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Abstract

Background

Artificial intelligence (AI) algorithms have been applied to diagnose temporomandibular dis-

orders (TMDs). However, studies have used different patient selection criteria, disease sub-

types, input data, and outcome measures. Resultantly, the performance of the AI models

varies.

Objective

This study aimed to systematically summarize the current literature on the application of AI

technologies for diagnosis of different TMD subtypes, evaluate the quality of these studies,

and assess the diagnostic accuracy of existing AI models.

Materials and methods

The study protocol was carried out based on the preferred reporting items for systematic

review and meta-analysis protocols (PRISMA). The PubMed, Embase, and Web of Science

databases were searched to find relevant articles from database inception to June 2022.

Studies that used AI algorithms to diagnose at least one subtype of TMD and those that

assessed the performance of AI algorithms were included. We excluded studies on orofacial

pain that were not directly related to the TMD, such as studies on atypical facial pain and

neuropathic pain, editorials, book chapters, and excerpts without detailed empirical data.

The risk of bias was assessed using the QUADAS-2 tool. We used Grading of Recommen-

dations, Assessment, Development, and Evaluations (GRADE) to provide certainty of

evidence.

Results

A total of 17 articles for automated diagnosis of masticatory muscle disorders, TMJ osteoar-

throsis, internal derangement, and disc perforation were included; they were retrospective

studies, case-control studies, cohort studies, and a pilot study. Seven studies were
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subjected to a meta-analysis for diagnostic accuracy. According to the GRADE, the cer-

tainty of evidence was very low. The performance of the AI models had accuracy and speci-

ficity ranging from 84% to 99.9% and 73% to 100%, respectively. The pooled accuracy was

0.91 (95% CI 0.76–0.99), I2 = 97% (95% CI 0.96–0.98), p < 0.001.

Conclusions

Various AI algorithms developed for diagnosing TMDs may provide additional clinical exper-

tise to increase diagnostic accuracy. However, it should be noted that a high risk of bias was

present in the included studies. Also, certainty of evidence was very low. Future research of

higher quality is strongly recommended.

Introduction

Temporomandibular disorders (TMDs) can cause pain and dysfunction in the temporoman-

dibular joints (TMJs) and masticatory muscles. TMDs are the second most common musculo-

skeletal conditions and include various symptoms, such as decreased range of motion, joint

sound, and mouth opening deviation [1]. TMDs can be classified as pain-related disorders,

which include myalgia and arthralgia, and intra-articular disorders, which include internal

derangement and degenerative joint disease (DJD) [2].

The etiology of TMDs is considered multifactorial, with biological, behavioral, and psycho-

social factors contributing independently or as interrelated factors [3, 4]. Moreover, comorbid-

ities, such as cardiovascular diseases, osteoarthritis, tinnitus, sinusitis, and thyroid disorders,

are associated with disease onset and progression [5–7]. Therefore, diagnosis of TMDs

requires a comprehensive evaluation of the patients’ signs and symptoms (acquired through

clinical examination and medical image analysis) and behavioral and psychosocial factors [2,

8]. Subsequently, the complex nature of TMDs makes diagnosis difficult.

Currently, the most widely accepted diagnostic criteria is the Diagnostic Criteria for

Temporomandibular Disorders (DC-TMD) [2] which was developed on the basis of large-

scale international studies and data analyses since the 1990s. The DC-TMD comprises two

axes, Axis I and Axis II, which include diagnostic standards for differentiating pain-related

TMDs and intra-articular disorders (Axis I) and assessing jaw function and behavioral and

psychosocial factors (Axis II).

Despite the popularity of the DC-TMD, it has limitations in terms of its diagnostic accu-

racy. Several subtypes of internal derangement, such as disc displacement with reduction, with

reduction and locking, and without reduction, showed low sensitivity (0.34–0.54). Similarly,

low sensitivity (0.55) and specificity (0.61) were observed for DJD. Further, the interexaminer

reliability is relatively low for internal derangement and DJD [2]. Screening tools, such as sur-

veys to determine patients’ symptoms, are expensive and time-consuming and place a burden

on clinicians.

