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Abstract

CRISPR technology has enabled cell lineage tracing for complex multicellular organisms through 

insertion-deletion mutations of synthetic genomic barcodes during organismal development. To 

reconstruct the cell lineage tree from the mutated barcodes, current approaches apply general-

purpose computational tools that are agnostic to the mutation process and are unable to take full 

advantage of the data’s structure. We propose a statistical model for the CRISPR mutation process 

and develop a procedure to estimate the resulting tree topology, branch lengths, and mutation 

parameters by iteratively applying penalized maximum likelihood estimation. By assuming the 

barcode evolves according to a molecular clock, our method infers relative ordering across parallel 

lineages, whereas existing techniques only infer ordering for nodes along the same lineage. When 

analyzing transgenic zebrafish data from McKenna, Findlay and Gagnon et al. (2016), we find that 

our method recapitulates known aspects of zebrafish development and the results are consistent 

across samples.

1. Introduction.

Recent advancements in genome editing with CRISPR1 have enabled the construction of 

large-scale cell lineage trees for complex organisms (McKenna et al., 2016; Woodworth, 

Girskis and Walsh, 2017; Spanjaard, Hu and Mitic et al., 2018; Schmidt, Zimmerman 

and Wang et al., 2017; McKenna and Gagnon, 2019). One of the pioneering methods — 

and the focus of this paper — is Genome Editing of Synthetic Target Arrays for Lineage 
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Tracing (GESTALT) (McKenna et al., 2016). GESTALT integrates an array of CRISPR/

Cas9 targets, referred to as a barcode, into the genome of an embryo. Cas9 enzymes 

injected into the embryo are directed by single guide RNAs (sgRNAs) to bind and cleave 

the barcode. A mutation is introduced when nucleotides are deleted and/or inserted during 

DNA repair. As the organism develops, the barcode accumulates these random mutations 

and the mutated barcode is passed from parent cell to daughter cell, which thereby encodes 

the ontogeny. These mutated barcodes are sequenced from the organism at some timepoint, 

and computational phylogenetic methods are used to estimate the cell lineage tree. Due to 

the high diversity of the mutated barcodes, GESTALT has the potential to reveal organism 

development in high resolution. Other CRISPR-based lineage-tracing methods are similar 

but can vary in which genomic regions they target and how Cas9 is expressed. See 

McKenna et al. (2019) for a comprehensive review of current CRISPR-based lineage-tracing 

technologies

Current computational phylogenetic tools to analyze GESTALT data are insufficient. The 

most common methods are Camin-Sokal (C-S) parsimony (Camin and Sokal, 1965) and 

the neighbor-joining distance-based method (Saitou and Nei, 1987). Tree estimates from 

these methods have limited interpretability since the branch lengths are in terms of an 

abstract notion of distance rather than time. Thus, they can only order nodes on the same 

lineage but not on parallel lineages. In addition, these general-purpose methods are blind to 

the mutation mechanism in GESTALT, so their accuracy can be poor (Salvador-Martínez, 

Grillo and Averof et al., 2018). Finally, because parsimony is a coarse scoring metric, C-S 

parsimony often generates many parsimony-optimal trees — over ten thousand in some 

existing datasets — requiring the user to choose one of them.

We set out to develop a statistical model and estimation method to address these challenges. 

No appropriate probabilistic model is currently available for GESTALT because the 

mutation process violates the classical statistical phylogenetic assumptions. For example, 

long tracts of DNA can be deleted from the barcode during GESTALT. So, the usual 

assumptions that mutations occur pointwise and that individual positions are independent are 

not satisfied (Felsenstein, 2004; Yang, 2014). Moreover, the GESTALT mutation process is 

irreversible unlike most models in phylogenetics.

We introduce a statistical model for GESTALT and an iterative penalized maximum 

likelihood procedure to estimate the tree topology, branch lengths, and mutation parameters. 

Our method, called GAPML (GESTALT analysis using penalized Maximum Likelihood), 

models the mutation process as a two-step procedure: Targets are cut according to a 

continuous time Markov chain, immediately followed by random insertions or deletions 

of nucleotides (indels). We have carefully tailored a new set of assumptions and 

approximations for GESTALT that makes the likelihood tractable yet maintains biological 

realism. We show that the Markov process can be modeled using a higher-level Markov 

process with many fewer “lumped” states (Kemeny and Laurie Snell, 1976). We then 

combine lumpability with Felsenstein’s pruning algorithm to efficiently compute the 

likelihood (Felsenstein, 1981). Throughout, we treat the GESTALT barcode as a molecular 

clock and obtain time estimates with respect to this clock.
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We have designed GAPML for datasets generated by a small number of barcodes because 

inserting many barcodes is currently a technical challenge. In fact, existing GESTALT 

datasets were generated using only a single barcode. Maximum-likelihood phylogenetic 

methods are known to be unstable when the number of parameters is large but the number 

of independent observations (barcodes) is small (Goolsby, 2016; Adams and Collyer, 2018; 

Julien, Leandro and Hélène, 2018). Based on the success of penalization techniques in the 

high-dimensional statistics literature (Hastie, Tibshirani and Friedman, 2009), we augment 

the objective with a penalty on the branch lengths and mutation parameters, and design an 

iterative tree search procedure compatible with this penalty. We note that penalties on the 

distance between the tree estimate and a pre-specified tree (Wu, Rasmussen and Bansal et 

al., 2013; Dinh, Tung Ho and Suchard et al., 2018) are not applicable here because we have 

little to no knowledge about the true tree.

Finally, our method estimates trees at a finer resolution compared to other methods. Whereas 

C-S parsimony estimates trees with many multifurcations (nodes with 3+ children), GAPML 

resolves multifurcations as caterpillar trees to infer additional ordering information. We 

efficiently tune the caterpillar tree orderings by solving a single continuous optimization 

problem, rather than a combinatorial one. This is noteworthy since there are very few 

situations in phylogenetics in which a topology search can be formulated as a continuous 

optimization problem.

