Skip to main content
. 2022 Aug 4;13:889853. doi: 10.3389/fpls.2022.889853

Table 1.

Basic training configuration of mask R-CNN.

SL No. Arguments Values
1 Image_Min_Dim 800
2 Image_Max_Dim 3100
3 Learning_Rate 0.001
4 Learning_Momentum 0.9
5 Weight_Decay 0.0001
6 Steps_Per_Epoch 100
7 Detection_Min_Confidence 0.9
8 Rpn_Anchor_Scales [32, 64, 128, 256, 512]
9 Images_Per_Gpu 1
10 Num_Classes 1+1 (“Spike,” “Background”)
11 Training and Validation Data 2000 and 500 (train-test-split with test size 0.2)
12 Testing Data Varies
13 Epochs 100