Advancements in artificial intelligence (AI) technologies have led to major developments in

the healthcare industry. The Merriam–Webster dictionary defines AI as ‘the capability of a

machine to imitate intelligent human behavior.’ It essentially refers to the simulation of

human intelligence processes using computer systems. Generally, AI systems are trained using

large amounts of input data. Patterns are learned from these data and then used to predict the

outcome of new instances. AI algorithms are increasingly applied in patient diagnoses, espe-

cially for detecting and classifying lesions, such as skin cancers [9], diabetic retinopathy [10],
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brain tumors [11], and dental caries [12], using medical diagnostic images [13]. Additionally,

other data types, such as electronic medical records in the form of text [14], voice [15], and

sound [16] are used to develop diagnostic tools to support clinicians in decision-making.

Recently, various AI algorithms have been applied to image and nonimage data for TMDs

diagnosis [17–21]. However, studies on the use of AI for TMD diagnosis have used different

patient selection criteria, disease subtypes, input data used for diagnosis, and outcome mea-

sures for performance evaluation. Moreover, the accuracy of the AI models varies. To the best

of our knowledge, there has been no systematic review till date that summarizes such findings.

Therefore, this study aimed to systematically summarize the current literature on the applica-

tion of AI technologies for diagnosis of different TMD subtypes—both muscular and articular

conditions—evaluate the quality of these studies and assess the diagnostic accuracy of existing

AI models.

Materials and methods

This systematic review and meta-analysis was conducted and reported in accordance with the

Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) 2020 guide-

lines (S1 and S2 Tables) [22].

Research questions

This systematic review and meta-analysis was conducted to answer the following question:

“How accurate are the AI algorithms for the diagnosis of TMDs?” The focused question was

further classified as follows:

1. Which data were used for developing algorithms for TMD diagnosis?

2. Which AI techniques were used for TMD diagnosis?

3. Which features were used for TMD diagnosis?

4. Which outcome measures were used for assessing the model performance?

Further, the research question was formatted using the Population, Intervention, Compari-

son, and Outcome framework (Table 1).

Information sources and search strategy

Our search algorithm comprised the PubMed, EMBASE, and Web of Science databases. A

combination of the following terms was used: “artificial intelligence” OR “neural network” OR

“machine learning” OR “deep learning” OR/AND “TMJ osteoarthritis” OR “temporomandib-

ular joint osteoarthritis” OR “temporomandibular disorders” OR “masticatory muscle disor-

ders” OR “TMDs” OR “TMJ disorder” OR “temporomandibular joint disorders” OR “TMJ

Table 1. Description of the population, intervention, comparison, and outcome elements.

Research question How accurate are the AI algorithms for the diagnosis of TMDs?

Population Patients with TMDs

Intervention Use of medical diagnostic images (CBCT, MRI, panoramic radiographs) and health records

Comparison Type of data and algorithm used for AI-based automated diagnosis models

Outcome Performance of AI algorithms for the diagnosis of TMDs assessed using diagnostic accuracy

AI, artificial intelligence; TMDs, temporomandibular disorders; CBCT, cone-beam computed tomography; MRI,

magnetic resonance imaging

https://doi.org/10.1371/journal.pone.0272715.t001
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arthritis” OR “temporomandibular joint arthritis” OR “progressive condylar resorption” OR

“degenerative joint disease” OR “temporomandibular joint disease” OR “TMJ disease” OR

“idiopathic condylar resorption” OR “juvenile idiopathic arthritis.” No start date was used,

whereas the end date was June 30, 2022. Table 2 includes the search strategy for each database.

Eligibility criteria, study selection, and data collection

We included original studies published in scientific journals whose full texts were available.

The inclusion criteria were as follows: (a) use of AI algorithms to diagnose at least one subtype

of TMDs; (b) the performance of the developed AI algorithms was assessed; (c) no limit on the

participants in terms of gender, age, or ethnicity; and (d) were written in English. The exclu-

sion criteria were as follows: (a) studies on orofacial pain that is not directly related to the

TMJ, such as atypical facial pain and neuropathic pain; (b) studies on TMJ that were unrelated

to disease diagnosis; (c) editorials, comments, book chapters, and excerpts without detailed

empirical data; and (d) studies not written in English.

