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Abstract

Few human genetic diseases can rely on the availability of as many and as diverse animal models 

as cystic fibrosis (CF), a multiorgan syndrome caused by functional absence of Cystic Fibrosis 

Transmembrane Regulator (CFTR). The recent development of highly effective CFTR modulator 

drug therapies simultaneously highlighted the remarkable clinical improvement achievable with 

these treatments, the lack of therapeutic alternatives for non-responders, and the need to 

understand the kinetics of disease upon early life/chronic treatment. These advances have 

rekindled efforts to leverage animal models to address critical knowledge gaps in CF. This paper 

provides a concise overview of the areas of interests for therapeutic intervention in the current CF 

landscape, focusing on the contributions of in vivo models to understand CF pathogenesis, identify 

therapeutic windows, and develop novel therapies for all CFTR mutations.
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Introduction

Cystic Fibrosis (CF) is a monogenetic disease caused by absence of functional Cystic 

Fibrosis Transmembrane Regulator (CFTR), an anion channel that directly regulates 

chloride and bicarbonate secretion/absorption across epithelia in many organs. Defects 

in CFTR function may arise from aberrant transcription/translation, folding/degradation, 

trafficking/stability in the plasma membrane, or gating/conductance. Main manifestations of 

the disease involve: 1) airway mucus obstruction and inflammation with predisposition to 

bacterial infections and recurrent exacerbations, leading to progressive tissue damage and 

respiratory failure; and 2) gastrointestinal, pancreatic and hepatic dysfunctions, which lead 

to malabsorption and affect intestinal transit, growth, and overall metabolism(1).
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CFTR orthologs are expressed in vertebrates, from cartilaginous fish onward (2, 3). This 

has allowed the development of CF animal models in several species, which have been 

used to investigate CF pathophysiology and test therapeutic treatments. In order of first 

appearance in the published literature, CF researchers have generated animal models in 

the following species: mouse(4, 5), pig(6–10), ferret(11, 12), rat(13–17), zebrafish(18, 19), 

sheep(20, 21), drosophila(22), and rabbit(23, 24). Other non CFTR-directed animal models 

have been instrumental to study particular aspects of CF pathophysiology, e.g., defective 

airway mucus clearance (Scnn1b-Tg mice(25–27), elastase-treated sheep(28–31) or mice(32, 

33)) or to simplify complex system biology, e.g., mucosal surface immunology (Xenopous 
laevis tad pole(34, 35)). Far from being redundant, this variety reflects an effort to provide 

the CF research community with multiple tools to study CF pathophysiology or therapeutic 

options, and to overcome the shortcomings inevitably associated with any individual animal 

model in terms of organ-specific phenotypes, cost, and tractability, as extensively reviewed 

in the recent past(36–40).

The advent of highly effective modulator drug therapies (HEMT), small molecules that 

aid mutant CFRT intracellular trafficking and support its function once it reaches the 

plasma membrane, has transformed health outcomes and quality of life for a large fraction 

(~90%) of people with CF (PwCF)(41–43). These highly beneficial therapies are projected 

to further improve longevity of PwCF and their stark success has poised the scientific 

community to address the lack of treatment for the 10% of PwCF who do not respond 

to HEMT and to explore the long-term implications and new challenges arising from a 

longer life with CF. Notably, none of the currently available HEMT directly stemmed from 

animal model research. So, how relevant are CF animal models in the HEMT era and 

can they be harnessed to address emerging CF research priorities? The ongoing PROMISE 

study(44), a large multidisciplinary study focused on the impact of triple combination 

therapy (elexacaftor/tezacaftor/ivacaftor) on the US population age 6 and older, highlighted 

specific “areas of interest” as emerging research priority in CF (i.e., clinical change, mucus 

biology, microbiology, inflammation and host response, gastroenterology, endocrinology, 

liver disease, nasal airway epithelial cell function, and pediatric inclusion). These priorities 

are also reflected in the Cystic Fibrosis Foundation drug development pipeline (https://

apps.cff.org/trials/pipeline) where the primary therapeutic outcomes involve: restore CFTR 

function; enhance mucociliary clearance; develop novel anti-inflammatory and anti-infective 

strategies; and support nutritional/gastrointestinal health. Arguably, animal models provide 

the unique opportunity to study how CFTR dysfunction affects multiple organ systems, 

how disease phenotypes relate to each other, and how they are influenced by non-CFTR-

related modifiers, e.g., genetic background(45), microbiota(46), sex(47), age(48), and 

environmental exposures(49). The purpose of this brief review is to summarize the ongoing 

contribution of CF animal models’ research to the aforementioned priorities, with reference 

to recently published papers.