The paper is organized as follows. Sections 2 and 3 present the probabilistic model and 

estimation method, respectively. We validate our method on simulated data in Section 4 

and empirical data in Section 5. Compared to existing tree-estimation methods, our method 

is more accurate in simulations and better recapitulates the known biology of zebrafish 

development given data from McKenna et al. (2016). Source code for replication is available 

in the Supplementary Materials (Feng, DeWitt and McKenna et al., 2020) and online at 

https://github.com/matsengrp/gapml.

2. GESTALT Model.

Our goal is to reconstruct the cell lineage tree using data from McKenna et al. (2016), which 

is generated using a barcode with 10 contiguous CRISPR/Cas9 target sites. Nodes in the tree 

represent cell divisions and branch lengths represent time between cell divisions. The full 

tree describes the relationships of all cells in the organism. Our goal is to recover the subtree 

for the observed sequences.

The experimental protocol in McKenna et al. (2016) is as follows. At the single-cell zygote 

stage, a single barcode is integrated into the genome and Cas9 enzyme and sgRNAs are 

injected (Fig 1). Each target in the barcode is 23 nucleotides long, including the required 

protospacer adjacent motif, and are separated by a 4 base spacer. Individual sgRNAs 

matching the nucleotide sequence of a single unmodified target guide Cas9 enzymes to make 

double-stranded breaks at a specific cut site within each target. Mutations are introduced 

when a break is repaired in an error-prone fashion, and nucleotides are inserted or deleted 

around the cut site. Sometimes, two targets are cut, the intervening sequence is removed, 
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and nucleotides are inserted/deleted during repair. Once a target is modified, the sgRNA no 

longer matches and the target can no longer be cut.

Since barcodes are inherited from mother to daughter cells, mutations accumulate along 

the barcodes in a lineage-specific fashion. These mutated barcodes, which we refer to as 

alleles, are recovered by DNA sequencing at the timepoint of interest. The number of unique 

sampled alleles are typically on the order of hundreds or thousands. Future experiments will 

likely include multiple barcodes to increase the number of unique alleles.

We model the GESTALT barcode as a continuous time Markov chain (CTMC). Calculating 

the likelihood of the tree for a general CTMC is computationally intractable for two reasons: 

First, the mutation rate can depend on the entire barcode sequence and second, because 

long deletion tracts mask previous mutation events, we must marginalize over an infinite 

number of possible ancestral states. To simplify the calculations, we propose the following 

assumptions, which are formalized mathematically later:

1 An indel is introduced by cuts at the outermost cut sites.

2A The cut rates only depend on which targets are unmodified.

2B The conditional probability that an indel is introduced only depends on which 

targets were cut.

2C The mutation process is irreversible.

In addition, we introduce approximations of the likelihood that significantly speeds up 

computation. Fig S1 in the Supplement summarizes how the main results are derived from 

the assumptions and approximations.

2.1. Definitions and notation.

We begin with presenting mathematical abstractions for GESTALT. Table S1 in the 

Supplement is provided as a reference for the main definitions used in this paper.

2.1.1. Barcode.—The unmodified barcode is a nucleotide sequence composed of M 
disjoint subsequences called targets (Fig 2 left). The targets are numbered from 1 to M from 

left to right, and the positions spanned by target j are specified by the set pos(j). Each target 

j is associated with a single cut site c(j) ∈ pos(j). For convenience, define pos(0) = {0} and 

pos(M + 1) = {l + 1} where l is the length of the barcode.

A barcode can be modified by the introduction of an indel tract. An indel tract, denoted by 

IT[p0, p1, s, j0, j1], is a mutation event in which targets j0 and j1 are cut (j0 ≤ j1), positions 

p0, p0 + 1, . . ., p1 − 1 in the unmodified barcode are deleted, and a nucleotide sequence s is 

inserted. If j0 = j1, only a single target is cut. When p0 = p1, no positions are deleted. A valid 

indel tract must modify the sequence (p0 < p1 or s has positive length) and have cut sites for 

its targets nested within positions p0 and p1.

An allele is a sequence of m ≥ 0 disjoint indel tracts (Fig 2 right):
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a ≡ IT p0,k , p1,k , sk, j0,k , j1,k :k ∈ 1, …m (1)

where p1,k < p0,k+1 and j1,k < j0,k+1 for k = 1,…, m − 1. Note that the indices are always 

defined with respect to the original unmodified barcode. Let Ω be the set of all possible 

alleles.

Target j is active in allele a if no nucleotides in pos(j) are modified. We denote the target’s 

status as TargStat(j; a), where zero means the target is active and one otherwise:

TargStat j; a = 1 ∃IT p0, p1, s, j0, j1 ∈ a and ∃p′ ∈ pos j s.t. p0 ≤ p′ ≤ p1 .

For convenience, denote the target status of allele a as

TargStat a = TargStat 1; a , …, TargStat M; a . (2)

The mutation process can introduce indel tract d = IT[p0, p1, s, j0, j1] into an allele if and 

only if (i) targets j0 and j1 are active and (ii) p0 and p1 have not been deleted. Let Apply(a, 
d) be the resulting allele from introducing indel tract d into allele a. A new indel tract either 

does not overlap existing indel tracts, completely masks other indel tracts, or merges with 

other indel tracts by partially overlapping or being adjacent to them (Fig 3).

2.1.2. Mutation process.—The mutation process up to time T is formulated as a 

continuous time Markov chain {X(t) : 0 ≤ t ≤ T } with state space Ω. Since Ω is defined 

as the set of possible alleles, we have implicitly assumed that indel tracts are introduced 

instantaneously, i.e. nucleotides are inserted and/or deleted immediately after target(s) are 

cut.

For tree T , denote the leaves for node N as Leaves(N); use Leaves(T) to denote the set of 

all leaves. Let aL be the allele observed at leaf node L. For the branch ending with node 

N, denote its length as tN and the Markov process along it as {XN(t) : 0 ≤ t ≤ tN}. For 

simplicity, we present the model in the context of a single barcode. If there are multiple 

barcodes, we assume in this paper that they are sufficiently far apart that they act in an 

independent and identically distributed (iid) manner.

