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Abstract: Nirmatrelvir is an orally available inhibitor of SARS-
CoV-2 main protease (Mpro) and the main ingredient of
PAXLOVID, a drug approved by FDA for high-risk COVID-19
patients. Recently, a rare natural mutation, H172Y, was found
to significantly reduce nirmatrelvir’s inhibitory activity. As the
COVID-19 cases skyrocket in China and the selective pressure of
antiviral therapy builds up in the US, there is an urgent need to
characterize and understand how the H172Y mutation confers
drug resistance. Here we investigated the H172Y Mpro’s con-
formational dynamics, folding stability, catalytic efficiency, and
inhibitory activity using all-atom constant pH and fixed-charge
molecular dynamics simulations, alchemical and empirical free
energy calculations, artificial neural networks, and biochemical
experiments. Our data suggests that the mutation significantly
weakens the S1 pocket interactions with the N-terminus and
perturbs the conformation of the oxyanion loop, leading to a
decrease in the thermal stability and catalytic efficiency. Impor-
tantly, the perturbed S1 pocket dynamics weakens the nirma-
trelvir binding in the P1 position, which explains the decreased
inhibitory activity of nirmatrelvir. Our work demonstrates the
predictive power of the combined simulation and artificial intel-
ligence approaches, and together with biochemical experiments
they can be used to actively surveil continually emerging mu-
tations of SARS-CoV-2 Mpro and assist the discovery of new
antiviral drugs. The presented workflow can be applicable to
characterize mutation effects on any protein drug targets.

Introduction

The COVID-19 pandemic is still ongoing and remains
a major global health threat. At the end of 2021, the
U.S. Food and Drug Administration (FDA) issued an Emer-
gency Use Authorization for Pfizer’s PAXLOVID to treat
mild-to-moderate COVID-19 cases1,2. In a recent clini-
cal trial for high-risk non-hospitalized adults with COVID-
193, PAXLOVID reduced the risk of progression to severe
disease by 89% as compared to placebo. This antiviral
drug is a ritonavir-boosted formulation of nirmatrelvir (PF-
07321332), an orally available inhibitor of the SARS-CoV-2
main protease (Mpro). Mpro, which is also known as 3CLpro
or Nsp5, is a cysteine protease essential to the viral replica-
tion process as it cleaves the majority of the polyproteins
pp1a and pp1ab into nonstructural proteins which form a
part of the viral replication complex4. Nirmatrelvir is a re-
versible covalent peptidomimetic inhibitor, which binds to
the active site of Mpro and inhibits its proteolytic activity5.
Although Mpro is one of the most conserved proteins among

coronaviruses4, the rapid and constant evolution of the viral
genome raises great concern of potential emergence of antivi-
ral resistance. Several biochemical studies, however, showed
that the prevalent Mpro mutants in the Variants of Concern
or Variants of Interest declared by the World Health Organi-
zation (WHO), such as G15S (Lambda), K90R (Beta), and
P132H (Omicron), are still susceptible to nirmatrelvir, with
IC50 values and catalytic efficiencies similar to the wild type
(WT) Mpro6–8. Nevertheless, biochemical assays of sev-
eral infrequent natural substitutions, e.g., H164N, H172Y,
and Q189K, are associated with reduced activities of nirma-
trelvir, among which H172Y caused the largest reduction in
the inhibitory activity, with a 233-fold increase in the Ki

value of nirmatrelvir according to a disclosure by Pfizer1.
Although H172Y is a rare mutation (found in only a few
entries of the database GISAID9), it may become favored
in the future under the selection pressure of nirmatrelvir
therapy. Thus, understanding the antiviral resistance mech-
anism is important and urgently needed.

Motivated by the aforementioned need, we investigated
the effect of the H172Y mutation on Mpro’s structure, sta-
bility, and binding with nirmatrelvir using a battery of
state-of-the-art computational approaches, including the
all-atom constant pH and fixed-charge molecular dynamics
(MD), alchemical free energy simulations, empirical folding
and binding free energy calculations, and artificial neu-
ral networks. As an experimental structure of the H172Y
Mpro was unavailable at the start of the study, the com-
putational work was solely based on an in silico mutated
structure model. The simulations revealed that the H172Y
substitution disrupts the S1 pocket interactions with the
N-terminus of the opposite protomer and perturbs the con-
formation of the oxyanion loop. The empirical calculations
predicted a decreased stability for the H172Y Mpro. The
empirical and alchemical free energy simulations predicted
a decreased binding affinity with nirmatrelvir. These results
were verified with the thermal stability, enzyme kinetics,
and inhibitory activity measurements. The MD data also
corroborate with the newly reported X-ray structure models
of H172Y Mpro10.

Results and Discussion

Molecular dynamics simulations of the free and
nirmatrelvir-bound H172Y Mpro. We first built a
structure model of H172Y Mpro based on the X-ray crys-
tal structure of WT Mpro in complex with nirmatrelvir
(PDB id 7vh8, resolution 1.58 Å, Fig. 1)5 using Modeller11.
The modeled H172Y Mpro structure is nearly superimpos-
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able with the WT, except for a slight displacement of the
backbone of Phe140, resulting in a 0.3 Å larger distance
between the backbone carbonyl oxygen of Phe140 and the
amino nitrogen of Ser1∗ (asterisk indicates the opposite pro-
tomer). The S1 pocket–Ser1∗ remain intact as in the WT-
Mpro (Fig. 1). The protonation states of H172Y Mpro were
determined using the generalized Born (GBNeck2) contin-
uous constant pH molecular dynamics (CpHMD) titration
simulations12,13 with the asynchronous pH replica-exchange
protocol for enhanced sampling14. The estimated pK a’s are
similar to those of the WT Mpro15 and the protonation
states at pH 7.5 remain the same (Table S1). Note, con-
sistent with other MD studies16 our previous work showed
that His172 in the WT Mpro is predominantly neutral at
physiological pH, and a switch to the charged state at low
pH results in a partial collapse of the S1 pocket15; such pH-
dependent behavior is removed by the Tyr172 substitution
in the mutant.

Starting from the computationally mutated structure and
with the CpHMD determined protonation states, we car-
ried out fixed-charge MD simulations of the free as well as
the nirmatrelvir-bound H172Y Mpros using the Amber20
program17. As a control, the free and ligand-bound WT
Mpros were also simulated starting from the same template
structure (PDB id 7vh8)5 and with the same settings. A
total of 10 simulations runs were conducted, including 3 tra-
jectories for the free WT/H172Y Mpros and 2 trajectories
for the ligand-bound WT/H172Y Mpros, with each trajec-
tory lasting 2 µs (Table S2). In all these trajectories, the
overall structure of the Mpro was stable and the inhibitor
remained bound (Fig. S1–S2). At the end of our study, one
free H172Y Mpro trajectory was also obtained starting from
our unpublished X-ray structure of H172Y Mpro (see later
discussion).
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Figure 1. Structure of the WT SARS-CoV-2 Mpro dimer.
Cartoon representation of the Mpro dimer bound to nirmatrelvir
(PDB ID 7vh85) with protomer A in tan and B (front of the im-
age) in grey. The three domains (I, II, and III) are labeled for each
protomer. The S1 pocket residues (Phe140, His163, Glu166, and
His172) of protomer A (highlighted in red and shown as sticks) in-
teracts with Ser1∗ from protomer B (shown in the van der Waals
sphere representation). Ser1∗ forms either a hydrogen bond or salt
bridge with Phe140, Glu166, and His173, while His163 forms aro-
matic stacking with Phe140. The inhibitor nirmatrelvir is shown
in green.