To determine the final eligibility, the two investigators (YJK and NJ) independently

assessed the full text of studies. Conflicts between the reviewers was resolved by the involve-

ment of a third investigator (KSL). Then, two investigators, NJ and YJK, independently

extracted and formulated the data, such as input data used for TMD diagnosis, AI algorithms

used, and performance measures. Any discrepancies were resolved through discussion.

Risk of bias assessment

The selected articles were critically assessed and scored independently by two investigators

(YJK and NJ). Quality assessment of the studies was based on the Quality Assessment of Diag-

nostic Accuracy Studies (QUADAS-2) [23]. The QUADAS tool was first developed in 2003 for

systematic reviews of diagnostic accuracy studies and later updated to QUADAS-2. It

Table 2. Search strategy for each database.

Database Search Terms Records

retrieved

PubMed ("artificial intelligence " OR " neural network " OR " machine learning " OR " deep

learning ")) AND/OR (("TMJ osteoarthritis" OR "Temporomandibular joint

osteoarthritis" OR " Temporomandibular disorders " OR "TMDs" OR "TMJ

disorder" OR "Temporomandibular joint disorders" OR "TMJ arthritis" OR

"Temporomandibular joint arthritis" OR "masticatory muscle disorder" OR

"progressive condylar resorption" OR "degenerative joint disease" OR

"Temporomandibular joint disease" OR "TMJ disease" OR "idiopathic condylar

resorption" OR " juvenile idiopathic arthritis")

1142

Embase ("artificial intelligence " OR " neural network " OR " machine learning " OR " deep

learning ")) AND/OR ((" TMJ osteoarthritis " OR " Temporomandibular joint

osteoarthritis" OR " Temporomandibular disorders " OR " TMDs" OR " TMJ

disorder" OR " Temporomandibular joint disorders" OR " TMJ arthritis" OR "

Temporomandibular joint arthritis" OR "masticatory muscle disorder" OR

"progressive condylar resorption" OR " degenerative joint disease" OR "

Temporomandibular joint disease" OR " TMJ disease" OR "idiopathic condylar

resorption" OR " juvenile idiopathic arthritis")

585

Web of

Science

("artificial intelligence " OR " neural network " OR " machine learning " OR " deep

learning ")) AND/OR ((" TMJ osteoarthritis " OR " Temporomandibular joint

osteoarthritis" OR " Temporomandibular disorders " OR " TMDs" OR " TMJ

disorder" OR " Temporomandibular joint disorders" OR " TMJ arthritis" OR "

Temporomandibular joint arthritis" OR "masticatory muscle disorder" OR "

progressive condylar resorption" OR " degenerative joint disease" OR "

Temporomandibular joint disease" OR " TMJ disease" OR "idiopathic condylar

resorption" OR " juvenile idiopathic arthritis")

196

https://doi.org/10.1371/journal.pone.0272715.t002
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comprises four components: patient selection, index test, reference standard, and flow and

timing. Each component is assessed for the risk of bias. The first three components are also

assessed for concerns about the applicability of each component [23]. The quality was rated as

high, low, or unclear. Conflicts between the reviewers was resolved by the involvement of a

third investigator (KSL).

Certainty of evidence assessment

We used Grading of Recommendations, Assessment, Development, and Evaluation (GRADE)

[24] to evaluate the quality of evidence of studies for which meta-analysis was performed. Each

outcome gets a rating on the quality of evidence of high, moderate, low, or very low within five

domains- risk of bias, imprecision, inconsistency, indirectness, and publication bias.

Statistical analysis

Meta-analysis of diagnostic accuracy was conducted using the Hartung–Knapp–Sidik–Jonk-

man method for random-effects models. The accuracy estimates were transformed using the

Freeman–Tukey double arcsine method. Heterogeneity was quantified using the I2 statistic,

which is the percentage of total variation across studies due to heterogeneity rather than

chance. All analyses were conducted using R v.4.0.4 (R Project for Statistical Computing) with

the Meta package.

Results

Study selection

The initial database search yielded 1923 studies. After removing duplicate studies, 985 articles

were screened for inclusion, of which 32 studies corresponded to TMD diagnosis using AI.