2.2. Assumptions.

We now formalize the assumptions presented before. Assumption 1 states that for any indel 

tract that cuts targets j0 and j1, its deletions cannot extend past the cut site of neighboring 

targets j0 − 1 and j1 + 1. Note that it can still deactivate neighboring targets by mutating 

nucleotides at the edge of these targets. We use this assumption to limit the set of possible 

mutation histories.

ASSUMPTION 1. Each indel tract IT[p0, p1, s, j0, j1] satisfies c(j0 − 1) < p0 ≤ c(j0) and c(j1) ≤ p1 

< c(j1 + 1).

FENG et al. Page 5

Ann Appl Stat. Author manuscript; available in PMC 2022 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To formalize Assumptions 2A-C, define a target tract as a set of indel tracts that cut and 

deactivate the same target(s). A target tract, denoted TT j0′ , j0, j1, j1′ j0′ ≤ j0 ≤ j1 ≤ j1′ , is the 

set of all indel tracts that cut targets j0 and j1 and delete nucleotides such that targets j0′

through j1′  are inactive, i.e.

TT j0′, j0, j1, j1′ = IT p0, p1, s, j0, j1 : p0 ∈ pos j0′ , p1 ∈ pos j1′ . (3)

For instance, TT[2, 2, 3, 4] is the set of indel tracts that cut targets 2 and 3, introduce 

deletions rightward that deactivate target 4 but not beyond, and introduce short deletions 

leftward so that target 1 is unaffected. Every indel tract d belongs to a single target tract, 

which we denote TT(d).

The second assumption states that the instantaneous rate of introducing indel tract d into 

allele a is the product of the rate of introducing any element from TT(d), which only 

depends on the target status of a, and the conditional probability of introducing d given 

TT(d). It also states that the mutation process is irreversible and homogeneous. As such, 

we treat the GESTALT barcode as a molecular clock. Note that the total mutation rate of a 

barcode varies over time based on which targets are active, but the model for the transition 

rates is stationary.

ASSUMPTION 2. Let a be an allele, d be an indel tract that can be introduced into a, and τ = 

TT(d). The instantaneous rate of introducing d in a at time t can be factored into two terms: 
first, a function that only depends on the triple (τ, TargStat(a), t), and second, the conditional 
probability of introducing d given τ:

q a, Apply a, d : = lim
Δ 0

Pr X Δ = Apply a, d X 0 = a
Δ

= ℎ τ, TargStat a Pr d τ .

Moreover, h(τ, TargStat(a)) = 0 if τ cuts a target that is inactive in a.

Using Assumptions 1 and 2, we can calculate the (approximate) likelihood efficiently as 

described below. Assume the topology is fixed for now, which we denote as T .

2.3. Summing over likely ancestral states.

The first step to calculating the likelihood is to characterize the possible ancestral states. In 

this section, we provide a recursive algorithm for characterizing a subset of the ancestral 

states, which should capture all the likely ancestral states and only exclude those with very 

small probability.

Our approximation of the likelihood excludes mutation histories where overlapping indel 

tracts merged but did not fully mask one another:

APPROXIMATION 1. The probability of indel tracts merging is approximately zero, i.e.
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Pr XL tL = aL∀L ∈ Leaves T
≈ Pr XL tL = aL∀L ∈ Leaves T , no indel tracts merged . (4)

We will refer to the right-hand probability as the approximate likelihood. We believe merge 

events are rare since they occur when deletion lengths are long, whereas most deletions are 

short in McKenna et al. (2016). By excluding merge events, we show that the set of ancestral 

states in Approximation 1 can be expressed compactly.

Now, let us define a partial ordering among alleles using Approximation 1 and Assumption 

1. Given two alleles a, a′ ∈ Ω, a ≺ a′ means that a can transition to a′ without merging indel 

tracts, i.e. there is a sequence of indel tracts di i = 1
m  for some m ≥ 0 such that

a′ = Apply dm, Apply dm − 1, …Apply d1, a

where no indel tracts merge. Then, the set of “likely” ancestral states at internal node N in 

tree T  is defined as

AncState N = a ∈ Ω:a ≺ aL∀L ∈ Leaves N . (5)

(Note that AncState(·) is also defined for leaf nodes, in which case it is the set of alleles 

that likely preceded the observed allele.) To calculate the approximate likelihood in (4), we 

marginalize over AncState(N) at each internal node N.

We can characterize AncState(N) using only two building blocks (Fig 4): wildcards and 

singleton-wildcards. A wildcard2 WC[j0, j1] is the set of all indel tracts that only deactivate 

targets within the range j0 to j1, inclusive:

WC j0, j1 = IT p0′, p1′, s′, j0′, j1′ :pos j0 − 1 < p0′, p1′ < pos j1 + 1 . (6)

A singleton-wildcard SGWC[p0, p1, s, j0, j1] is the union of the singleton set {IT[p0, p1, s, j0, 

j1]} and its inner wildcard WC[j0 + 1, j1 − 1], if it exists:

IT p0, p1, s, j0, j1 ∪ WC j0 + 1, j1 − 1 if j0 + 1 ≤ j1 − 1
IT p0, p1, s, j0, j1 otherwise. (7)

Two or more wildcards (WCs) and/or singleton-wildcards (SGWCs) are disjoint if the 

maximum ranges of targets deactivated by indel tracts in these sets do not overlap.

Given a set of indel tracts D, let the alleles generated by D, denoted Alleles(D), be the set of 

alleles that can be created using subsets of D:

2In software systems, a wildcard is a symbol used to represent one or more characters (e.g. “*”). Similarly, we define wildcard here as 
all indel tracts that only deactivate targets within a specified range.
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IT p0, k, p1, k, sj, j0, k, j1, k k = 1
m ⊆ D:

m ∈ ℕ, p1, k < p0, k + 1, j1, k < j0, k + 1 ∀k = 1, …m − 1 .

Then for leaf L with allele IT p0, k, p1, k, sk, j0, k, j1, k k = 1
m , AncState(L) is any subset of the 

alleles generated by its corresponding singleton-wildcards, i.e.

AncState L = Alleles
k = 1, …, m

SGWC p0, k, p1, k, sk, j0, k, j1, k .