S1 pocket interactions with N-terminus∗ are desta-
bilized in the simulations of free H172Y Mpro. A
unique feature of the SARS-CoV/SARS-CoV-2 Mpros is the
interactions between the S1 pocket residues and the N-finger
(residues 1–9) of the opposite protomer (Fig. 1); these inter-
actions are believed to support the stability of the active site
and the Mpro dimerization4,18. In particular, three abso-
lutely conserved residues in the S1 pocket, Phe140, Glu166,
and His172 form either hydrogen bond (H-bond) or salt
bridge with the N-terminus of the opposite protomer (i.e.,
the backbone of Ser1∗, asterisk denotes the opposite pro-
tomer), according to the X-ray structures4,18 and the previ-
ous15 as well as the current WT Mpro simulations (Fig. 2a
and Fig. S3). We first consider the H-bond between the
backbone carbonyl group of Phe140 and Ser1∗. This H-
bond remained stable in all the WT Mpro simulations; in
contrast, it became disrupted for both protomers after 1 µs
in run 1 and almost immediately disrupted in run 2 and run
3 of the H172Y Mpro (Fig. 2b and Fig. S4–S6). The WT
Mpro simulations showed that the charged Glu166 and the
terminal amine of Ser1∗ form either a H-bond/salt bridge or
electrostatic interaction; in contrast, the Glu166–Ser1∗ in-
teraction became disrupted for both protomers after 1 µs in
run 1 and almost immediately disrupted run 2 and run 3 of
the H172Y Mpro (Fig. 2d and Fig. S4–S6).

We next consider the H-bond between the imidazole of
His172 and the N-terminal amine, which remained stable
in the WT Mpro simulations (Fig. 2c and Fig. S3). An
analogous H-bond for the H172Y mutant would be between
the hydroxyl group of Tyr172 and the N-terminal amine.
Indeed, this H-bond was occasionally sampled in all three
runs at the beginning and it was completely abolished after
1 µs in run 1 and remained infrequently sampled in run 2
and rarely sampled in run 3 (Fig. 2c and Fig. S4–S6).

A conserved aromatic stacking in the S1 pocket is
destabilized in the simulations of free H172Y Mpro.
The aromatic stacking between the absolutely conserved
Phe140 and His163 is a key interaction that stabilizes the
Mpro’s S1 pocket (Fig. 2a). This interaction was stable in
the WT simulations, with the center-of-mass (COM) dis-
tance just below 4 Å between the aromatic rings of Phe140
and His163 (Fig. 2e and Fig. S3). However, in simulation
run 1 the aromatic stacking became lost after about 1 µs,
with the stacking distance increased above 7 Å (Fig. S4 and
Fig. S7). The sudden breakage of the Phe140–His163 stack-
ing was concurrent with a ∼2-Å decrease in the COM dis-
tance between the oxyanion loop (residues 138–145)4,18,19

and Glu166 sidechain (Fig. S4) and a ∼1-Å increase in
the heavy-atom root-mean-square deviation (RMSD) of the
oxyanion loop (Fig. S8). The latter is related to the decrease
in the center of the mass distance between Glu166 and the
oxyanion loop (Fig. S4), reminiscent of the oxyanion loop
collapse observed in the simulations of the H172-protonated
WT Mpro15 as well as an X-ray structure of SARS-CoV
Mpro determined at pH 6 (PDB id 1uj1)18. In simulation
run 2, the stacking interaction was stable until ∼1.8 µs when
the stacking distance increased by ∼0.4 Å in protomer A;
however in protomer B, the aromatic stacking was occasion-
ally abolished, with the distance increasing beyond 15 Å
(Fig. S5). In simulation run 3, the Phe140–His163 stacking
was stable in protomer A; however, it was abolished in pro-
tomer B for∼500 ns (stacking distance above 7 Å) in the first
1 µs before the interaction was reestablished in the second
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Figure 2. N-terminus interactions with the S1 pocket are destabilized in the simulations of the free H172Y Mpro. a.
Visualization of the interactions between the S1 pocket and N-terminus∗ (Ser1∗) of the opposite protomer in the WT Mpro. Phe140,
His163, Glu166, His172, and Ser1∗ are shown as sticks. b,c,d. Probability distributions of distances between Phe140 (b), Glu166 (c),
or His/Tyr172 (d) and Ser1∗ from the WT and H172Y Mpro simulations. For each Mpro, all three trajectories were used with the first
1µs of each trajectory discarded. In b and c, distance was calculated from the N-terminal nitrogen of Ser1∗ to the backbone carbonyl
oxygen of Phe140 (b) or the nearest carboxylate oxygen of Glu166 (c). In d, distance was calculated from the backbone carbonyl oxygen
of Ser1∗ to the nearest imidazole nitrogen of His172 (WT) or from the N-terminal nitrogen of Ser1∗ to the hydroxyl oxygen of Tyr172
(H172Y). Interactions of S1 pocket(A) with N-terminus(B) are shown as solid lines and those of S1 pocket(B) with N-terminus(A) are
shown as dashed lines. Similar disruption/destabilization was observed in the simulations of the nirmatrelvir-bound Mpro (Fig. S10 and
S11).

1 µs; nonetheless, the COM distance occasionally increased
to 9 Å (Fig. S6). Furthermore, in times when the stacking
interaction was intact, the most probable COM distance be-
tween the two aromatic rings is increased by nearly 0.5 Å
(Fig. 2e and Fig. S7). Thus, the simulations suggest that the
H172Y mutation destabilizes the conserved Phe140–His163
interaction crucial for the stability of the S1 pocket.

Destabilization of the aromatic stacking might be
related to a nonnative H-bond between Phe140 and
Tyr172. In comparing the H172Y and WT trajectories,
we noticed that the hydroxyl group of Tyr172 can occasion-
ally accept a H-bond from the backbone amide nitrogen of
Phe140, whereas the analogous H-bond between the imida-
zole of His172 and the carbonyl of Phe140 is not possible.
Interestingly, around the same time as the aromatic stacking
between Phe140 and His163 became disrupted in the simu-
lation run 1 of H172Y Mpro, the distance between the hy-
droxyl oxygen of Tyr172 and the amide nitrogen of Phe140
suddenly decreased (Fig. S4), which resulted in a significant
increase of the H-bond occupancy from about 10% to about
45% (Fig. S9). A representative structure obtained from
clustering analysis confirms a perturbed S1 pocket, whereby
the Phe140–His163 stacking is abolished and Ser1∗ is moved
away from the S1 pocket; however, Tyr172 is in a tight H-
bond with the backbone of Phe140 (Fig. S10).

We hypothesized that a strong Phe140–Tyr172 H-bond
would disrupt the aromatic stacking between Phe140 and
His163. To test this hypothesis, we calculated the two-
dimensional probability densities of the Phe140–His163 and
Phe140–Tyr172 distances. The density map shows a max-
imum located around the Phe140–His163 and Phe140–
Tyr172 distances of 7.5 Å and 3.0 Å, respectively (Fig. S10),
representing a perturbed state in which the Phe140-His163
stacking is disrupted but a stable H-bond between Phe140–
Tyr172 is formed. The density map also shows a local den-
sity maximum located at the Phe140–His163 and Phe140–

Tyr172 distances of 4 Å and 3.1–3.6, respectively (Fig. S10),
representing a state in which the aromatic stacking is in-
tact and an occasional H-bond is formed between Tyr172
and Phe140. This analysis supports the hypothesis that the
backbone interaction of Phe140 with Tyr172 destabilizes the
sidechain interaction of Phe140 with His163, which may be
responsible for the partial collapse of the oxyanion loop in
run 1 (Fig. S4 and S8). However, since the complete disrup-
tion of the aromatic stacking was only observed in one of the
three trajectories, this hypothesis requires further testing.