However, 15 of these 32 articles were excluded due to various reasons, such as book chapters,

studies with a focus on creating a web system repository for neural data storage, studies related

to TMJ movement and anatomy, excluding diagnosis, studies related to facial pain syndrome

as a differential diagnosis, and studies related to robotics (S3 Table). Finally, 17 articles met

our eligibility criteria and were included in this systematic review (Fig 1).

Risk of bias assessment of the included studies

Fig 2 summarizes the study biases as high, low, or unclear. The patient selection bias potential

was low in 11 out of 17 studies [17, 19, 21, 25–32] and high in 6 out of 17 studies [18, 20, 33–

36]. A high risk of bias in patient selection was present due to the inclusion of case-control

studies. However, the applicability concerns for patient selection were assessed as low for these

studies because selection bias was overcome using case-control matching. Regarding the refer-

ence test and flow and timing domains, 17 out of 17 studies were considered to have a low

degree of bias and low degree of applicability (S1 Fig). Index test was reported unclear for 13

out of 17 studies due to a lack of information on threshold values.

Certainty of evidence assessment of the included studies

Of the 7 studies considered for meta-analysis, 2 studies had invalid outcomes for the test of

diagnostic accuracy. Therefore, 5 studies were included for the GRADE analysis [17, 18, 28,

33, 34]. According to the GRADE, the Risk of bias was considered serious as it was high for

three studies [18, 33, 34]. The factor of imprecision was considered very serious because the

number of subjects was less than 1000 [17, 18, 33, 34]. Therefore, the certainty of evidence was

concluded as very low (S4 Table).
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Characteristics of the included studies

The types of studies included were mostly retrospective studies [17, 20, 21, 25, 26, 28, 30–33], 3

case-control studies [18, 19, 29, 34], 2 case-control cohort studies [35, 36], and 1 pilot study

[27]. Table 3 shows the characteristics of the included studies.

Fig 1. PRISMA flowchart for screening and identifying the included studies.

https://doi.org/10.1371/journal.pone.0272715.g001

Fig 2. Quality assessment graph of included studies.

https://doi.org/10.1371/journal.pone.0272715.g002
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Sex distribution indicated higher number of female subjects than male subjects for most of

the studies [17, 21, 27, 30, 31, 35, 36]. Image and nonimage data were used, and medical diag-

nostic imaging modalities, such as CBCT [17, 18, 20, 26, 33], high-resolution CBCT

(HR-CBCT) [34–36], MRI [21, 33], and panoramic radiography [28] were used. Other types of

image data included infrared cameras with a motion-tracking system [27] and high-resolution

video cameras [19]. Nonimage data included medical records, such as patients’ symptoms [25,

29, 31, 32]. The most frequently used method was convolutional neural networks (CNNs; 7

studies), followed by artificial neural networks (ANN; 5 studies), and decision trees (4 studies).

Other techniques included Bayesian networks (3 studies), support vector machines (SVMs; 3

studies), K-nearest neighbors (KNNs; 2 studies), and natural language processing (NLP; 1

study). Some studies used several machine-learning algorithms and compared the results.

Meta-analysis

The diagnostic accuracy was 0.69–1.00, and the pooled accuracy was 0.91 (95% CI 0.76–0.99),

I2 = 97% (95% CI 0.96–0.98), p< 0.001 (Fig 3). The study with the lowest accuracy had multi-

ple classes of condylar shape in patients with DJD in which the classes represented varying

degrees of condylar resorption and remodeling [33].

Discussion

Diagnosis of TMDs can be complex as patients present with various symptoms according to

subtypes, thus requiring clinical expertise. Various studies have diagnosed TMDs using AI to

facilitate diagnosis and support clinical decisions. However, the accuracy of the developed

models varied greatly depending on the type of data used, dataset size, and algorithms used for

developing the model.

Among the subtypes of the TMDs, TMJOA was found to be the most studied type of TMD

in this systematic literature review. One of the possible reasons is that TMJOA is an advanced

form of disease that occurs after disc displacement, and it has a significant effect on occlusion

and facial appearance. Deep-learning algorithms were used to diagnose TMJOA by detecting

the changes in the condyle shape using CBCT images [18, 20, 33]. Lee et al. developed an auto-

mated diagnostic tool for detecting TMJOA based on the Diagnostic Criteria for TMDs [17].