We now define a recursive procedure to characterize AncState(·) for all nodes in the tree. 

We have already established that AncState for a leaf node is characterized by a union of 

disjoint SGWCs. To recur up the tree, Lemma 1 states that AncState(N) for node N is also 
characterized by a union of disjoint WC/SGWCs. The proof is given in Section B.

LEMMA 1. Consider any internal node N with children nodes C1, …, Ck. For each child CK, 

suppose

AncState Ck ⊆ Alleles
m = 1

MCk DCk, m (8)

Where DCk, m m = 1
MCk  are pairwise disjoint wildcards and/or singleton-wildcards. Then, 

AncState(N) can be written in the form of (8) where DN, m m = 1
MN  are disjoint 

wildcards and/or singleton-wildcards and is equal to the non-empty intersections of 
DC1, m1 ∩ … ∩ DCK, mK, i.e.

DC1, i1 ∩ … ∩ DCK, mK :m1 = 1, …, MC1, ⋯, mK = 1, …, MCK \0 . (9)

In practice, we use the recursive algorithm in Section B.2 of the Supplement to compute 

AncState(·) exactly for additional computational efficiency.

2.4. Lumpability.

The previous section discussed approximating the likelihood by summing over likely 

ancestral states. Nevertheless, there are still an infinite number of these likely ancestral 

states. Next, we use Assumption 2 and efficiently compute the approximate likelihood by 

marginalizing over a small number of “lumped” states.

Lumpability, a well-studied property for Markov chains, states that the behavior of a Markov 

process can be described by a Markov process over the lumped states (Kemeny et al., 1976; 

Hillston, 1995) (Fig 5):
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DEFINITION 1. Let X(t) be a continuous time Markov chain with state space Ω. If there exists a 
partition {A1, …, AM } of Ω and a continuous time Markov chain Y (t) with state space {A1, 

…, AM } such that

Pr X t ∈ Ai = Pr Y t = Ai ∀i = 1, …, M, (10)

then X is lumpable.

If we can find a partition that satisfies (10), then we can calculate the likelihood over the 

lumped states instead. The main practical hurdle in using lumpability is finding such a 

partition (Ganguly, Petrov and Koeppl, 2014).

There is relatively little work on using lumpability in phylogenetics. The one application in 

Davydov, Robinson-Rechavi and Salamin (2017) calculates the likelihood of a codon model 

approximately by assuming states are lumpable, even though this is not satisfied. Here we 

show that lumpability is satisfied exactly in our setting. Since our solution partitions the state 

space differently at each node, we must extend Felsenstein’s pruning algorithm (Felsenstein 

et al., 1981) to calculate the approximate likelihood (4).

We will define a partition of Ω at node N denoted {g(b; N) : b ∈ B} for some index set 

B. We partition the states based on their target status and whether or not they are likely 

ancestral states (Fig 5), as defined below.

DEFINITION 2. Define index set B to be {0, 1}M ∪ {other}. For internal tree node N, partition 
the state space Ω into

g b; N = a ∈ AncState N :TargStat a = b ∀b ∈ 0, 1 M

g other;N = Ω − AncState N .
(11)

For leaf node N, partition the state space Ω into

g b; N = aN if b = TargStat aN

g b; N = 0 if b ∈ 0, 1 Mand b ≠ TargStat aN
g other;N = Ω − aN .

(12)

Using Assumption 2, we prove in Lemma 4 (see Supplement) that for any b, b′ ∈ {0, 

1}M, the instantaneous transition rate from any allele a in g(b; N) to g(b′ ; N) is the 

same. Therefore we can construct a Markov process over the lumped states {g(b; N) : b ∈ 
B}, calculate its instantaneous transition rate matrix Qlump,N as defined in Lemma 4, and 

exponentiate this matrix to calculate the transition probability

Pr XN t ∈ g b′; N XN 0 ∈ g b; N = eQlump,Nt
b, b′ ∀b, b′ ∈ B . (13)

The following theorem extends Felsenstein’s pruning algorithm to calculate the phylogenetic 

likelihood by marginalizing over at most 2M lumped states. For b ∈ B, let the probability of 
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observing the data (marginalizing over likely ancestral states) given that the allele at node N 

is in partition g(b; N) be denoted

pN b = Pr XL tL = aL∀L ∈ Leaves N XN tN ∈ g b; N . (14)

THEOREM 1. Suppose Assumptions 1 and 2 and Approximation 1 hold. For any internal tree 
node N, target status b, and nonempty allele group g(b; N), we have

pN b =
C ∈ children N b′ ∈ 0, 1 M

g b′; C ≠ 0

pC b′ Pr XC tC ∈ g b′; C XC 0 ∈ g b; C . (15)

where Pr (XC(tC) ∈ g(b′; C)|XC(0) ∈ g(b; C)) is defined in (13).

The proof for the above theorem is given in Section C.

2.5. Caterpillar trees.

We would like to estimate trees at the finest resolution possible. C-S parsimony produces 

estimates at a coarse resolution: If the ordering between nodes is ambiguous, they 

are all grouped under a single parent node. We propose estimating trees by resolving 

multifurcations at the finer resolution of caterpillar trees (Fig 6a). A caterpillar tree is one 

where all subtrees branch off of a central path called the spine. We do not assume that the 

true tree is a caterpillar tree. Rather, we use the caterpillar tree to uncover the order in which 

indel tracts were introduced.

Calculating the likelihood for all possible branch orderings in a caterpillar tree is 

computationally intractable because there are K! such orderings for K children nodes. We 

sidestep this issue by approximating the likelihood using another lower bound: we only 

marginalize over mutation histories where the alleles are constant along caterpillar spines. 

To see why this a reasonable approximation, consider the example in Fig 6b. Because the 

GESTALT mutation process is irreversible, the only possible ancestral state at many internal 

nodes along the spine is the unmutated barcode. In other words, the allele was constant 

along most of the spine. Thus, we propose the following approximation of the likelihood.