Restoration of CFTR function

Pharmacologic correction of defective CFTR function is achievable provided that 1) the 

mutant CFTR protein is expressed in the target organ, and 2) the mutant CFTR is responsive 

to the modulation. About 7% of PwCF carry severe mutations (nonsense/missense, splice-
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site, frameshifts, insertions/deletions) that lead to complete absence of CFTR protein, and 

are thus non-responsive to HEMT. The challenging goal of introducing functional CFTR in 

affected tissues using gene therapy approaches has been heavily pursued using CF animal 

models(50, 51). Wild-type animals have been used to evaluate safety and efficiency of 

different vectors or delivery methods (e.g., adeno-associated vector in ferret(52), lentiviral 

vectors in marmoset(53), microspray administration in neonatal pigs(54)). Mutant CFTR-

based models have been used to evaluate restoration of CFTR activity in vivo. Functional 

readout varied depending on the model used and include normalization of pulmonary 

function parameters in CFTRtm1Unc KO mouse treated with chemically modified hCFTR 

mRNA(55), increase in basal nasal potential difference towards WT levels in 510X CF 

rat treated with a tagged CFTR lentiviral vector(56), and restoration of transepithelial Cl− 

current in freshly excised airways from gut-corrected CF pig treated with an integrating 

adenovirus-based vector expressing hCFTR (57). Models recapitulating key features of CF 

lung disease, i.e., airway mucus obstruction and inflammation, have been used to study 

barriers to vectors’ delivery(58) and stability(59) in inflamed and obstructed airways. Proof-

of-concept studies in mice(60) also supported the feasibility of in vivo cell-based therapy, 

where genetic correction is achieved ex vivo in suitable regenerative cells which are then 

transplanted to the affected organ(61).

Due to their relatively low maintenance cost, fast life cycle, and amenability to complex 

gene editing manipulation as compared to larger models (e.g., pigs, ferret, sheep, rabbits), 

rodents have been the species of choice to generate screening tools for read-through 

pharmacologic therapy against nonsense/missense mutations. The G542X stop mutation has 

been introduced in mouse(62) and rat(15). This mutation has also been introduced in sheep 

with the goal of using this neonatal lethal model to test in utero therapies (21). In an effort 

to provide screening platforms with the closest DNA and protein sequence similarity to 

hCFTR, “humanized” CF mice have been generated by transgenic expression of hCFTR on 

a mCFTR KO background (63). In this model, multiple copies of hCFTR were integrated 

in a single insertion site, making further mutant models based on this strain suitable to test 

pharmacologic interventions (e.g., hCFTR G551D, F508del, G542X, W1282X, 3849+10kb 

C>T), but complicating the application of gene editing approaches. This limitation has been 

recently overcome by using exon replacement strategies that allow for tailored substitution 

of the endogenous mouse sequence with the human one, obtaining a hybrid CFTR (exon 

11: WT, F508del; exon 12: WT, G542X, and R553X, Hodges, C. et al, Abstract 662 North 

American Cystic Fibrosis Conference, Virtual event, November 2021, Journal of Cystic 
Fibrosis Vol. 20, Supplement S314).