Fig 3. Meta-analysis of seven studies indicated by forest plot.

https://doi.org/10.1371/journal.pone.0272715.g003
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Kim et al. used panoramic radiographs to automatically detect the condyles and classify osteo-

arthritis [28]. Although panoramic radiographs are not considered the standard imaging tech-

nique in the diagnosis of TMJOA [4], the AI model showed accuracy, sensitivity, and

specificity of 0.84, 0.54, and 0.94, respectively, for diagnosing bony abnormality [28].

Machine-learning methods were used to examine correlations between the biomarkers, and

condylar shape changes were investigated to increase diagnostic sensitivity [34–36]. Radiomics

features were extracted from high-resolution CBCT scans to detect early bony changes [35,

36].

All studies on TMJOA used image data to analyze mandibular condyle shapes [17–20, 28–

31, 33–36], and CBCT was the most commonly used imaging modality. Accurate assessment

of bony changes is possible using CBCT; thus, it is considered the gold standard for TMJOA

[37]. HR-CBCT scans at a submillimeter resolution with voxel size as low as 80 μm [38]. Com-

pared with micro-CT, it allows observing subtle changes in the trabecular pattern of the con-

dyle [35, 39]. The accuracy of the AI models used in these studies ranged from 80% to 90%,

indicating their high reliability. These results are similar to the conventional studies involving

human experts to diagnose TMJOA using CBCT [40, 41]. MRI was the most frequently used

imaging method for the diagnosis of internal derangements and disc perforations [21, 30].

Other data include jaw movement records [27]. Bas et al. used clinical symptoms and diagno-

ses to predict the subtypes of internal derangements using ANNs [25]. We provide a brief

explanation of techniques used in each study below.

ANN is a popular AI model that includes one input layer, two or three hidden layers, and

one output layer. ANN training begins by randomly assigning weights as small numbers near

0 and iterating the feedforward and backpropagation algorithms until certain criteria are met

to accurately predict the final output [42].

Deep learning is a subgroup of ANNs that involves many hidden layers. CNNs are a type of

deep learning algorithms that have been developed for image data analysis. CNNs can be used

for medical image analysis by performing tasks such as classification, which identifies input

image data as pretrained classes (such as disease or normal), detection, which locates the

region of interest (i.e. abnormal area), and segmentation, which identifies regions of interest as

pixel-wise boundaries [43–45].

Decision trees are popular tools that present results in a tree structure that can be easily

interpreted, are less time-consuming, and can help understand the interactions among differ-

ent features [46]. Decision tree algorithms were used by four studies in various forms, such as

random forest [26, 27, 30], light gradient boosting machine, and XGBoost [35].

Bayesian networks are a group of techniques connecting statistics and machine learning

applicable to complex systems, which can leverage smaller data sizes compared with other

machine-learning algorithms [47]. Further, large probability distributions can be compactly

represented using Bayesian networks [48]. They comprise factorizing a probability distribution

and a corresponding directed acrylic graph (DAG). The DAG presents a cause–effect relation-

ship among nodes [21, 48]. Bayesian networks have many forms, including naïve Bayes (super-

vised classification) [45], greedy search-and-score [21], and Bayesian belief network path

condition [21].

SVMs have been recently developed and are useful techniques in pattern recognition and

classification studies [49]. Algorithm consideration, i.e., selecting a kernel/learning function,

made in advance, can improve the performance of SVMs. This technique involves the nonlin-

ear mapping of input vectors in a high-dimensional feature space to construct a linear decision

surface [49].

KNN is one of the simplest classification methods wherein the samples are divided into

training and testing groups. Training is performed with known labels, following which test
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samples are predicted using the learned model. The training and testing data need not be iden-

tical for KNN [50].

NLP is a subfield of AI that is used to decode human language into computer language [31].

Hospital data in the form of clinical history, radiology reports, and physical examination find-

ings are available from clinical databases; these can be interpreted with computational linguis-

tics using AI-assisted NLP systems. Free text can be organized into structured data [31, 51],

which reduces labor-intensive and error-prone administrative demands.