APPROXIMATION 2. We approximate Pr XL tL = aL∀L ∈ Leaves T  by considering only the 

mutation histories that have a constant allele along the caterpillar spines:

Pr XL tL = aL∀L ∈ Leaves T , alleles are constant on all spines . (16)

This approximation is particularly attractive because it can be computed using the same 

mathematical expression regardless of the ordering of the children nodes. This allows us to 

tune the ordering in the caterpillar tree by solving a single continuous optimization problem 

(Fig 6b).
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We re-parameterize the branch lengths for caterpillar branches (Fig 6c). Consider a 

caterpillar tree with root node N and child node C. Let ℓC indicate the distance between 

C and N. For βC ∈ (0, 1), let βCℓC be branch length of C. We can capture all possible 

orderings for the caterpillar tree rooted at N by varying the values of (ℓC, ℓC) for each child 

node C.

With this parameterization, we now extend Theorem 1 to calculate (16). For allele a and 

node N, define pN a  the same as (14) but now assuming both Approximations 1 and 2. 

Again, apply Felsenstein’s pruning algorithm to recursively compute pN for each node N. 

However, if N is the root of a caterpillar tree, then pN a  is equal to

Pr XN tspine = a XN 0 = a
C ∈ children N

a′ ∈ Ω
Pr XC ℓ C/βC = a′ XC 0 = a pC a′

(17)

where tspine = max{ℓC(1 − βC) : C ∈ children(N)}. To efficiently calculate the likelihood, we 

marginalize over the corresponding lumped states instead.

In summary, we have shown how to tune caterpillar trees by solving a single continuous 

optimization problem. Compared to considering each tree topology separately, this approach 

is more computationally efficient and performs a more comprehensive search over tree space 

in practice.

2.6. Model implementation.

We briefly describe our specific model implementation here and leave details to Section 

E. Each target is associated with a different cut rate λj. If targets j0 and j1 are active, 

the rate for cutting target j0 is λj0 and the rate for simultaneously cutting targets j0 and 

j1 is ω(λj0 + λj1 ) for some ω > 0. We model the distribution of deletion lengths using 

zero-inflated truncated negative binomial random variables (RVs) and insertion lengths 

using zero-inflated negative binomial RVs. Finally, Section F.2 discusses our actual code 

implementation, which includes an additional approximation used to limit memory usage.

3. Estimation method.

Now that the approximate likelihood is computationally tractable, we are ready to estimate 

the cell lineage tree and mutation model parameters.

3.1. A simple approach.

Consider the following estimation procedure: Given a pool of candidate tree topologies, 

select the one with the highest likelihood after optimizing over its corresponding parameters. 

Unfortunately, this procedure can be highly inaccurate for existing GESTALT datasets, 

where we must estimate thousands of parameters given data generated by a single barcode. 

Because this problem is high-dimensional, we found in simulations that the maximum 

likelihood estimate tends to overestimate the length of the leaf branches and the variance of 

the target rates.
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3.2. Penalization.

To improve the estimation accuracy, we propose performing penalized maximum likelihood 

estimation instead. We penalize large differences in the branch lengths ℓ and target rates λ 
using

Penκ θ = κ1 logλ − 1
M i = 1

M
log λi

2

2
+ κ2 logℓ − 1

L i = 1

L
log ℓ i

2

2
,

where κ1, κ2 > 0 are penalty parameters and L is dimension of ℓ. A similar branch-length 

penalty was considered in Kim and Sanderson (2008), but they assume the topology is 

known.

We cannot directly combine this penalty with the simple approach in Section 3.1 because 

different topologies may naturally have larger branch length penalties. To ensure that the 

penalized log likelihood (PLL) is comparable between different topologies, we use an 

iterative search procedure instead.

For fixed penalty parameters, our estimation procedure follows Algorithm 1. We initialize 

the topology by selecting a random parsimony-optimal tree from C-S parsimony. At each 

iteration, we select a random subtree and consider candidate subtree-prune-regraft (SPR) 

moves that preserve the parsimony score, since parsimony-optimal trees tend to have the 

highest likelihoods (Fig S7). To make sure the PLLs are comparable, we choose a random 

leaf from the subtree, calculate the likelihood for the tree from regrafting only this random 

leaf, and calculate the penalty with respect to the shared subtree (Fig 7).3 We select the 

SPR move with the highest PLL. In simulations, we found that this procedure progressively 

improves the tree estimate (Fig S6b). See Section D for a discussion on tuning penalty 

parameters.

4. Simulation engine and results.

We built a simulation engine of the GESTALT mutation process during embryonic 

development. Since cell divisions during embryonic development begin in a fast 

metasynchronous fashion and gradually become more asynchronous (Moody, 1998), the 

simulation engine generates a cell lineage tree by performing a sequence of synchronous 

cell divisions followed by a birth-death process where the birth rate decays with time. We 

mutate the barcode along this cell lineage tree according to our model of the GESTALT 

mutation process. See Section F for a more detailed description of the simulation setup. The 

simulation engine generates data that closely resembles the data collected from zebrafish 

embryos in McKenna et al. (2016) (Fig 8). We can input different barcode designs into the 

simulation engine to understand how they affect our ability to reconstruct the cell lineage 

tree.

3We chose to regraft a random leaf from the subtree to make the penalty as comparable as possible across candidate SPR moves. 
Using this approach, the resulting trees from the SPR move differ by only a single leaf; Whereas, if we regrafted an entire subtree, 
theresulting trees will differ significantly.
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Algorithm 1 Cell lineage tree reconstruction for penalty parameter κ
1: Initialize tree T . Let the sequenced GESTALT barcodes be denoted D.
2: for Iteration k do
3: Pick a random subtree from T. Select one of the leaves C of the subtree.
4: for each possible SPR move involving the subtree that doesn’t change the parsimony

score  including the no‐op do
5: Construct T′ by applying the SPR to leaf C; let Tshared′  be the subtree of T′ when

excluding C
6: Evaluate the penalized log likelihood for the SPR move, maximized with respect

to parameters θ:
max

θ
logPr D, alleles are constant on caterpillar spines, no merging events; T′, θ

Approximation to the likelihood
− Penκ Tshared′ , θ

penalty on branch lengths and mutation parameters
7: end for
8: Update the tree Tby performing the SPR move on the subtree with the highest

penalized log likelihood
9: end for

We used two evaluation metrics to evaluate tree estimates: BHV distance (Billera, Holmes 

and Vogtmann, 2001) and a new metric we call internal node time correlation. Intuitively, 

the BHV distance between two trees is the smallest total change in branch lengths to 

transform one tree into the other (so its minimum value is zero). It is a formal distance 

metric and therefore enjoys many nice mathematical properties; However, internal node 

time correlation can be easier to interpret, particularly when BHV distance is large. Given 

ultrametric trees X and Y for the same set of leaves, the internal node time correlation is 

calculated as follows (Fig 9):

1. For each internal node in tree X, find the matching node in tree Y that is the most 

recent common ancestor of the same set of leaves.