Empirical energy calculations predicted decreased
stability upon the H172Y mutation. Given the desta-
bilization of the dimer interface and possibly the S1 pocket
interactions, we wondered if the H172Y mutation destabi-
lizes the Mpro. We addressed this question by calculating
the folding free energy change upon mutation (∆∆Gfold) us-
ing the ddG monomer application20 in the Rosetta software
suite. Calculations (Fig. 3) for the Mpro dimers showed
that the folding free energy of the mutant is about 9.9 ± 0.9
kcal/mol higher than the WT, mainly due to the destabiliz-
ing electrostatic (7.2± 1.0 kcal/mol) and H-bonding energies
(4.8 ± 0.8 kcal/mol), and to a smaller extent the unfavorable
van der Waals energies (2.2 ± 1.1 kcal/mol). Calculations
for the Mpro monomers gave a similar ∆∆Gfold as for the
dimer; the difference of 1.3 kcal/mol is within the error bar
(Fig. 3). The contributions to the destabilization also come
from the electrostatic, H-bonding, and van der Waals ener-
gies. This analysis suggests that the Mpro dimer destabiliza-
tion upon mutation can be attributed to the destabilization
of the monomers.

Next we asked if the stability of the dimer interface is
also affected by the mutation. If the mutation effect was re-
stricted to the monomers, then the total ∆∆Gfold as well
as the individual contributions would be the sum of the
monomer energies. If however, ∆∆Gfold of the dimer is sig-
nificantly higher (more positive) than that of the monomers,
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one could conclude that the dimer interface is destabilized.
The similar total stability change for the dimer and sum
of monomers does not suggest this is the case; however,
the individual terms are different (Fig. 3). Most notably,
the solvation energy of the dimer is less favorable than the
monomers by 5.8 ± 2.0 kcal/mol, which balances out the
less unfavorable van der Waals energy (5.9 ± 1.8 kcal/mol).
Other terms are different as well, e.g., the electrostatic en-
ergy of the dimer is more unfavorable than the monomers
(see later discussion). Thus, the energetics of the dimer in-
terface is affected by the mutation although the net effect
may be negligible.

To rationalize the above calculations, we examined the
Rosetta generated structural models for the H172Y mutant
and compared them with those for the WT Mpro dimer.
The largest change is in Glu166, which upon losing the H-
bond partner His172 is rotated away from Tyr172 (χ3 angle
changed from -40◦ to -80 or 80◦ in the top three scored
structures). This may explain the increased distance be-
tween Glu166 and the N-terminus of the opposite protomer
(up to 0.5 Å for the top three scored structures), which is
consistent with the MD trajectories (Fig. 2c) and the more
unfavorable electrostatic energy of the dimer as compared
to the monomers upon mutation (Fig. 3). Replacing His172
with the larger Tyr172 also moved the Phe140 backbone
amide nitrogen closer to the hydroxyl oxygen of Tyr172 (in
comparison to the imidazole nitrogens of His172), with the
distance of 3.35–3.65 Å between Phe140:N and Tyr172:OH
in the top three scored structures. Although these distances
do not indicate H-bonding, they do not exclude the pos-
sibility of transient (or strong) H-bond formation observed
in the MD trajectories. As to the aromatic stacking be-
tween Phe140 and His162, the Rosetta generated structures
showed an increase of 0.15 Å between the COM of the two
rings in the mutant, which, albeit small, is consistent with
the destabilization observed in the MD trajectories.
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Figure 3. Changes in the folding free energy
∆∆Gfold(WT → H172Y) calculated using the Rosetta
ddG monomer application20. The total ∆∆Gfold for the
dimer (solid) and sum of monomers (striped) as well as the
individual contributions are shown. Positive values indicate
destabilization upon mutation.

S1 pocket interactions with N-terminus∗ are also
destabilized in the simulations of the nirmatrelvir
bound Mpro. To probe the effect of H172Y mutation on
the Mpro’s affinity for nirmatrelvir, we first performed 2-µs
simulations of the WT and H172Y Mpros in complex with
nirmatrelvir (Table S1). In these simulations, nirmatrelvir
remained stably bound with the Mpro (Fig. S1) and the

aromatic stacking between Phe140 and His163 was intact;
however, similar to the free Mpro, the N-terminus interac-
tion with Phe140 was completely lost and those with Glu166
and Tyr172 were significantly weakened in both protomers
(Fig. S11 and S12). Surprisingly, the RMSD of the oxyanion
loop was unstable (Fig. S8). These data are consistent with
the simulations of the free H172Y Mpro, and suggest that
the S1 pocket in the inhibitor-bound form is also destabilized
by the mutation.

Perturbation of the P1 site and formation of the
Phe140-Tyr172 nonnative hydrogen bond in the sim-
ulations of the nirmatrelvir-bound Mpro. To further
probe the stability of nirmatrelvir binding, we compared the
distributions of nirmatrelvir’s RMSD with respect to the X-
ray structure (PDB id 7vh8)5 calculated from the trajecto-
ries of the WT and H172Y Mpros. The peak is slightly right
shifted for the H172Y relative to the WT simulations (Fig.
S13), which indicates that nirmatrelvir has a small confor-
mational change when complexed with the mutant Mpro.
Calculations of the atom-based protein-ligand contact dis-
tances showed that the change mainly affects the γ-lactam
ring in the P1 position, whereby the amide nitrogen forms
a H-bond with the carboxylate oxygen of Glu166 in the X-
ray structure (PDB id 7vh8)5. This H-bond was stable in
the WT simulations, with an occupancy over 60%, but it
was significantly weakened in the H172Y simulations, with
an occupancy about 20% (Fig. S13). On the other hand,
the H-bond between the lactam nitrogen and the backbone
carbonyl oxygen of Phe140 was stabilized in the mutant sim-
ulations, with an occupancy increase of about 30% as com-
pared to the WT simulations (Fig. S13). This analysis is
consistent with the representative structure from the clus-
tering analysis of the H172Y simulations, which showed that
the H-bond between the lactam nitrogen and Glu166 is ab-
sent (Fig. S13). Importantly, similar to the ligand-free sim-
ulation run 1, the nonnative H-bond between Tyr172 and
Phe140 is formed (Fig. S13). This consistency suggests that
the perturbation of the S1 pocket by the H172Y mutation
is responsible for the change in the P1 site binding, which
we speculate may contribute to the decreased affinity for
nirmatrelvir.

