hyclone, SH30243.01) and mixed with pseudovirus 
in 96-well plates. After incubation at 5% CO2 and 37 °C for 1 h, digested 
Huh-7 cell ( JCRB, 0403) or 293T-hACE2 cells (ATCC, CRL-3216) were 
seeded. After 24 h of culture, supernatant was discarded and d-luciferin 
reagent (PerkinElmer, 6066769) was added to react in the dark, and the 
luminescence value was detected using a microplate spectrophotom-
eter (PerkinElmer, HH3400). IC50 was determined by a four-parameter 
logistic regression model using PRISM (version 9.0.1).

ELISA
To detect the broad-spectrum binding of the antibodies among  
Sarbecovirus, we used a panel of 20 synthesized sarbecovirus RBDs 
(Sino Biological Technology) (Supplementary Table 3). According to the 



sequence of 20 RBDs, a set of nested primers was designed. The coding 
sequences were obtained by the overlap PCR with a 6× His tag sequence 
to facilitate protein purification. The purified PCR products were ligated 
to the secretory expression vector pCMV3 with CMV promoter, and  
then transformed into Escherichia coli XL1-blue competent cells. Mono-
clones with correct transformation were cultured and expanded, and 
plasmids were extracted. Healthy HEK293F cells were passaged into a 
new cell culture and grown in suspension at 37 °C, 120 RPM, 8% CO2 to 
logarithmic growth phase and transfected with the recombinant con-
structs by using liposomal vesicles as DNA carrier. After transfection, 
the cell cultures were followed to assess the kinetics of cell growth and 
viability for 7 days. The cell expression supernatant was collected, and 
after centrifugation, passed through a Ni column for affinity purifica-
tion. The molecular size and purity of eluted protein was confirmed by 
SDS–PAGE. Production lot numbers and concentration information of 
the 20 sarbecovirus proteins are shown in Supplementary Table 4. WT 
RBD used here was SARS-CoV-2 (2019-nCoV) Spike RBD-His Recombi-
nant Protein (Sino Biological, 40592-V08H).

A panel of 21 sarbecovirus RBDs (Supplementary Table 3) in PBS was 
pre-coated onto ELISA plates (NEST, 514201) at 4 °C overnight. The plates 
were washed and blocked. Then 1 μg ml−1 purified antibodies or serially 
diluted antibodies were added and incubated at room temperature 
for 20 min. Next, Peroxidase-conjugated AffiniPure Goat Anti-Human 
IgG (H+L) ( JACKSON, 109-035-003) was applied and incubated at  
room temperature for 15 min. Tetramethylbenzidine (TMB) (Solarbio, 
54827-17-7) was added onto the plates. The reaction was terminated 
with 2 M H2SO4 after 10 min incubation. Absorbance was measured at 
450 nm using Ensight Multimode Plate Reader (PerkinElmer, HH3400). 
ELISA A450 measurements at different antibody concentrations for a 
particular antibody–antigen pair were fit to the model y = Acn/(cn + En) 
using the R package mosaic (v1.8.3), where y is the A450 value and c is 
the corresponding antibody concentration. A, E and n are parameters, 
where E is the desired EC50 value for the specific antibody and antigen.

Antibody and ACE2 competition for RBD
Omicron RBD (Sino Biological, 40592-V08H121) protein in PBS was 
immobilized on the ELISA plates at 4 °C overnight. The coating solu-
tion was removed and washed 3 times with PBST and the plates were 
then blocked for 2 h. After blocking, the plates were washed 5 times, 
and the mixture of ACE2–biotin (Sino Biological, 10108-H27B-B) and 
serially diluted competitor antibodies was added followed by 30 min 
incubation at room temperature. Peroxidase-conjugated Streptavidin 
( Jackson ImmunoResearch, 016-030-084) was added into each well for 
another 20 min incubation at room temperature. After washing the 
plates five times, TMB (Solarbio, 54827-17-7) was added into each well. 
After 10 min, the reaction was terminated with 2 M H2SO4. Absorbance 
was measured at 450 nm using Ensight Multimode Plate Reader  
(PerkinElmer, HH3400). The ACE2 competition coefficient was cal-
culated as (B − A)/B, where B is the A450 value with 0.3 μg ml−1 antibody 
and A is the A450 value with 6 μg ml−1 antibody.