2. Calculate the Pearson correlation of the heights of matched nodes.

3. Repeat steps 1 and 2 but swap trees X and Y.

4. Average the two correlation values.

A correlation of 1 means that the trees are exactly the same; the smaller the correlation is, 

the less similar the trees are.

We compare our method to estimating the tree topology using C-S parsimony (Camin et 

al., 1965) or neighbor-joining (NJ) (Saitou et al., 1987) and then applying semiparametric 

rate smoothing (chronos in the R package ape) to estimate node times (Sanderson, 2002). 

We refer to these approaches as “CS+chronos” and “NJ+chronos,” respectively. Previous in 
silico analyses measured accuracy in terms of the Robinson-Foulds (R-F) distance, which 

only evaluates differences in tree topology (Salvador-Martínez et al., 2018). However, this 

is a very coarse metric and fails to recognize that trees with different topologies can still 

have very similar internal node times. As such, we also evaluate tree estimates using BHV 
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distance and internal node time correlation; We find that GAPML consistently outperforms 

the other methods with respect to these two metrics (Fig 10 and Table 1).

Figure 10 also shows that GAPML improves in performance as the number of independent 

barcodes increases. In this simulation, the estimated tree from a single barcode has internal 

node time correlation of 0.5 with the true tree whereas using six barcodes increases the 

correlation to 0.9. Even though other analyses have recommended increasing the number of 

targets in a single barcode to improve tree estimation (Salvador-Martínez et al., 2018), we 

found that adding independent barcodes is more effective (Fig S5).

Section F.4.1 is a larger simulation study of the method’s asymptotic properties. We show 

that the method continues to improve, even when there are hundreds of barcodes. Section 

F.4.2 shows that tree estimates from GAPML are robust to errors resolving ambiguous 

indels.

5. Real data analysis of a zebrafish – validation.

To validate our method, we reconstructed cell lineages using our method and other tree-

building methods on GESTALT data from zebrafish (McKenna et al., 2016). As the true 

cell lineage tree is not known for zebrafish, we employed indirect measures of validity. 

For each method, we asked (1) if similar conclusions could be made across different 

biological replicates and (2) if the tree estimates aligned with the known biology of zebrafish 

development.

The dataset includes two adult zebrafish where cells were sampled from dissected organs. 

The organs were chosen to represent all germ layers: the brain and both eyes (ectodermal), 

the intestinal bulb and posterior intestine (endodermal), the heart and blood (mesodermal), 

and the gills (neural crest, with contributions from other germ layers). The heart was further 

divided into four samples— a piece of heart tissue, dissociated unsorted cells (DHCs), 

FACS-sorted GFP+ cardiomyocytes, and non-cardiomyocyte heart cells (NCs). In addition, 

datasets were collected from embryos at the dome stage (4.3 hours post-fertilization (hpf)), 

pharyngula stage (30 hpf), and from early larvae (72 hpf), where the cell types are unknown. 

We set the total height of each tree estimate to T = 1.

5.1. Replication of developmental relationships between tissue types.

Here, we check if the estimated developmental relationships between tissue types is 

replicated in the two adult fish samples. For each estimated tree, we calculated the distance 

between tissues, which we define as the average tree distance between a leaf of one tissue 

to the closest internal node leading to a leaf from the other tissue, weighted by the allele 

abundance (Fig 11). (All alleles that were found in the blood were removed since blood is 

found in all dissected organs and can confound the relationship between organs McKenna 

et al. (2016).) Recall that all of the fitting procedures are completely agnostic to any tissue 

source or cell abundance information. We tested if the correlations were significant by 

permuting the cell types and abundances in the estimated trees. The correlation was 0.730 

(p < 0.001) using our method, whereas ‘CS+chronos’ and ‘NJ+chronos’ had correlations of 

0.306 (p = 0.21) and −0.325 (p = 0.22), respectively.4
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5.2. Replication of mutation parameters.

Here, we check if the mutation parameters replicate across fish samples. For each time 

point, the fish replicates were traced using the same GESTALT barcode and processed using 

the same experimental protocol (Table 2). We compared the estimated target rates from 

our method to those estimated using a model-free empirical average approach where the 

estimated target cut rate is the proportion of times a cut was observed in that target in the set 

of unique observed indels. The average correlation between the estimated target rates from 

our method were much higher than that for the alternate approach (Table 2). In fact, we can 

also compare target cut rates between fish of different ages that share the same barcode, even 

if the experimental protocols are slightly different. The 4.3hpf and 72hpf fish share the same 

barcode version, and we find that the target rate estimates are indeed similar (Fig 12).

5.3. Recovery of cell-type and germ-layer restriction.

It is well known that cells are pluripotent initially and specialize during development. To 

evaluate recovery of specialization by tissue type, we calculated the correlation between 

the estimated time of internal tree nodes and the number of descendant tissue types; to 

evaluate recovery of specialization by germ layer, we calculated the correlation between 

the estimated time of internal nodes and the number of germ layers represented at the 

leaves. (As before, all the estimation methods do not use the tissue origin and germ layer 

labels.) Since any tree should generally show a trend where parent nodes tend to have more 

descendant cell types than their children, we compared our tree estimate to the same tree but 

with random branch length assignments and randomly permuted tissue types. Our method 

estimated much higher correlations compared to these random trees (Table 3). We show an 

example of the node times versus the number of descendant cell types and germ layers in 

Figure 13. The other methods have lower correlation compared to GAPML in all cases, 

except for ‘NJ + chronos’ in the second adult fish. However, upon inspection, the correlation 

is high for ‘NJ + chronos’ because it estimates that cells are pluripotent for over 90% of the 

fish’s life cycle and specialize during a small time slice at the very end.