Free energy simulations and empirical calcula-
tions predict decreased nirmatrelvir affinity for the
H172Y Mpro. To further examine the mutation effect
on the affinity of nirmatrelvir-Mpro noncovalent binding,
we calculated the binding free energy change upon muta-
tion, which according to the thermodynamic cycle is the
same as the difference in the mutation free energies of the
free and ligand-bound forms (Fig. 4, top). We applied two
methods to calculate the mutation free energies. First, we
conducted the alchemical free energy perturbation (FEP)21

simulations using the implementation22,23 in the NAMD2
package24. Both the WT-to-mutant and mutant-to-WT
transformations were performed, although the latter may
be less accurate due to the use of the computationally mu-
tated structure. Both transformation predicted the mutant
to have a significantly decreased binding affinity (Fig. 4,
bottom). The more reliable WT-to-mutant transforma-
tion gave the values of 2.7±0.19 kcal/mol for protomer A
and 2.2±0.17 kcal/mol for protomer B. We also applied an
empirical approach to calculate the mutation free energies
using Rosetta’s flex ddG protocol25. These calculations also
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Transformation ∆G(apo) ∆G(holo) ∆∆Gbind
Alchemical free energy perturbation (FEP)

WTA →MutA 18.7±0.17 21.4±0.21 2.7±0.19
WTB→MutB 18.7±0.17 20.9±0.16 2.2±0.17
MutA →WTA -17.9±0.19 -19.2±0.21 -1.3±0.20
MutB→WTB -20.4±0.17 -21.7±0.17 -1.3±0.17
Empirical energy function approach Rosetta Flex ddG

WT→Mut 10.5±1.7 10.8±1.7 0.29±0.14
Mut→WT 10.7±2.0 10.4±2.1 -0.3±0.13

WT + inhibitor WT—inhibitor

Mutant + inhibitor Mutant—inhibitor

ΔGbind(WT) 

Δ
G

m
ut

at
io

n
(a

po
)

ΔGbind(Mutant) 

Δ
G

m
utation (holo)

Figure 4. Top. Thermodynamic cycle used to calculate the
difference in the noncovalent binding free energy between the
mutant and WT Mpros: ∆Gbind(Mutant) - ∆Gbind(WT)=
∆Gmutation(holo) - ∆Gmutation(apo). Bottom. FEP and empiri-
cal calculations of the change in nirmatrelvir binding free energy
of Mpro upon the H172Y mutation. For FEP calculations, trans-
formations were performed on each protomer separately, whereas
Rosetta calculations transformed H172 in both protomers simul-
taneously. ∆∆Gbind calculated from the transformation from mu-
tant to WT is less accurate, as it was initiated from the modeled
mutant structure. Each calculation was repeated a number of
times (see Table S2), the mean and standard errors are reported.

predicted a lower binding affinity for the mutant, although
to a smaller extent (about 0.3 kcal/mol) as compared to the
more accurate FEP calculations.

Artificial neutral network identified conformational
changes of the oxyanion loop region upon mutation.
To further analyze the MD trajectories to discern the muta-
tion effect on the conformational dynamics of the Mpro, we
utilized a newly developed artificial neural network called
DiffNets26, which makes use of autoencoder and classifier to
detect structural differences of protein variants based on MD
trajectories (Fig. 5a). We created two DiffNets to discern
the effect of H172Y mutation on the free and ligand-bound
Mpros. Positions of C, CA, CB, and N atoms of the WT
and H172Y Mpros were fed as input into two encoders, with
atoms near the mutation site fed into a separate encoder.
These positions were then encoded to a latent (reduced di-
mensional) space followed by reconstruction to reproduce
the input positions (Fig. 5a and Fig. S14). A classifier
was applied to the latent space to determine if the frame
comes from a WT or H172Y trajectory (Fig. 5b). clustering
was then applied in the latent space to identify pairwise dis-
tances that are most correlated (largest R2 values) with the
predicted labels (WT vs. H172Y). Interestingly, for both the
free and ligand-bound forms, the Cα distances most corre-
lated with the labels involve Gly138, which is the first residue
of the oxyanion loop (residues 138–145, Fig. 5c and Table
S4). The distance from Gly138 to Ser144 is 1 Å greater in
the H172Y relative to WT trajectories of the ligand-bound
form (Fig. 5d). This distance change is consistent for both
protomers in both trajectories (Fig. S15). In the free Mpro,

the shift in the Gly138–Ser144 distance based on the aggre-
gated trajectories and protomers is subtle (Fig 5d); however,
the shift is very pronounced for protomer B in two (out of
three) trajectories (Fig. S15). The distance from Gly138 to
Thr135, which is in the unstructured region preceding the
oxyanion loop, is also greater by about 1 Å for the H172Y
vs. WT trajectories in both free and ligand-bound enzyme
forms (Fig. 5d and Fig. S16). These data suggest that the
oxyanion loop region is more extended upon the H172Y mu-
tation.

Experiments confirm that the H172Y mutation re-
duces Mpro’s stability, catalytic activity, and sus-
ceptibility to nirmatrelvir. Following the simulation
study, we measured the thermal stability and enzyme ki-
netics of WT and H172Y Mpros as well as the IC50 val-
ues of nirmatrelvir (Fig. 6). Thermal-shift assays were used
to determine the unfolding temperatures (Tm) of the WT
and mutant Mpros (Fig. 6a). The Tm for the WT was
found to be 58.11 ◦C, whereas that of the H172Y Mpro
was lower by 4.16◦C (Fig. 6d), indicating a destabiliza-
tion of the enzyme. According to an empirical formula27

∆G = 0.029N
Tm

(Tm − 282.6)2 kJ/mol, where N is the number
of residues and Tm is in Kelvin, the decrease of Tm cor-
responds to roughly 2.3 kcal/mol decrease of unfolding free
energy, which is in qualitative agreement with the prediction
by the Rosetta calculation (Fig. 3).

The reaction rate measurement using the FRET assay
revealed a significant decline in the catalytic efficiency for
the H172Y relative to the WT Mpro (Fig. 6b and d).
The kcat/Km value obtained for the WT enzyme is 5355.3
M−1s−1, while that for H172Y is 863.3 M−1s−1, i.e. only
16% enzyme activity remains in the FRET assay, compared
to the WT. The kcat value (enzyme turnover number) for
H172Y is 0.69 s−1, which is only 27% of the WT value. The
Michaelis constant Km value obtained for H172Y is 802.7
µM, which is 69% larger than the value for the WT, indicat-
ing that the mutation significantly reduces the affinity for
substrate binding.

The significant decrease in the enzyme efficiency (de-
creased turnover number and substrate binding) may be ex-
plained by the extension of the oxyanion loop (increase of the
distance between Gly138 and Ser144) (Fig. 5d). The latter
may be attributed to the loss of the N-terminus interaction
with Phe140 (Fig. 2b). Since the oxyanion loop forms the
wall of the S1 pocket, a subtle conformational change may
reduce the substrate binding affinity. Since the oxyanion
hole residues Gly143 and Cys145 directly interact and stabi-
lize the reaction intermediate18, this conformational change
may also perturb the transition state and consequently the
kinetics of enzyme catalysis.

The inhibitory activity of nirmatrelvir was followed us-
ing the FRET assay (Fig. 6c and d). The IC50 against the
H172Y mutant is 344.2±89.0 nM, which is 24.2 times higher
than that for the WT protein. Converting the IC50 values to
Ki values using the web server28 gave a similar ratio of 24.5
times for theKi values of H172Y vs. WT, which corresponds
to a free energy change of about 1.9 kcal/mol. This reduc-
tion of binding affinity by 1.9 kcal/mol is in good agreement
with the FEP estimated values of 2.3–2.7 kcal/mol and con-
sistent with the empirical calculations although the magni-
tude of ∆∆Gbind is much smaller (about 0.3 kcal/mol, Fig. 4
bottom).
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Figure 5. Artificial neural network detects mutation-induced conformational changes to the oxyanion loop. a. Schematic architecture
of the autoencoder DiffNets26. which was used to detect differences between protein structures from two trajectories. b. Classification
(WT vs. H172Y) of the free (dotted) and ligand-bound (solid) trajectories. The three free and two ligand-bound WT (blue) or H172Y
(brown) trajectories were aggregated. c. Zoomed-in view of the oxyanion loop (red, residues 138–145; among them 143–145 form the
oxyanion hole) and the three residues (licorice) involved in the important distances (Gly138–Ser144 and Gly138–Thr135) that distinguish
between the WT and H172Y trajectories (i.e., highly correlated with the predicted labels). The oxyanion hole is comprised of Gly143,
Ser144, and Cys145. d. Probability distributions of the Cα distances from Gly138 to Ser144 (left) and Thr135 (right) from the free
(dotted) or ligand-bound (solid) WT (blue) and H172Y (brown) Mpro trajectories. The aggregate trajectories including both protomers
were used. Data for individual trajectories and protomers as well as other distances involving Gly138 are given in Figures S14 and S15.