Among CF animal models, only ferret(11), pig(6), sheep(21), and rabbit(23, 64) CFTR is 

naturally responsive to modulators of hCFTR, likely due to a higher degree of sequence and 

structural homology as compared to other species. Pharmacologic rescue of CFTR in animal 

models can be used to query critical issues that would be intractable in human subjects, 

such as effective therapeutic windows, spatio-temporal patterns of disease development, 

and effect of treatment withdrawal. A remarkable example for these studies featured in-

utero and postnatal treatment of ferrets carrying the G551D mutation with the potentiator 

ivacaftor (VX-770)(12).Resulting data support the efficacy of early intervention to prevent 

perinatal manifestation of the disease (pancreas, intestine, growth), and highlights how 
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therapeutic regimens need to be maintained to prevent reoccurrence of disease (lung, 

pancreas). An important corollary of this study is that using the outbred ferret model 

carrying a defined genetic mutation (G551D) it was possible to appreciate the contribution 

of disease modifier genes in the manifestation of disease and response to therapy (G551D 

homozygous ferret with pancreatic insufficiency regardless of VX770 treatment). G551D 

humanized rats have also been used to test the effect of ivacaftor on age-dependent airway 

mucus abnormalities(65) and inflammation(66). Notably, accumulating evidence suggest 

that CFTR function is required for proper organ development, including cartilaginous 

airways of CF pigs (67), rats (13), and mice (68), or nasal sinuses in CF pigs(69). Congenital 

absence of vas deferens has been documented in CF ferrets (12), rats(70), rabbits(23), and 

sheep(21), but not in CF mice, whereas CF pigs exhibit high penetrance of vas deferens 

and epididymal atresia(71), suggesting species- and organ-specific requirements. These 

results, along with the increasing availability of different animal models susceptible to 

pharmacological correction of CFTR, suggest that a range of CFTR function-dependent 

phenotypes can be exploited to study the developmental components of CF disease.

Mucus biology and mucociliary clearance

Luminal obstruction with inspissated mucous secretions characterize the pathologic 

presentation of CF in several organs (upper and lower respiratory tract, gastrointestinal 

tract, pancreas, liver, gallbladder, female and male reproductive tract) and has been directly 

linked to absence of functional CFTR-mediated Cl− and HCO3− secretion. Understanding 

of the specific mechanisms and tissue/molecular components involved in the generation 

and failed clearance of these thick secretions is an active area of investigation (72–75). 

Abnormalities in airway mucus have been detected in bronchoalveolar lavage from young 

children with CF, were associated with inflammation, and preceded bacterial infection (76), 

suggesting a causal role in the pathogenesis of obstructive CF lung disease. This central role 

has been substantiated by studies in CF animal models, including pigs(7, 77), ferret(78), and 

mouse(27). The general components of the mucociliary clearance system (mucus producing, 

secretory, and ciliated cells) are present in all CF animal models, although relevant anatomic 

and cell composition differences must be considered in comparative studies. For examples, 

airway submucosal glands are associated with cartilaginous airways throughout human 

airways, with a similar distribution observed in pigs and ferrets. In contrast, submucosal 

glands are localized in the trachea in rats, they are further restricted to the most proximal 

portion of the trachea in mice, and are completely absent in rabbits(79). These differences 

have been exploited to investigate the contribution of submucosal gland vs. superficial 

epithelia in the pathogenesis and progression of CF lung disease, and evidences so far 

suggest that the presence of submucosal glands is critical to develop spontaneous and 

chronic obstructive lung disease (pig and ferret), whereas failure to clear secretions from 

the smaller conducting airways might be responsible for creating early, heterogeneously 

distributed “pathologic niches” in the deeper lung(23, 80). Of note, scRNAseq technologies 

have recently been used to define the cellular and molecular landscape of surface epithelium 

and submucosal glands in CF vs. WT pigs at birth(10, 81), establishing a critical, initial 

timepoint for a much-anticipated time course analysis.
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In larger CF animal models, lung disease progression and efficacy of therapeutic 

interventions can be studied longitudinally using imaging modalities similar to humans, 

like computer tomography (e.g., ferret (78, 82), pig(77)), whereas other techniques had to 

be devised to study mucociliary clearance in species with smaller lung volumes. Given the 

many variables that affect mucociliary clearance in vivo, recent efforts have been focused on 

developing measurements that can be made on intact tissue or in situ to avoid perturbation of 

the environment. In particular, intact tracheas have been studied with microoptical coherence 

tomography (μOCT), which allows measurement of thickness of secretions, ciliary beat 

frequency, mucociliary transport, and submucosal inflammation (14, 83, 84), or fluorescence 

particle tracking (85). Although sophisticated methods to quantitatively assess obstructive 

lung disease in the lower airways of smaller species are under development (86–88), the 

vast majority of studies relies on histological and morphometric assessment of airway mucus 

burden and inflammation. Specifically, morphometric analyses have been used to quantify 

airway mucus burden in Scnn1b-Tg mice treated with mucus-mobilizing agents(89–91), 

elastase-treated WT mice(32), or CF rats challenged with P.aeruginosa embedded in agar 

beads (Birket, S. et al. Abstract 72 North American Cystic Fibrosis Conference, Denver, 

October 2018, Pediatric Pulmonology Vol. 53, Supplement 2).