5.4. Analysis of the zebrafish GESTALT data.

Now we analyze the fitted trees of the adult zebrafish in more detail to check if summaries 

concord with known zebrafish biology; and generate new hypotheses about zebrafish 

development and the experimental procedure.

The estimated tissue distance matrices (Fig 11) present a coarse summary of the 

developmental process. We observe that they recapitulate some well-established facts about 

zebrafish development. For example, we estimate that tissue types from the endoderm 

and mesoderm tended to be closer. This signal potentially captures the migration of the 

endoderm and mesoderm through the blastopore, isolating them from the ectoderm (Solnica-

Krezel, 2005). In addition, previous studies established that gills form when the anterior part 

of the intestine grows toward and fuses with the body integument (Shadrin and Ozernyuk, 

4One might be concerned that our method is consistent across fish replicates because it returns very similar trees regardless of the 
data. However, this is not the case: When we re-run our method with randomly permuted cell types and abundances, the average 
correlation between the tissue distances drops to zero.
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2002). Likewise, our method estimates that gill cells are closer to tissues from the endoderm 

and mesoderm.

Fig 11 also shows that the GFP+ cardiomyocytes tend to be farthest away from other 

tissue types, which could be either a developmental signal or an artifact of the experimental 

protocol. GFP+ cardiomyocytes were sorted using fluorescence-activated cell and this purity 

could drive their separation from the other more heterogeneous organ populations. An 

interesting biological speculation would be that the myocardial cells are one of the first cells 

to differentiate during vertebrate embryo development, which could be driving this observed 

signal (Keegan, Meyer and Yelon, 2004).

The cell lineage tree estimated using GAPML provides significantly more detail than the 

C-S parsimony tree inferred in McKenna et al. (2016) (Fig 14). Unlike the C-S tree, the 

GAPML tree infers relative timing of events across parallel subtrees and infers the order of 

events.

The full tree estimated using GAPML for the first adult zebrafish is displayed in Figure 

S10. The raw tree data and tools for visualizing the tree are available at https://github.com/

matsengrp/gapml. Its longest caterpillar spine starts from the root node and connects all 

the major subtrees that share no indel tracts. As the zebrafish embryo rapidly divides from 

the single-cell stage, these initial CRISPR editing events establish the founding cell in each 

subtree. We see that the last three subtrees at the end of this spine (farthest away from the 

root) were observed primarily in the intestinal bulb and the posterior intestine. This concords 

with our understanding of zebrafish development: of the dissected organs, the digestive tract 

is the last to fully differentiate (Moody et al., 1998). These examples show that this more 

refined lineage tree can inspire new and interesting biological questions and provide a means 

to answer them.

5.5. Analysis of mutation parameters.

Finally, our estimated mutation parameters (Table S2) can guide redesigns of the GESTALT 

barcode. For example, we estimate that Targets 1 and 9 in the barcode from McKenna et 

al. (2016) have the highest cut rates. To decrease the frequency of intertarget deletions, one 

suggestion is therefore to move those targets to the center of the barcode and targets with 

lower cut rates to the outside.

6. Discussion.

We have proposed a statistical model for the mutation process of GESTALT, a lineage-

tracing technology that leverages a synthetic barcode of CRISPR/Cas9 targets to record 

development. Our method, GAPML, estimates the cell lineage tree and the mutation 

parameters of this system. GAPML outperforms existing methods on simulated data, 

provides more consistent results across biological replicates, and outputs trees that better 

concord with our understanding of developmental biology. Its performance will continue to 

improve with our ability to integrate more barcodes.
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Our method provides a number of technical contributions to the phylogenetics literature. 

Because the GESTALT mutation process violates many of the classical phylogenetic 

assumptions, we have introduced new assumptions and methods to make the problem 

computationally tractable. We believe these techniques could be useful for other 

phylogenetic problems where the common assumptions do not hold.

A limitation of our method is that it treats the barcode as a molecular clock, even 

though its mutation rates can actually vary due to cell state, e.g. chromatin state and 

transcriptional activity. Future work includes relaxing the molecular clock assumption, 

as well as quantifying the uncertainty of our estimates and merging data across sample 

replicates.

Finally, our methods may be useful for analyzing other CRISPR-based cell lineage tracing 

technologies. GAPML is most readily applied to techniques that insert arrays of Cas9 targets 

(Schmidt et al., 2017; Salvador-Martínez et al., 2018) or those that mutate transgenes in 

organisms (Spanjaard et al., 2018; Alemany, Florescu and Baron et al., 2018). More work 

needs to be done to adapt it to homing CRISPR guide RNA systems (Kalhor, Mali and 

Church, 2017; Kalhor, Kalhor and Mejia et al., 2018).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1: 
Overview of the GESTALT experimental setup. A barcode composed of CRISPR/Cas9 

target sites is embedded into the genome of a zygote. During development, the barcode 

is inherited from mother to daughter cells. Mutations accumulate along the barcode when 

the Cas9 enzyme cuts target(s) and an error-prone repair process deletes and/or inserts 

nucleotides.
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Fig 2: 
Left: A barcode with M targets. The cut site of the targets c(·) are indicated by bold lines. 