Biolayer interferometry
Biolayer interferometry assays were performed on Octet RED 384 
Protein Analysis System (Fortebio) according to the manufacturer’s 
instructions. To measure the binding affinities, monoclonal antibodies  
were immobilized onto Protein A biosensors (Fortebio) and the fourfold 
serial dilutions of Omicron S-trimer (BA.1 and BA.2) in PBS were used 
as analytes. Data were collected with Octet Acquisition 9.0 (Fortebio) 
and analysed by Octet Analysis 9.0 (Fortebio) and Octet Analysis Studio 
12.2 (Fortebio).

S-trimer thermal stability assay
The thermal stability assay was performed to detect the exposed hydro-
phobic residues with an MX3005 qPCR instrument (Agilent) with SYPRO 
Red (Invitrogen) as fluorescent probes. We set up 25 μl reaction system 

(pH 8.0) containing 5 μg of target protein (S-trimer of Omicron line-
age), 1000× SYPRO Red, and ramped up the temperature from 25 °C 
to 99 °C. Fluorescence was recorded in triplicate at an interval of 1 °C.

Surface plasmon resonance
Human ACE2 was immobilized onto CM5 sensor chips using a Biacore 8K 
(GE Healthcare). Serial dilutions of purified S-trimer or RBD of Omicron  
lineages were injected, ranging in concentrations from 100 to 6.25 nM. 
The response units were recorded at room temperature using BIAcore 
8K Evaluation Software (v3.0.12.15655; GE Healthcare), and the result-
ing data were fitted to a 1:1 binding model using BIAcore 8K Evaluation 
Software (v3.0.12.15655; GE Healthcare).

Protein expression and purification for cryo-EM study
The S6P expression construct encoding the SARS-CoV-2 spike ectodo-
main (residues 1–1208) with six stabilizing Pro substitutions (F817P, 
A892P, A899P, A942P, K986P and V987P) and a GSAS substitution for the 
furin cleavage site (residues 682–685) was previously described15. The 
Delta-specific mutations (T19R, G142D, 156del, 157del, R158G, L452R, 
T478K, D614G, P681R, D950N) were introduced into this construct 
using site-directed mutagenesis. The S6P expression construct contain-
ing the Omicron BA.1 mutations (A67V, H69del, V70del, T95I, G142D, 
V143del, Y144del, Y145del, N211del, L212I, ins214EPE, G339D, S371L, 
S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, 
G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, 
N764K, D796Y, N856K, Q954H, N969K, L981F) were assembled from 
three synthesized DNA fragments. The S6P expression construct con-
taining the Omicron BA.2 mutations (T19I, L24S, del25-27, G142D, V213G, 
G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, 
G446S, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, 
H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K) were assembled 
from three synthesized DNA fragments. The S6P expression construct 
containing the Omicron BA.4/BA.5 mutations (T19I, L24S, del25-27, 
del69-70, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, 
R408S, K417N, N440K, G446S, L452R, S477N, T478K, E484A, F486V, 
Q498R, N501Y, Y505H, D614G, H655Y, N658S, N679K, P681H, N764K, 
D796Y, Q954H, N969K) were assembled from three synthesized DNA 
fragments51. For protein production, these expression plasmids, as well 
as the plasmids encoding the antigen-binding fragments (Fabs) of the 
antibodies described here, were transfected into the HEK293F cells 
using polyethylenimine (Polysciences). The conditioned media were 
collected and concentrated using a Hydrosart ultrafilter (Sartorius), 
and exchanged into the binding buffer (25 mM Tris, pH 8.0, and 200 mM 
NaCl). Protein purifications were performed using the Ni-NTA affinity 
method, followed by gel filtration chromatographies using either a 
Superose 6 increase column (for the spike proteins) or a Superose 200 
increase column (for the Fabs). The final buffer used for all proteins is 
20 mM HEPES, pH 7.2, and 150 mM NaCl.