Additional simulations based on a X-ray struc-
ture model of H172Y Mpro. In the final stage of the
manuscript preparation, we performed an additional fixed-
charge MD simulation based on an unpublished preliminary
X-ray structure model of H172Y Mpro (Table S2). During
the 2-µs simulation, the N-terminus h-bond/salt bridge in-
teractions with Phe140 and Glu166 were significantly desta-
bilized in protomer A and completely disrupted in protomer
B (Fig. S16). In protomer B, the disruption of the S1
pocket–N-terminus interactions is concomitant with a small
(about 0.3 Å) increase in the Phe140-His163 aromatic stack-
ing distance (Fig. S16) and a nearly 1-Å increase in the
RMSD of the oxyanion loop (Fig. S17). Consistently, the
distances between Gly138 and Ser144/Thr135 in both pro-
tomers are increased (by about 1 Å) compared to the WT,
consistent with the simulations based on the computation-
ally mutated H172Y Mpro structure (Fig. S18). In fact,
for protomer B, the distributions of the two distances are
very similar between this new simulation and those based
on the modeled structure of the H172Y Mpro. Thus, the
additional simulation based on a different starting structure
confirmed the disruption of the S1 pocket–N-terminus∗ in-
teractions, the conformational change of the oxyanion loop,
and the destabilization of the Phe140-His163 stacking.

Our MD data are consistent with the new X-ray
structures of H172Y Mpro. As we were preparing
the manuscript, a bioRxiv paper by Hu et al.10 was pub-
lished that reports the X-ray structures of the free and in-
hibitor GC-376-bound H172Y Mpros. In the ligand-free X-
ray structure (PDB id: 8d4j)10, the salt bridge between
Glu166 and the N-terminus∗ is lost in one protomer, and
the H-bond between Phe140 and the N-terminus∗ is lost

in both protomers (Table S3). These data corroborate
the simulation finding of the abolished interactions between
Phe140/Glu166 and the N-terminus∗ (Fig. 2). Note, in the
GC376-bound structure (PDB id: 8d4k)10, the position of
Ser1 is not resolved. Another agreement between simula-
tion and the reported X-ray structures of H172Y Mpro is
with regards to the increased Ca distances of Gly138–Ser144
and Gly138–Thr135. They are respectively 0.2/0.2 and
0.2/0.5 Å greater in the free/GC376-bound H172Y (PDB
8d4j/8d4k)10 as compared to the WT Mpro (PDB 7vh8)5

structure. Thus, the X-ray structure models are in support
of a mutation-induced conformational change of the oxyan-
ion loop.

The present biochemical data are consistent with the
reported data. Hu et. al10 reported that the kcat/KM

value of the H172Y Mpro is 13.9-fold lower than the WT,
compared to the 6.2-fold decrease determined in this work,
thus confirming a significant reduction in the catalytic effi-
ciency upon mutation. We note that the impact of mutation
on Mpro’s cleavage activity likely varies depending on the
substrate. Thus, the difference in the kcat/KM value reduc-
tion may be due to the different FRET substrate used in the
experiments. Hu et. al10 also reported that the Ki value of
nirmatrelvir is >113.7 fold higher for the H172Y than the
WT Mpro, compared to the roughly 24.5-fold increase in
the Ki value estimated28 from the 24-fold increase in the
IC50 value determined in this work. Thus, both experiments
confirmed a significantly reduced affinity and activity of nir-
matrelvir against H172Y relative to the WT Mpro.

Concluding Discussion
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ba

Mpro Km Vmax kcat kcat/Km Tm IC50
(μM) (μM/min) (s-1) (M-1·s-1) (°C) (nM)

WT 474.3±105.8 7.62±1.16 2.54±0.39 5355.3±1447.8 58.11±0.01 14.2±4.4 

H172Y 802.7±273.5 16.64±4.64 0.69±0.19 863.3±380.3 53.95±0.03 344.2±89.0 

c

d

Figure 6. H172Y Mpro has reduced thermal stability, enzyme activity, and susceptibility to nirmatrelvir as compared
to the WT. a. Melting curves of the WT (red) and H172Y (blue) Mpros based on the temperature profile of the first derivative of
the ratio of the autofluorescence at 350 and 330 nm. b. Reaction rate vs. substrate concentration for the WT (red) and H172Y (blue)
Mpros using the FRET assay. c. Inhibition rate of nirmatrelvir vs. its concentration (µM) for the WT (red) and H172Y (blue) Mpros.
d. Summary of the kinetic constants, melting temperatures of the Mpros, and the IC50 values of nirmatrelvir.

Employing an in silico structure model and a battery
of state-of-the-art computational techniques, including con-
stant pH and fixed-charged MD, alchemical free energy sim-
ulations, empirical energy calculations as well as artificial
neural networks, we made prospective predictions regard-
ing how structure, dynamics, folding stability, and inhibitor
binding of SARS-CoV-2 Mpro change upon the H172Y mu-
tation. The MD simulations of the free and nirmatrelvir-
bound Mpros showed that the mutation disrupts or signif-
icantly destabilizes the interactions between the S1 pocket
residues Phe140, Glu166, and His172 and the N-terminus
of the opposite protomer. The conserved aromatic stacking
between Phe140 and His163 in the S1 pocket was also desta-
bilized upon mutation. The analysis using artificial neural
network found that the oxyanion loop is extended for both
free and ligand-bound H172Y Mpros. Remarkably, these re-
sults are in agreement or consistent with the newly reported
X-ray structures of the free and GC376-bound H172Y Mpro
(PDB ids: 8d4j and 8d4k)10 as well as our preliminary struc-
ture model of the H172Y Mpro (Hilgenfeld and coworkers,
unpublished). The simulation data may explain the signifi-
cant (84%) reduction in the kcat/Km value due to the H172Y
mutation. In particular, the conformational change of the
oxyanion loop that stabilizes the reaction intermediate may
explain the significant (73%) decrease in the kcat value (de-
creased enzyme turnover number), although quantum me-
chanical/molecular mechanics (QM/MM) calculations may
offer more detailed clue regarding the perturbation of kinet-
ics. The destabilization of the S1 substrate pocket as well
as the change of the oxyanion loop may explain the signif-
icant (69%) increase in the Km value which represents the
decreased substrate binding affinity.