Infection

Although defective airway mucus clearance likely plays a major role in initiating CF 

lung disease, chronic bacterial airway infections are the leading cause of morbidity and 

mortality in PwCF. Spontaneous, chronic airway bacterial infections with a range of 

pathogens including Staphylococcus, Streptococcus, and Enterococcus have been reported 

in CF ferrets(11, 92) and CF pigs(7, 93). Overall, rodent models do not exhibit chronic 

airway bacterial infection, with the only two notable exceptions being 1) congenic C57BL/6 

Cftrtm1kth mice, in which a proportion of mice (1/3) exhibit colonization by Bordetella 
pseudohinzii associated with decreased respiratory rates (94), and 2) Scnn1b-Tg mice 

which are susceptible to spontaneous colonization by oropharyngeal microflora in the early 

post-natal period (5–10 post-natal days), but become resistant as they age (27). These 

models allow study of factors facilitating the establishment and the evolution of airway 

bacterial infection from the perspective of both the host and the pathogens, as well as 

pharmacological interventions. Several models of experimentally-induced bacterial infection 

have also been developed to test specific contributions of host and pathogen factors, with 

an important distinction between “chronic” vs. “acute” protocols(95). In the absence of a 

CF-like muco-obstructed and likely hypoxic milieu, i.e., in WT animals, chronic (i.e., lasting 

more than 1–2 weeks) infections are often obtained by embedding the bacteria in polymer 

beads which provide a protective microenvironment against mucociliary and immune 

clearance. Although not without limitations, these models have been critical to demonstrate 

the contributions of host genetic background(45), to benchmark current therapies (96), 

and to test novel anti-infective treatments, e.g., phage therapy(97). Acute anti-infectives 

screening has been performed using aerosolized bacteria models(98), and CF zebrafish 

embryos(99). Viral infections have been linked to pulmonary exacerbations and progressive 

decline in lung function, but respiratory viruses routinely cultured during periods of 

exacerbation in PwCF (i.e., influenza, respiratory syncytial virus, and respiratory virus(100)) 
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have not been systematically studied in CF animal models, likely due to differences in viral 

tropism across species. Non-tuberculous mycobacteria (NTM) are emerging pathogens for 

PwCF and are found in ~ 10% of the patient population(101). Pharmacologic screening of 

anti-NTM compounds or studies investigating the interaction between NTM and the immune 

system can be performed in non-mammalian models (zebrafish, X. laevis tad pole(35)), in 

mice deficient in innate or adaptive immune mediators (e.g., GM-CFS KO, SCID, and NOD) 

or transiently immunosuppressed by chronic corticosteroid treatment(102). Integration of 

these approaches in animal models recapitulating specific features of CF lung pathology 

could provide further insights for the detection and treatment of old and emerging microbial 

threats for PwCF.

Inflammation

Chronic inflammation is a hallmark of the multi-organ CF syndrome and it is likely due 

a combination of recurrent challenges, hyperactive yet inefficient immune responses, and 

delayed resolution (103). Intrinsic, i.e., due to abnormal CFTR function within the cell, and 

extrinsic, i.e., due to CFTR-dependent alterations in the cellular milieu, abnormalities have 

been described for CF neutrophils(104) and macrophages(105). CF pigs and ferrets exhibit 

spontaneous inflammation in the respiratory and gastrointestinal tracts, and inflammatory 

markers have been used to track the development and progression of specific organ 

disease. As these models are amenable to HEMT treatment and might exhibit different 

levels of organ-specific therapeutic success, it is plausible that they could be harnessed to 

study the interconnection and developmental dynamics of CF inflammatory responses. In 

parallel, studies in species considered less exemplary of human CF pathology, like rodents, 

have highlighted the potential for intrinsic, CFTR-dependent drivers of inflammation. For 

example, CF mice exhibit an inflammatory imbalance both at baseline (in serum) and 

after chronic Pseudomonas aeruginosa or lipopolysaccharide (LPS) challenge (in the lung) 