Cryo-EM data collection, processing and structure building
Samples for cryo-EM study were prepared essentially as described15,52 
(Supplementary Table 4). All EM grids were evacuated for 2 min and 
glow-discharged for 30 s using a plasma cleaner (Harrick PDC-32G-2). 
Four microliters of spike protein (0.8 mg ml−1) was mixed with the 
same volume of Fabs (1 mg ml−1 each), and the mixture was immedi-
ately applied to glow-discharged holy-carbon gold grids (Quantifoil, 
R1.2/1.3) in an FEI Vitrobot IV (4 °C and 100% humidity). Data collection 
was performed using either a Titan Krios G3 equipped with a K3 direct 
detection camera, or a Titan Krios G2 with a K2 camera, both operating 
at 300 kV. Data processing was carried out using cryoSPARC (v3.2.1)53. 
After 2D classification, particles with good qualities were selected for 
global 3D reconstruction and then subjected to homogeneous refine-
ment. To improve the density surrounding the RBD–Fab region, UCSF 
Chimera (v1.16)54 and Relion (v3.1)55 were used to generate the masks, 
and local refinement was then performed using cryoSPARC (v3.2.1). 
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Coot (v0.8.9.2)56 and Phenix (v1.20)57 were used for structural modelling 
and refinement. Figures were prepared using USCF ChimeraX (v1.3)58 
and Pymol (v2.4.0, Schrödinger, LLC.).

Molecular dynamics simulation
Models of the RBD from BA.1, BA.2, BA.3, BA.2.13, BA.2.12.1 and BA.4 
in complex with ACE2 were firstly referred to the cryo-EM structure 
of BA.1–hACE2 (PDB code: 7WGB) and then checked with the WHAT IF 
web interface (https://swift.cmbi.umcn.nl/) to remove atomic clashes. 
After that, the structures were simulated with GROMACS-202159. In brief, 
the OPLS force field with TIP3P water model was selected to prepare 
the dynamic system. After that Na+ and Cl− ions were added into the 
system to make the system electrically neutral. Then, energy mini-
mization using the steepest descent algorithm was carried out until 
the maximum force of 1,000 kJ mol−1 was achieved. NVT ensemb1e 
via the Nose-Hoover method at 300 K and NPT ensemble at 1 bar 
with the Parinello-Rahman algorithm were employed successively 
to make the temperature and the pressure equilibrated, respectively. 
Finally, molecular dynamics production runs of 10 ns were performed 
with random initial velocities and periodic boundary conditions.  
The non-bonded interactions were treated using Verlet cut-off scheme, 
while the long-range electrostatic interactions were treated using  
particle mesh Ewald method59. The short-range electrostatic and 
van der Waals interactions were calculated with a cut-off of 12 Å.  
All six models were simulated in the same protocol.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Processed mutation escape scores can be downloaded from https://
github.com/jianfcpku/SARS-CoV-2-RBD-DMS-broad. Raw Illumina and 
PacBio sequencing data are available on NCBI Sequence Read Archive 
BioProject PRJNA804413. We used vdj_GRCh38_alts_ensembl-5.0.0 as 
the reference for V(D)J alignment, which can be obtained from https://
support.10xgenomics.com/single-cell-vdj/software/downloads/latest. 
IMGT/DomainGapAlign is based on the built-in lastest IMGT antibody 
database, and we set the ‘Species’ parameter as ‘Homo sapiens’ and kept 
the others at the default settings. Public DMS datasets involved in the 
study from literature can be downloaded from https://media.githu-
busercontent.com/media/jbloomlab/ SARS2_RBD_Ab_escape_maps/
main/ processed_data/escape_data.csv. Cryo-EM density maps have 
been deposited in the Electron Microscopy Data Bank with accession 
codes EMD-33210, EMD-33211, EMD-33212, EMD-33213, EMD-33323, 
EMD-33324, EMD-33325, EMD-32732, EMD-32738, EMD-32734, EMD-
32718 and EMD-33019. Structural coordinates have been deposited 
in the Protein Data Bank with accession codes 7XIW, 7XIX, 7XIY, 7XIZ, 
7XNQ, 7XNR, 7XNS, 7WRL, 7WRZ, 7WRO, 7WR8 and 7X6A.