The Rosetta20 predicted folding stability decrease upon
mutation is consistent with the reduced Tm value deter-

mined using the thermal-shift assays. The energy analysis
suggested that the stability decrease is largely due to the
unfavorable change of the electrostatic and H-bond energies
of the monomers, consistent with the MD data. Both the
Rosetta energy calculations25 and the more accurate FEP
simulations predicted that the H172Y Mpro has a reduced
binding affinity for nirmatrelvir, which is consistent with
the significant increase in the IC50 value determined by us
or the Ki value determined by Wang and coworkers10 and
by Pfizer’s disclosure1. The simulation data suggested that
the decreased binding affinity between nirmatrelvir and the
H172Y Mpro may be attributed to the dynamical perturba-
tion of the S1 pocket, which weakens the H-bond between
Glu166 and the γ-lactam nitrogen in the P1 position. The
MD data suggests that Phe140 plays a critical role here, as
its interaction with the N-terminus∗ is completely abolished,
which may drive the conformational change of the oxyan-
ion loop. The perturbation to Phe140 may also explain the
weakened stacking interaction with His163 and the nonna-
tive H-bond formation with Tyr172. The destabilization of
the interaction between Glu166 and the N-terminus∗ may
be a major contributor to the weakened interaction with
the γ-lactam nitrogen of nirmatrelvir at the P1 position.
This finding also suggests that optimization of the γ-lactam
moiety may offer a route to improve the antiviral potency.
rescue function while maintaining antiviral resistance (e.g.,
as demonstrated by a recent experiment10). The recent ex-
plosion of COVID-19 cases in China and wide-spread use
of nirmatrelvir therapy in the US raise the odds of resis-
tance mutations. On that note, our work demonstrates the
predictive power of combined molecular simulation and arti-
ficial intelligence approaches, and together with biochemical
experiments they provide an important tool for the active
surveillance of continually emerging SARS-CoV-2 Mpro mu-
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tations and the discovery of new antiviral inhibitors. The
presented workflow is general and can be applied to charac-
terize mutation effects on any protein drug targets.

Computational methods and protocols

Structure preparation for molecular simulations.
The Modeller software11 was used to generate an initial
structural model of the H172Y mutant of SARS-CoV-2
Mpro, with the X-ray crystal structure of the wild-type
(WT) Mpro in complex with nirmatrelvir (PDB id 7vh8)5 as
a template. Next, the WT and H172Y Mpro were prepared
for MD simulations using the LEAP utility of Amber17, with
the termini left free. The protein was represented by the Am-
ber ff14SB force field29 and water molecules by the TIP3P
model30.

Continuous constant pH molecular dynamics
(CpHMD) titration simulations. The protonation
states of the mutant H172Y Mpro were determined us-
ing the GPU-accelerated GBNeck2 implicit solvent CpHMD
titration13 with asynchronous pH replica exchange14, as
in the previous CpHMD simulations of the WT Mpro15.
Briefly, 9 replicas were used over pH range 5 to 9 with an
interval of 0.5 pH unit. Each replica was simulated at 300 K
with an ionic strength of 0.15 M and an effectively infinite
cutoff (999 Å) for nonbonded interactions. Each replica was
run for 30 ns, with an aggregate sampling time of 270 ns.
All sidechains of Asp, Glu, His, Cys, and Lys were allowed
to titrate, with the model pK a’s of 3.8, 4.2, 6.5, 8.5, and
10.4, respectively. More details of the simulation settings
are given in Ref.15

Fixed-charge molecular dynamics simulations. The
octahedral water box was used to solvate the protein, with
a distance of at least 11 Å between the protein heavy atoms
and the water oxygen atoms at the edges of the box. Sodium
and chloride ions were added to neutralize the system and
create an ionic strength of 150 mM. For the nirmatrelvir-
bound Mpro simulations, the reversible bound model in the
X-ray structure was used. The ligand parameters were gen-
erated using the general Amber force field (GAFF2) with
partial charged derived using the AM1 BCCmethod31.32 All
simulations were carried out using Amber2017. First, energy
minimization with a harmonic restraint of 100 kcal/mol/Å2

on the protein heavy atoms was performed for 10000 steps
using the steepest descent algorithm followed by 10000 steps
using the conjugate gradient algorithm. Next, the system
was heated from 100 K to 300 K using the same harmonic
restraint in the canonical ensemble by 1 ns. Five equili-
bration stages using harmonic forces of 10, 5, 2, 1, and 0.1
kcal/mol/Å2 were then performed for 50 ns in the NPT en-
semble. The pressure was maintained at 1 atm using the
Berendsen barostat with a relaxation time of 0.1 ps, and the
temperature was maintained at 300 K using the Langevin
thermostat with a collision frequency of 1.0 ps−1.17 The
particle-mesh Ewald33 method was used to treat the long-
range electrostatics with a grid spacing of 1 Å. A cutoff of
8 Å was used for van der Waals interactions. SHAKE was
used to increase the time step to 2 fs. Finally, the production
simulations were performed for 2 µs for both the ligand-free
and nirmatrelvir-bound WT and H172Y Mpros. A summary
of the simulations is given in Table S2.

Trajectory analysis using artificial neural network.
We applied DiffNets26, an artificial neural network with a
split-autoencoder architecture for detecting structural dif-
ferences between the MD trajectories of protein variants.
DiffNets26 follows the autoencoder architecture: an encoder
collapses the high dimensional input into a (low dimensional)
latent space, then a decoder reconstructs the points in latent
space back to the original input (Fig. 5). Two additional
functions are added. First, the user labels trajectories ei-
ther 0 or 1, based on a binary quantity (activity, mutation,
etc.); the latent space is then used by a classifier in order to
predict the input label. This classifier is trained alongside
the encoding and decoding layers and the predicted label is
utilized in the loss function in order to separate the labels
on the latent space. Second, the atomic coordinates are sep-
arated based on their proximity to the mutation site and fed
into separate encoding layers. The resulting latent variables
are then concatenated to form the full latent space used by
the decoder.

Two separate DiffNets were built on either the free or
the ligand-bound WT and H172Y fixed-charge trajectories
(Table S2). First, the trajectories of WT (two) and H172Y
(three) were strided every 1 ns to generate frames for each
protein (2,000 ×3 for the free, 2,000×2 for the ligand-bound
state) followed by the extraction and alignment of the coor-
dinates of the N, C, CA, and CB atoms (2398 total). After
the mean was subtracted from each frame and the trajec-
tory was whitened, the frames were used to train a split-
autoencoder, where the atoms within 10 Å of any atom
of H/Y172 (approx. 700 atoms) were fed to a supervised
encoder while the rest of the protein was fed to a second
unsupervised encoder. For the supervised autoencoder, a
classification task (label 0 for WT and 1 for H172Y muta-
tion) was added to the latent space. 90% of frames were
used for training, while 10% were reserved for testing. Both
encoders encode the positions of the input frame into a la-
tent space that is joined to from a vector of 50 components.
This latent space is then clustered into 200 clusters using
a k-centers/k-mediods hybrid algorithm, and the centroid
of each cluster is decoded to produce a reconstructed rep-
resentative frame. These frames are then used to calculate
pairwise distances between CA atoms within 15 Å of either
mutation site. The correlation between each distance and
the predicted label of the frame was calculated, and the
top 10 most correlated distances (with R2 values ranging
0.93-0.85) were designated significant distances (Table S3)
and visualized using PyMOL34. The significance of these
distances was verified by plotting and comparing the distri-
butions of the real distances from the trajectory frames of
the WT and H172Y Mpros. Further details of the protocol
are given in Ref26. The expectation maximization algorithm
which adjusts target labels during training was turned off,
as it is not relevant for our task of interest which is to use
latent space to recognize structural features related to the
classification labels (WT vs. mutant).

Empirical calculations of protein stability changes.
The changes of the folding free energies (∆Gfold = −∆Gstability)
of the apo Mpro dimer and monomers upon mutation was
calculated using the ddg monomer application20 within the
Rosetta software suite. In this method, an ensemble of
structure models of the mutant was generated from the
input WT structure (PDB id 7vh8, with nirmatrelvir re-
moved)5. The change in the folding free energy due to
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mutation (∆∆Gfold) was calculated as the difference in the
Rosetta energies between the WT and mutant structures. A
positive value indicates a decreased stability from the mu-
tation. The high-resolution protocol (with both backbone
and sidechain relaxation) was followed20. First, Rosetta’s
standard side-chain optimization module was used to op-
timize the input WT structure (PDB 7vh85); then three
sequential minimization calculations were performed where
the Lenard-Jones potential was scaled by 0.1, 0.33, and
1.0 respectively. Distance restraints on Calpha atoms were
applied to prevent the backbone from deviating from the
initial structure. This process was repeated 50 times for
both the WT and (generated) H172Y Mpro dimer struc-
tures, then the average score for each system was calculated
using the REF2015 energy function35. This calculation was
also performed using monomeric Mpro, where the second
chain of 7vh8 was removed.