(106–108). Bone marrow transplant experiments have suggested that cell-based supportive 

therapy with hematopoietic and mesenchymal stem cells could be beneficial to enhance 

CF immune regulation (109). Of note, a recent report suggests that the muco-obstructed 

microenvironment associated with CF lung disease promotes epigenetic reprogramming of 

resident airway macrophages, shifting their transcriptional profile and activity towards a 

state that is both hypofunctional and hyperinflammatory(110). These findings share some 

features with recent single cell RNA sequencing (scRNAseq) analyses of CF vs. healthy 

control sputa that identified dysregulation in pathways associated with phagocytosis and 

immune cell regulation in CF macrophages and monocytes populations (111). Finally, 

humanized G551D rats have been used to test whether pharmacologic correction with 

ivacaftor would restore the hyperinflammatory lung phenotype present in 6 months-old 

hG551D rats, both at baseline and after LPS challenge, a surrogate for pulmonary 

exacerbations. A 7-day treatment with Ivacaftor effectively reduced inflammatory markers 

in bronchoalveolar lavage from naïve hG551D rats, failed to fully revert the effects 

of LPS stimulation, suggesting that short-term correction is insufficient to regulate the 

hyperinflammatory response to a stronger stimulus(66).
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Gastrointestinal, pancreatic, and liver disease

Although the respiratory pathology is the primary cause of concern for PwCF, dysfunctions 

in the gastrointestinal (GI) tract, pancreas, and liver significantly increase the disease 

burden and affect quality of life. Human CF GI disease is characterized by an ~20% 

incidence of meconium ileus (MI) at birth (112). In adults, gastroesophageal reflex disease 

(GERD) affects up to 80% of PwCF), distal intestinal obstruction syndrome (DIOS) is 

commonly diagnosed, and small intestine bacterial overgrowth (SIBO) is found in 30–50% 

of PwCF (113). Moreover, PwCF suffer from high incidence of esophageal, gastric, liver, 

gallbladder, and colon cancer, likely linked to chronic inflammation and tissue damage. 

Absence of CFTR-mediated bicarbonate and fluid transport in pancreatic ducts causes 

premature acid-activation of the digestive enzymes secreted by acinar cells and impairs flow 

of these enzymes into the duodenum, causing malabsorption and concomitant pancreatic 

inflammation and fatty replacement. These pathologic changes begin before birth and affect 

85% of PwCF, and the “collateral damage” in the endocrine pancreas leads to CF-related 

diabetes in 50% of PwCF, who present with worse lung disease, poorer nutritional status, 

and increased mortality. Similarly, absence of functional CFTR in the cholangiocytes 

lining the hepatic biliary ducts leads to cholestasis, microgallbladder, inflammation, and 

progressive liver fibrosis, another leading source of morbidity and mortality. All CF animal 

models present gastrointestinal abnormalities of different severities (114, 115) likely due 

to species-specific physiology as well as CFTR and “vicariate” ion channels’ expression 

patterns. In CF mice, rats, and rabbits the most noticeable GI phenotype is distal intestinal/ 

proximal colon obstruction - analogous to DIOS – which is particularly severe after 

weaning. These species are typically spared from neonatal MI, pancreatic, and hepatic 

complications (13, 16, 17, 23, 65, 66, 116), except for congenic C57BL/6J Cftrtm1Unc 

weaned on a liquid diet and aged to up to 2 years, that present with focal hepato-biliary 

lesions (48, 117). Administration of osmotic laxatives has been used to improve survival 

and DIOS symptoms in CF mice and other CF animal models, often in conjunction with 

targeted dietary modifications (23, 93, 118–120). Genetic “gut-correction”, i.e., gut-targeted, 

transgenic expression of functional CFTR, has also been used to overcome GI pathology in 

mice, ferrets, and pigs, although stunted growth (121), pancreas-related (9, 11) or metabolic 

abnormalities (122) still affect these gut-corrected models. GI disease in CF pigs more 

substantially mirrors human CF, including MI (100% penetrance, requiring surgery at birth), 