Feature extraction techniques such as gray-level co-occurrence matrix, gray-level run-length

matrix [36], local binary patterns [26], and histograms of oriented gradients [26] are used as

image-processing techniques to automatically analyze texture, shape, and color changes within

images. Feature selection is an important step in classification [52]. Different feature extraction

algorithms can be sequentially applied to extract feature matrices for individual images. Follow-

ing this method, feature matrix classification is performed using algorithms, such as SVM and

KNN [52]. Principal component analysis (PCA) is a mathematical algorithm used to identify

variations in data that simultaneously reduces their dimensionality, creating sample plotting,

and identifying similarities and differences within a group of simple tasks [53].

Regarding the risk of bias assessment, this study used the QUADAS-2 tool recommended

for systematic reviews of diagnostic accuracy by the Agency for Healthcare Research and Qual-

ity, Cochrane Collaboration [54]. We could have used the Cochrane tool for Risk Of Bias due to

Missing Evidence in a synthesis. However, this tool was intended for risk of bias assessment for

the meta-analyses of the effects of interventions [55]. Some of the included studies showed a

high risk of bias in the patient selection domain because they were case-control studies. Other

domains showed a low risk of bias and low risk of applicability concerns for all included studies.

Regardless of the possible risk of patient selection bias, most of the included studies

reported high performance of the AI models showing a pooled accuracy of 0.91. However,

there was a concern about the quality of evidence due to the small number of subjects included

in the studies. Moreover, apart from the quality of the evidence, most studies lacked robust val-

idation mechanisms. Validation, i.e., model performance evaluation, may be evaluated using

data used for model development (internal) or from separate data that is not used for model

development (external) [56]. Crossvalidation or validating from similar data sources may

introduce accuracy bias [57]. External validation mechanisms, such as cohort studies, data col-

lection from various institutions, prospective data [58], and data from different sites [56], are

needed to improve the accuracy, quality, and generalizability of AI models.

Accuracy of traditional diagnostic tools for TMDs varies greatly. A systematic review on the

diagnostic accuracy of clinical diagnostic tests and signs of TMD reported sensitivity and spec-

ificity of 2–89% and 14–97%, respectively [59]. The diagnostic accuracy varied according to

the disease subtype and diagnostic test and signs used. In contrast, medical imaging modalities

such as CT and MRI, which are regarded as gold standards for diagnosis of osteoarthritis and

internal derangement, respectively, have shown a high examiner reliability [60]. Latest AI tech-

nologies have been introduced to support clinicians in diagnosing TMDs using various types

of data, such as medical diagnostic images, video images, radiomics features, jaw movement

tracking, electronic medical records (EMR), and biomarkers. These may contribute to the

increased diagnostic accuracy.

This study has a few limitations. Most of the included studies have reported the model per-

formance in terms of sensitivity, specificity, accuracy, recall, and R1. However, they did not

provide raw data for meta-analysis of sensitivity and specificity, except for one study [14].

Therefore, only accuracy could be calculated in the meta-analysis. Additionally, the accuracies

of the included studies showed high heterogeneity because the AI algorithms were developed

for different TMD subtypes, thus the number of classes in the output and the criteria for
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accurate prediction varied among studies. Another limitation is that the study protocol was

not registered in PROSPERO, and the transparency of this study could be affected. Lastly, we

omitted abstracts and conference proceedings in our review and only used English articles

selected from major databases, which collectively may exclude relevant studies published in

other languages.

Conclusions

The results of this study suggest that AI algorithms developed for automated TMD diagnosis

can be used as a decision support tool for clinicians. In addition to the medical diagnostic

images, various input data types, such as EMR, biomarkers, and radiomics features may help

increase the diagnostic accuracy of TMDs. However, a high risk of bias in patient selection was

present due to the inclusion of case-control studies. Most of the studies used a small training

dataset and lacked external validation. Additionally, a significant heterogeneity was observed

among the studies included for meta-analysis of diagnostic accuracy. The certainty of evidence

was concluded as very low. Further studies with a larger dataset to prevent overfitting and

ensure generalizability of developed models are warranted.
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