The positions associated with each target are highlighted using gray boxes. Right: Example 

allele with two indel tracts IT[p0,i, p1,i, si, j0,i, j1,i] for i = 1, 2. The first one was introduced 

by a cut at a single target and inserted nothing. The second one was introduced by cuts at 

two targets and the insertion of s2.
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Fig 3: 
Possible transitions from the left allele are shown on the right. From top to bottom, the 

mutation process can introduce a new indel tract that does not overlap, completely masks, 

partially overlaps, or is adjacent to the previous indel tract.
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Fig 4: 
Relationship between indel tracts (IT), target tracts (TT), wildcards (WC), and singleton-

wildcards (SGWC). Each IT is shown in the context of a barcode, and the unmodified 

barcode is shown underneath for reference. Each box represents a set of ITs. For example, 

the singleton set {IT[p0, p1, s, 1, 4]} is the indel tract that cuts targets 1 and 4, deletes 

positions p0 to p1, and inserts sequence s. Wildcard WC[2, 3] contains all indel tracts that 

only deactivate targets 2 and/or 3. SGWC[p0, p1, s, 1, 4] is the union of the singleton set 

{IT[p0, p1, s, 1, 4]} and the internal wildcard WC[2, 3]. TT[1, 1, 3, 4] is the set of indel 

tracts that cut targets 1 and 3 and deactivate 1 to 4.
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Fig 5: 
An example of lumping together barcodes that share the same target activity. The two 

outer boxes correspond to two of the lumped states. The left box is the grouped state for 

possible ancestral barcode states where the second target is no longer active, while the right 

box represents when the second, fourth, and fifth targets are no longer active. The arrows 

represent possible transitions and the color represents the transition rates. Notice that each 

barcode in the left box has the same set of outgoing arrows. To show that the states are 

lumpable, we show that the total transition rate out of a barcode in the left box to the right 

box is identical for all barcodes in the left box.
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Fig 6: 
Caterpillar tree goals and parameterization
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Fig 7: 
To tune the tree topology, we select a random subtree (left) and score possible SPR 

moves that preserve the parsimony score by selecting a random subleaf and calculating 

the maximized penalized log likelihood of the resulting tree (middle). We then update the 

tree by applying the SPR move with the highest penalized log likelihood (right).
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Fig 8: 
Comparison of simulated data (each thin line is a replicate) versus observed alleles from 

a fish at 4.3 hours post-fertilization (bold line). The distribution of inactive targets and the 

number of times an allele is observed are similar.
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Fig 9: 
Example calculation of the internal node time correlation. For each tree, calculate the 

heights for each internal node (e.g. t1, t2, t1′ , t2′ ) and calculate the correlation between the 

times of the most recent common ancestors (MRCAs) of corresponding leaf groups. The 

internal node time correlation is the average of correlations ρ1 and ρ2.
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Fig 10: 
Error of trees estimates from GAPML as well as Camin-Sokal parsimony (CS) and 

neighbor-joining (NJ) with node time estimation by semiparametric rate smoothing 

(chronos). Simulated trees has ≈100 leaves, where the barcode is composed of six targets 

and the number of barcodes is varied from one to six. GAPML outperforms other methods 

in terms of BHV (left) and the internal node time correlation metrics (middle). The methods 

are similar in terms of the Robinson-Foulds (RF) metric (right).
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Fig 11: 
Average distance between tissue sources from adult fish 1 (left) and 2 (right) for tree 

estimates from GAPML. The distance between tissues is the average time from a leaf of 

one tissue to the closest internal node with a descendant of the other tissue. The shading 

reflects distance, where bright means far and dark means close. The tissue distances share 

similar trends between the two fish. For example, the top (brain and eyes) and lower right 

(heart-related organs) tend to be the darker regions in both distance matrices.
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Fig 12: 
Fitted target lambda rates for fish sampled at different time points; Each line corresponds to 

estimates for a single fish. Fish sampled at 4.3hpf (left) and 72 hpf (middle) used the same 

barcode and have similar rate estimates. The 30hpf fish (right) used a different barcode and 

has different rate estimates.
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Fig 13: 
Visualization of internal node times for the first adult fish using GAPML, stratified by the 

number of descendant cell types (left) and germ layers (right). The estimated node times 

recover the known phenomenon of cell type and germ layer restriction during organism 

development.
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Fig 14: 
Subtree from trees estimated using GAPML (left) and Camin-Sokal parsimony (right). Red 

and blue bars in the allele indicate deletions and insertions, respectively. Alleles observed 

in multiple organs are plotted on separate lines per organ. The barchart on the right of each 

subfigure indicates the proportion of cells in that organ represented by each allele. The 

dashed lines in the GAPML tree correspond to the caterpillar spines.
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Table 1

Comparison of methods on simulated data using a single barcode with ten targets and around 200 leaves. The 

95% confidence intervals are given in parentheses.

Method BHV 1 - Internal node correlation

GAPML 5.33 (5.06, 5.60) 0.43 (0.39, 0.46)

CS + chronos 6.57 (6.45, 6.9) 0.57 (0.54, 0.60)

NJ + chronos 8.55 (8.51, 8.59) 0.67 (0.66, 0.68)
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Table 2

Mean Spearman correlation between the estimated target lambda rates across fish replicates (hpf is short for 

hours post fertilization). 95% confidence intervals via bootstrap are shown in parentheses. The correlation is 

higher for GAPML estimates, compared to setting rate estimates as the proportion of times each target was 

cut.

Fish age n Barcode version GAPML Correlation Empirical average correlation

4 months 2 7 0.891 0.685

72 hpf 6 7 0.897 (0.855, 0.973) 0.648 (0.616, 0.842)

30 hpf 4 6 0.287(0.287, 0.788) 0.052 (0.052, 0.727)

4.3 hpf 5 7 0.942 (0.942, 0.976) 0.749 (0.714, 0.918)
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Table 3

Correlations between the number of descendant cell types/germ layers vs. the time of internal nodes for 

different estimation methods. For each tree estimate, we create random trees by fixing the topology but 

shuffling cell types and assigning random branch lengths. The correlation for these random trees are shown. 

The p-value is calculated with respect to these random trees.

Adult Estimation # tissue types vs time # germ layers vs time

Fish Method Corr Random corr p-value Corr Random corr p-value

1

GAPML −0.476 −0.176 < 0.001 −0.404 −0.125 < 0.001

CS+chronos −0.182 0.037 0.002 −0.142 0.032 0.044

NJ+chronos −0.271 −0.126 0.003 −0.179 −0.094 0.084

2

GAPML −0.547 −0.243 <0.001 −0.437 −0.184 0.002

CS+chronos −0.389 0.070 0.001 −0.397 0.090 < 0.001

NJ+chronos −0.621 −0.236 <0.001 −0.475 −0.183 0.001
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