Calculation of ligand binding free energy changes us-
ing free energy perturbation (FEP). The alchemical
FEP method21,36 was used to calculate change in the nonco-
valent binding free energy going from the WT to the H172Y
mutant Mpro: ∆∆Gbind = ∆Gbind(Mutant)−∆Gbind(WT),
which according to the thermodynamic cycle (Fig. 4) can
be calculated from the difference in the mutation free en-
ergies: ∆∆Gbind = ∆Gmutation(holo) − ∆Gmutation(apo).
The last two terms can be calculated via FEP as the free
energies of transforming His172 to Tyr172 in the ligand-
bound and ligand-free forms. Note, the binding free en-
ergy difference is related to the ratio of the Kd values,
∆∆Gbind = −RTln(Kd,Mut/Kd,WT).

The FEP simulations were performed using NAMD222–24.
The X-ray structure of WT Mpro in a noncovalent complex
with nirmatrelvir (PDB id 7vh8, the noncovalent binding
mode)5 was used to create a model H172Y mutant as in the
fixed-charge simulations. The proteins were represented by
the CHARMM36m force field37,38, and the noncovalently
bound nirmatrelvir was represented by the CGenFF force
field obtained through the Paramchem server39,40. To al-
low an integration timestep of 2 fs, all bonds and angles in-
volving hydrogen atoms were constrained using the SHAKE
algorithm41. The temperature was maintained at 310 K
by Langevin dynamics with a damping coefficient γ of 1
ps−1, and the pressure was controlled at 1 atm by the Nosé-
Hoover Langevin piston method42,43. The van der Waals
interactions were smoothly switched off from 10 to 12 Å us-
ing a switching function. The particle mesh Ewald (PME)
method33 was used to calculate long-range electrostatic en-
ergies with a sixth-order interpolation and a grid spacing of
1 Å. Each starting structure (WT or mutant Mpro in com-
plex with nirmatrelvir) was equilibrated for a total of 52 ns
whereby the protein and ligand were restrained in the initial
2 ns simulation (0.25 ns with heavy atom restraint at 2.5
kcal/mol Å2, 0.25 ns with heavy atoms of the protein and
ligand restrained at 1.25 kcal/mol Å2, 0.5 ns with backbone
atoms of protein and heavy atoms of the ligand restrained
at 1.25 kcal/mol Å2, and 1 ns with Cα atoms of the protein
and heavy atoms of the ligand restrained at 1.25 kcal/mol
Å2). The equilibrated structure was used for the FEP simu-
lations. The starting structures for the apo FEP simulations
were generated by deleting the ligand from the 50-ns equi-
librated holo structures. In total, there were 8 simulation
sets: 2 holo wild type, 2 holo mutant, 2 apo wild type, and
2 apo mutant. The hybrid H/Y172 complexes, in which the

mutated residue 172 comprising the imidazole and phenol
rings representing as the appearing or disappearing parti-
cles, were modeled using VMD44.
The progress of the alchemical transformation was described
by the coupling parameter λ, which was gradually scaled
from 0 to 1 for the forward (e.g., His to Tyr or Tyr to His)
and from 1 to 0 for the backward transformation (e.g., Tyr
to His or His to Tyr). In each simulation set, the back-
ward transformation was performed consecutively from the
forward transformation. A transformation simulation lasted
12 ns, comprising 20 intermediate λ states/windows. The
sampling of each window lasted 0.6 ns, with the last 0.5 ns
used for ensemble averaging. The aggregate simulation time
was 192 ns. The electrostatics interactions of the disappear-
ing particles were linearly decoupled from the system from
λ = 0 to λ = 0.5, while those of the appearing particles were
linearly coupled from λ = 0.5 to λ = 1. For the van der
Waals interactions, a soft-core potential was also applied to
ensure a gradual transformation. The disappearing particles
were fully coupled at λ = 0 and fully decoupled at λ = 1,
while the appearing particles were fully decoupled at λ = 0
and fully coupled at λ = 1. The ParseFEP toolkit45, imple-
mented in VMD was used to test convergence and calculate
the transformation free energies. The latter was estimated
using the Bennett acceptance ratio (BAR) method46,47.

Empirical calculation of ligand binding free energy
changes with Rosetta. The change in nirmatrelvir bind-
ing free energy due to the H172Y mutation was also studied
using the flex ddG protocol25 in the Rosetta modeling
software (version 2017.52.59948). Although designed for
the prediction of changes in protein-protein binding affini-
ties upon mutations, a recent benchmark study48 found
that the flex ddG protocol is able to quantitatively predict
changes in protein-ligand binding affinities upon mutations.
The flex ddG protocol calculates the binding energies using
the Rosetta energy function35 and the “backrub” proto-
col49, which performs Monte-Carlo trials to sample local
sidechain and backbone conformational changes near the
mutation site. The calculations for the forward muta-
tions, ∆GWT→Mut(apo) and ∆GWT→Mut(holo), were based
on the X-ray structure of the WT Mpro dimer (PDB id
7vh8)5, while the calculations for the backward muta-
tions, ∆∆GMut→WT(apo) and ∆∆GMut→WT(holo), were
based on the computationally mutated structures (using
Modeller11 and the PDB 7vh85). Parameters for nir-
matrelvir were obtained using the molfile to params.py
script in Rosetta25. The protocol was repeated 40 times,
with 35,000 backrub trials for each run. The final trial
of each run was scored using the Rosetta Energy func-
tion 2015 (REF2015)35. The average energy score for
each model (WT or mutant, apo or holo) was calculated
and the change in binding free energy upon mutation
was estimated using the thermodynamic cycle (Fig. 4) as
∆∆Gbind = [EMut(holo)− EWT(holo)]− [EMut(apo)− EWT(apo)],
where E represents the energy score.

Protein production and characterization

Cloning of SARS-CoV-2 Mpro H172Y. The H172Y
mutation was inserted by overlap extension-PCR reaction.
A pair of special primers, H172Y forward
(ACTGGTGTATATGCCGGGACGGACT; the underlined
sequence corresponds to the mutated H172Y codon) and
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H172Y reverse (AGTCCGTCCCGGCATATACACCAGT)
were designed. The first PCR reaction was performed to
generate two splice fragments containing a 5′ overhang. The
WT Mpro coding gene with BamHI and XhoI sites was am-
plified from the Mpro construct as described previously50,
and was used as template. The second PCR joined these
two spliced fragments to generate the PCR product encoding
the H172Y mutated Mpro including the cleavage sites of the
restriction enzymes for cloning into the vector PGEX-6p-1
(GE Healthcare). The amplified PCR product was digested
with BamHI and XhoI and ligated into the vector PGEX-
6p-1 digested with the same restriction enzymes. The gene
sequence of the Mpro was verified by sequencing (MWG Eu-
rofins).