DIOS, diverticulosis, intestinal atresia/stenosis, gastric ulcerations (prophylactically treated 

with proton pump-inhibitors), alterations in intestinal muscle motility, severe pancreatic 

pathology detected at birth that requires life-long pancreatic enzymes replacement therapy 

(PERT), focal biliary cirrhosis, and micro-gallbladder (6, 8, 123, 124). Similar to CF 

pigs, CF ferrets have been instrumental in illuminating aspects of CF extra-pulmonary 

pathophysiology, and windows of opportunity for treatment. In CF ferrets, MI is slightly 

less penetrant than pigs (75%) and gradually transitions to DIOS; mild exocrine pancreas 

disease is present at birth but within a month progresses towards severe degeneration 

which requires PERT and causes bouts of inflammation and remodeling leading to glucose 

intolerance and CF-related diabetes (125). Studies with G551D ferrets suggest that perinatal 

DIOS and pancreatic degeneration can be prevented by in utero administration of ivacaftor. 

Conversely, postnatal ivacaftor withdrawal leads to resurgence of these lesions(12). The 
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recently developed CF sheep(20, 21) also exhibit the full range of human CF-like intestinal, 

pancreatic, and hepatic complications, and the severity of these lesions likely contribute to 

the dismal survival of this model (live-born lambs are considered non-viable due to severe 

MI). Although rabbit express CFTR in the pancreatic ducts and CF rabbit exhibit altered 

lipid metabolism, histologic analyses revealed only mild focal lesions which appear to be 

dependent on husbandry and overall health status(23).

Recent attention has been given to the influence of the CF gut microbiota on CF multi-organ 

pathology and susceptibility to colorectal cancer (126, 127). Bacterial overgrowth has been 

detected in the small intestine of neonatal and adult CF mice(128, 129) and in CF ferrets 

(92). Alterations in stool microbiota have been detected in young CF rabbits, although it 

is not clear if these were due to selective administration of osmotic laxative only to the 

CF rabbits (130). Of note, germ-free CF mice still develop DIOS, and conversely, the 

presence of inspissated mucosal secretions actively shapes the gut microbiota composition 

after experimental re-colonization of these mice(46).

Non-vertebrate CF models are also emerging as tools to study aspects of CF GI 

pathophysiology. Drosophila lacking the evolutionary conserved miR-263 fail to regulate 

ENaC function in the gut resulting in dehydration of the intestinal surface, enterocytes 

activation, and gut bacteria overgrowth (131), a phenotype similar to that of Drosophila 

lacking the CFTR ortholog CG5789(22). Finally, the kinetics and cell types involved in 

pancreatic degeneration have been studied in the imaging-friendly CF zebrafish(18).

Conclusions:

The breadth and depth of research efforts using CF animal models clearly indicates that 

their usefulness is continuously expanding, benefiting from current innovations in analytical 

and gene-editing technologies. On a concluding note, comparison of scRNAseq data across 

species suggests that main pathways involved in lung development and repair are conserved 

across species and can be queried through computational analyses regardless of differences 

in cell composition and species-specific gene expression(132), providing further confidence 

in the possibility to translate findings generated in animal models to human diseases.
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Glossary

PwCF People with CF

HEMT highly effective modulator drug therapies

μOCT microoptical coherence tomography

NTM Non-tuberculous mycobacteria
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scRNAseq single cell RNA sequencing

MI meconium ileus

GERD gastroesophageal reflex disease

DIOS distal intestinal obstruction syndrome

SIBO small intestine bacterial overgrowth

PERT pancreatic enzymes replacement therapy
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Table 1.

Visual synopsis of CF animal models discussed in this review as referenced to current CF research priorities 

(CFTR restoration, mucus biology, infection, inflammation, and GI disease). Green check mark indicates 

documented use through published reports (selected references are provided), red cross mark indicates 

untested or unsuitable application (for example, absence of spontaneous phenotype), blue question mark 
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indicates applications under development or restricted to a particular variant of the animal model (for example, 

humanized variant).
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