Code availability
Python and R scripts for analysing escaping mutation profile data and 
reproducing figures in this manuscript are available at https://github.
com/jianfcpku/SARS-CoV-2-RBD-DMS-broad.
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Extended Data Fig. 1 | Structures and ACE2 binding of emerging Omicron 
subvariants spike glycoprotein. a, Mutations on the spike glycoprotein of 
SARS-CoV-2 Omicron subvariants. Residues that are not identical among 
Omicron subvariants are colored red. b, Workflow to generate cryo-EM 
structure of BA.2, BA.3, BA.2.13, BA.2.12.1, BA.4/5 spike glycoprotein trimer 

with S6P and R683A, R685A substitutions. c, Binding affinities of Omicron 
variants spike trimers to hACE2 measured by SPR. SPR analyses were 
conducted in biological duplicates. d, MD simulated interactions between 
hACE2 and RBD of Omicron variants. Structures of the RBD from Omicron 
variants and hACE2 are shown as ribbons.
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Extended Data Fig. 2 | Different immunity backgrounds lead to distinct 
humoral immunity against Omicron subvariants. NT50 against SARS-CoV-2, 
SARS-CoV-1 D614G and Omicron subvariants spike-pseudotyped VSV by 
plasma samples from a, individuals who received 3 doses CoronaVac with 
(n = 50) or without (n = 40) BA.1 breakthrough infection; b, individuals who 
received 2 doses CoronaVac and ZF2001 booster with (n = 28) or without 

(n = 38) previous SARS-CoV-1 infection; c, individuals who received 3 doses 
CoronaVac (n = 40) or 2 doses CoronaVac with ZF2001 booster (n = 38). P-values 
were calculated using two-tailed Wilcoxon rank-sum tests and labeled above 
the bars. n.s., not significant, p > 0.05. All neutralization assays were conducted 
in biological duplicates. Geometric means are labeled. Error bars refer to 
geometric standard deviations.
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BA.1/WT cross-reactive memory B cells or BA.1-specific memory B cells.
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Extended Data Fig. 4 | ELISA reactivity against 22 sarbecovirus RBD. Shades of red indicate ELISA OD450 for each antibody against various sarbecoviruses 
from different clades.



Extended Data Fig. 5 | Neutralizing activities of antibodies elicited by 
SARS-CoV-2 BA.1 or wildtype. Neutralizing activity against SARS-CoV-2 
D614G and Omicron subvariants pseudovirus by antibodies of each epitope 
group from BA.1 convalescents (BA.1-stimulated. A, n = 30; B, n = 41; C, n = 20; 
D1, n = 49; D2, n = 17; E1, n = 11; E2.1, n = 64; E2.2, n = 122; E3, n = 57; F1, n = 80;  
F2, n = 13; F3, n = 2), and from wildtype convalescents or vaccinees 
(WT-stimulated. A, n = 98; B, n = 55; C, n = 88; D1, n = 46; D2, n = 36; E1, n = 59; 