The sequence-verified SARS-CoV-2 Mpro construct was
transformed into E. coli strain BL2 (DE3) (Novagen). Trans-
formed clones were pre-cultured at 37◦C in 50 mL 1 x YT
medium with ampicillin (100 µg/mL) for 3 h, and the in-
cubated culture was inoculated into 4 L 1 x YT medium
supplied with 100 µg/mL ampicillin. 0.5 mM isopropyl-
D-thiogalactoside (IPTG) was added for induction of the
overexpression of the Mpro gene at 37◦C when the OD600
reached 0.8. After 5 h, cells were harvested by centrifugation
at 9954 x g, 4◦C, for 15 min. The pellets were resuspended
in 30 mL buffer A (20 mM Tris, 150 mM NaCl, pH 7.8;
pH of all buffers was adjusted at room temperature) and
then lysed by sonication on ice. The lysate was clarified by
ultracentrifugation at 146,682 x g at 4◦C for 1 h. The super-
natant was loaded onto a HisTrap FF column (GE Health-
care) equilibrated with buffer A. The HisTrap FF column
was washed with 150 mL buffer A to remove unspecifically
bound proteins, followed by elution using buffer B (20 mM
Tris, 150 mM NaCl, 500 mM imidazole, pH 7.8) with a lin-
ear gradient of imidazole ranging from 0 mM to 500 mM,
20 column volumes. The fractions containing target protein
were pooled and mixed with PreScission protease at a mo-
lar ratio of 5:1 and dialyzed into buffer C (20 mM Tris, 150
mM NaCl, 1 mM DTT, pH 7.8) at 4◦C overnight, resulting
in the target protein with authentic N- and C-termini. The
PreScission-treated Mpro was applied to connected GST-
trap FF (GE Healthcare) and nickel columns to remove the
GST-tagged PreScission protease, the His-tag, and protein
with uncleaved His-tag. The His-tag-free Mpro in the flow-
through was concentrated by using Amicon Ultra 15 cen-
trifugal filters (10 kD, Merck Millipore) at 2773 x g, and
4◦C. The protein was loaded onto a HiLoadTM 16/600 Su-
perdexTM 200pg column (GE Healthcare) equilibrated with
buffer A. Fractions eluted from the Superdex200 column con-
taining the target protein with high purity were pooled and
subjected to buffer exchange (20 mM Tris, 150 mM NaCl, 1
mM EDTA, 1 mM DTT, pH 7.4).

Determination of protein stability of SARS-CoV-2
Mpro WT and H172Y by nano differential scanning
fluorimetry (nanoDSF). Thermal-shift assays of SARS-
CoV-2 Mpro and its H172Y mutant were carried out using
the nanoDSF method as implemented in the Prometheus
NT.48 (NanoTemper Technologies). The nanoDSF method
is based on the autofluorescence of tryptophan (and tyro-
sine) residues to monitor protein unfolding. As the temper-
ature increases, the protein will unfold and the hydrophobic
residues of the protein get exposed, the ratio of autofluores-
cence at wavelengths 350 nm and 330 nm will change. The
first derivative of 350/330 nm can be used to determine the

melting temperature (Trmm). 30 µM of WT or mutant pro-
tein were diluted in a final volume of 15 µL reaction buffer
containing 20 mM HEPES, 120 mM NaCl, 0.4 mM EDTA,
4 mM DTT, 20% glycerol, pH 7.0. Then the proteins were
loaded onto Prometheus NT.48 nanoDSF Grade Standard
Capillaries (PR-C002, NanoTemper Technologies), the fluo-
rescence signal was recorded under a temperature gradient
ranging from 25 to 90◦C (incremental steps of 0.5◦C min−1).
The melting curve was drawn using GraphPad Prism 7.0
software; the values of the first derivative of 350/330 nm
were displayed on the Y axis. The melting temperature (Tm)
was calculated as the mid-point temperature of the melting
curve using the ThermControl software (NanoTemper Tech-
nologies).

Enzyme Assays. A fluorescent substrate harboring the
cleavage site (indicated by ↓) of SARS CoV-2 Mpro (Dabcyl-
KTSAVLQ↓SGFRKM-E(Edans)-NH2; GL Biochem) and
buffer composed of 20 mM HEPES, 120 mM NaCl, 0.4 mM
EDTA, 4 mM DTT, 20% glycerol, 0.5% DMSO, pH 7.0 was
used for the inhibition assay. In the fluorescence resonance
energy transfer (FRET)-based cleavage assay, the fluores-
cence signal of the Edans generated due to the cleavage of
the substrate by the Mpro was monitored at an emission
wavelength of 460 nm with excitation at 360 nm, using a
Flx800 fluorescence spectrophotometer (BioTek). Initially,
10 µL of SARS-CoV-2 Mpro WT at the final concentration
of 50 nM, or SARS-CoV-2 Mpro H172Y at 400 nM, was
pipetted into a 96-well plate containing pre-pipetted 60 µL
of reaction buffer. Subsequently, the reaction was initiated
by addition of 30 µL of the substrate dissolved in the reaction
buffer to 100 µL final volume, at different final concentra-
tions varied from 10 to 320 µM (10, 20, 40, 80, 120, 160,
240, 320 µM). A calibration curve was generated by mea-
surement of varied concentrations (from 0.04 to 6250 nM) of
free Edans, with gain 80 in a final volume of 100 µL reac-
tion buffer. Initial velocities were determined from the linear
section of the curve, and the corresponding relative fluores-
cence units per unit of time (∆RFU/s) was converted to the
amount of the cleaved substrate per unit of time (µM/s) by
fitting to the calibration curve of free Edans.

Inner-filter effect corrections were applied for the kinetic
measurements according to Liu et al.50. The fluorescence of
the substrate (in RFU) dissolved in 100 µL final volume of
reaction buffer at the corresponding concentrations used for
the kinetic assay was measured and defined as f(substrate).
Afterwards, 1 µL free Edans was added (final concentra-
tion: 1 µM) to each well, and the fluorescence reading was
taken as f(substrate + Edans). Simultaneously, a reference
value (in RFU) was measured with the same concentration of
free Edans in 100 µL of reaction buffer, giving f(reference).
The inner-filter correction at each substrate concentration
was calculated according to the function: corr% = (f (sub-
strate + Edans) – f (substrate)) / f (reference) x 100%. The
corrected initial velocity of the reaction was calculated as
V = V0 / (corr%), where V0 represents the initial veloc-
ity of each reaction. As saturation could be achieved, ki-
netic constants (Vmax and Km) were derived by fitting the
corrected initial velocity to the Michaelis-Menten equation,
V = Vmax × [S]/(Km + [S]), using GraphPad Prism 7.0
software. kcat/Km was calculated according to the equation,
kcat/Km = Vmax/([E] × Km). Triplicate experiments were
performed for each data point, and the value was presented
as mean ± standard deviation (SD).
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Determination of the IC50 of nirmatrelvir. The same
substrate was employed as for the determination of the en-
zyme kinetics. The SPARK Multimode Microplate Reader
(TECAN) was used to monitor the signal at same emission
wavelength and excitation wavelength. The reaction buffer
was 20 mM HEPES, 120 mM NaCl, 0.4 mM EDTA, 4 mM
DTT, 20% glycerol, pH 7.0, to achieve a final concentration
of 2% DMSO which is same as in the enzyme kinetics mea-
surement. Stock solutions of the compounds were prepared
with 100% DMSO. For the determination of the IC50, 50
nM of SARS-CoV-2 Mpro or 400 nM of SARS-CoV-2 Mpro
H172Y was incubated with nirmatrelvir at various concen-
trations from 0 to 100 µM in reaction buffer at 37◦C for
10 min. Afterwards, the FRET substrate at a final concen-
tration of 10 µM was added to each well, at a final total
volume of 100 µL, to initiate the reaction. The GraphPad
Prism 7.0 software (GraphPad) was used for the calculation
of the IC50 values. Measurements of inhibitory activity of
nirmatrelvir were performed in triplicate and are presented
as the mean±SD.
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