E2.1, n = 26; E2.2, n = 39; E3, n = 68; F1, n = 97; F2, n = 158; F3, n = 67). Geometric 
mean titers (GMT) are annotated above each group of points, and error bars 
indicate geometric standard deviation. P-values were calculated using 
two-tailed Wilcoxon rank-sum tests and labeled above the bars. n.s., not 
significant, p > 0.05. NAbs in the boxed epitope groups showed substantial 
neutralization potency changes against BA.2.12.1 or BA.4/5 compared to BA.1. 
All neutralization assays were conducted in biological duplicates.
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Extended Data Fig. 7 | Comparison of BA.1-stimulated and WT-stimulated 
antibodies in group A, B and C. a, Neutralizing activity against SARS-CoV-2 
D614G and Omicron subvariants by BA.1-stimulated (A, n = 30; B, n = 41; C, 
n = 20) and WT-stimulated (A, n = 98; B, n = 55; C, n = 88) antibodies in Group A, B 
and C. Geometric mean of IC50 fold changes compared to IC50 against BA.2 are 
annotated above the bars. P-values were calculated using a two-tailed Wilcoxon 
signed-rank test of paired samples, in comparison to IC50 against BA.2.  

*, p < 0.05; **, p < 0.01; ***, p < 0.001; n.s., not significant, p > 0.05. All 
neutralization assays were conducted in biological duplicates. b, Averaged 
escape maps at escape hotspots of BA.1-stimulated and WT-stimulated 
antibodies in group A, B and C, and corresponding MSA of various sarbecovirus 
RBDs. Height of each amino acid in the escape maps represents its mutation 
escape score. Mutated sites in Omicron variants are marked in bold.
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Extended Data Fig. 8 | Antibodies of group E3 and F1 exhibit weak but 
broad-spectrum neutralization. a, Neutralizing activity against SARS-CoV-2 
D614G and Omicron subvariants by antibodies in group E3 (n = 125) and F1 
(n = 177). Geometric mean of IC50 fold changes compared to BA.2 are annotated 
above the bars. P-values were calculated using a two-tailed Wilcoxon signed- 
rank test of paired samples, in comparison to IC50 against BA.2. *, p < 0.05;  
**, p < 0.01; ***, p < 0.001; n.s., not significant, p > 0.05. All neutralization assays 

were conducted in biological duplicates. b, Epitope of representative 
antibodies in group E3 (S2H97, PDB: 7M7W) and F1 (S304, PDB: 7JW0). Residues 
highlighted in red indicate mutated sites in Omicron variants. c, Averaged 
escape maps at escape hotspots of antibodies in group E3 and F1, and 
corresponding MSA of various sarbecovirus RBDs. Height of each amino acid in 
the escape maps represents its mutation escape score. Mutated sites in 
Omicron variants are marked in bold.
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Extended Data Fig. 9 | RBD-binding structures and affinity of broad 
Sarbecovirus antibodies. a, Cartoon models of Cryo-EM structures of BD55-
3152 in complex of BA.1 RBD, BD55-1239 in complex of BA.1 RBD, and BD55-3372 
in complex of Delta RBD. b, Workflow to generate refined structural model of 
BD55-3152 and BD55-1239 in complex of BA.1 RBD, BD55-3372 in complex of 
Delta RBD, and BD55-5840 in complex of BA.2 RBD. c, Neutralizing activity of 
representative NAbs in group E1 (n = 68), F2 (n = 139) and F3 (n = 61) against 
SARS-CoV-2 D614G, in addition to D614G+D405N and D614G+R408S. 
Geometric mean of IC50 fold changes compared to IC50 against D614G are 

annotated above the bars. P-values were calculated using a two-tailed Wilcoxon 
signed-rank test of paired samples. *, p < 0.05; **, p < 0.01; ***, p < 0.001; n.s., not 
significant, p > 0.05. All neutralization assays were conducted in biological 
duplicates. d, Conformational comparison between BA.1 and BA.2 RBD 
regarding the 366-377 hairpin. e, Biolayer interferometry analysis of Group E1 
antibodies S309 and BD55-5840 binding to Omicron BA.1 and BA.2 Spike 
trimer. Biolayer interferometry analyses were conducted in biological 
duplicates.
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BA.1-specific epitope groups AOmi, BOmi, DOmi and F3Omi.
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