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Abstract

Detection of Premature Ventricular Contractions (PVC) is of crucial importance in the cardi-

ology field, not only to improve the health system but also to reduce the workload of experts

who analyze electrocardiograms (ECG) manually. PVC is a non-harmful common occur-

rence represented by extra heartbeats, whose diagnosis is not always easily identifiable,

especially when done by long-term manual ECG analysis. In some cases, it may lead to

disastrous consequences when associated with other pathologies. This work introduces an

approach to identify PVCs using machine learning techniques without feature extraction and

cross-validation techniques. In particular, a group of six classifiers has been used: Decision

Tree, Random Forest, Long-Short Term Memory (LSTM), Bidirectional LSTM, ResNet-18,

MobileNetv2, and ShuffleNet. Two types of experiments have been performed on data

extracted from the MIT-BIH Arrhythmia database: (i) the original dataset and (ii) the bal-

anced dataset. MobileNetv2 came in first in both experiments with high performance and

promising results for PVCs’ final diagnosis. The final results showed 99.90% of accuracy in

the first experiment and 99.00% in the second one, despite no feature detection techniques

were used. The approach we used, which was focused on classification without using fea-

ture extraction and cross-validation techniques, allowed us to provide excellent performance

and obtain better results. Finally, this research defines as first step toward understanding

the explanations for deep learning models’ incorrect classifications.

Introduction

The cardiovascular disease (CVD) is still the leading cause of death worldwide. According to

the World Health Organization (WHO), in 2017 more than 17.9 million people died from car-

diovascular disease (31% of all deaths worldwide), and over three-quarters of CVD deaths

occurred in low-cost countries and middle-income countries [1]. Around 400,000 deaths from

cardiac arrest are reported annually in Europe: about 1,095 deaths every day, about 45 per

hour. A lifestyle marked by smoking, alcohol, and substance abuse, but also a sedentary life-

style and a careless diet can promote the onset of cardiovascular disease. Risk assessment and

prevention through appropriate diagnosis and effective treatment is one of the main goals of
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the scientific community to predict and prevent future cardiovascular disease mortality [2].

CVDs are therefore multifactorial, i.e., associated with multiple risk factors, and can be defined

as all pathologies affecting the heart and blood vessels, such as various forms of arrhythmia,

heart valve pathologies, heart failure, and so on.

Premature Ventricular Contraction (PVC) is an additional heartbeat that occurs in one of

the two heart ventricles that delays the normal pumping order, first the atria, then the ventri-

cles. Typically, these extra contractions beats are faster than the next expected normal heart-

beat, causing the chest to feel a fluttering or a skipped beat. The causes aren’t always evident.

The cells of the ventricles can become electrically unstable due to a variety of factors, including

heart disease or scarring, as well as the abuse of certain medications (decongestants and anti-

histamines), drugs, or alcohol, or an increase in adrenaline levels in the body. Occasional

PVCs do not need treatment because many people have a similar event and it is not dangerous,

but repeated PVCs or certain habits can increase the risk of having problems with heart

rhythm (arrhythmias) or weakening of the heart muscle (cardiomyopathy). Rarely, when

accompanied by heart failure, repeated PVCs may result in chaotic, risky heart rhythms and

likely sudden cardiac death. Historically, the diagnosis of PVC is made by experts who evaluate

and identify the electrocardiogram’s (ECG) characteristic parameters, but this method is too

sluggish and inefficient. Therefore, early identification and diagnosis of PVCs are necessary to

prevent not only the above-mentioned complications but also to alleviate the experts’ work-

loads. The ECG is a diagnostic test that gives a great deal of knowledge about the rhythm of the

heart and the existence of abnormal waves, as depicted in Fig 1. The heartbeat of a healthy per-

son has three characteristics: the P wave, the Q, R, and S waves which make up the QRS com-

plex, and the T wave [3].

A great effort has been done to automate the ECG signal analysis process and to design a

classifier that discriminated against healthy signals from those indicative of arrhythmia. How-

ever, the heart is a complex organ, and many new and different types of arrhythmias may

occur over time.

The main challenges in the classification of arrhythmias through the ECG can be divided

into two parts: the extraction of features and the choice of classification algorithms [4].

Fig 1. The difference between two signals: Normal and PVC (abnormal).

https://doi.org/10.1371/journal.pone.0268555.g001
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Traditional machine learning techniques have initially been widely used in the literature for

the analysis of different arrhythmias [4] and then deep learning techniques have been

explored, resulting in major cardiology outcomes. Decision Trees are classifiers commonly

used, either alone or associated with other models such as K-Nearest Neighbors (KNN), and

Support Vector Machine (SVM) [5]. Kaya and Pehlivan developed an effective and compara-

tive approach for the classification of arrhythmias intending to improve the classification per-

formance of PVCs [6]. They examined performance over time series but with reduced

characteristics equivalent to that of the ECG signals. Often the data is pre-processed for the

detection of the QRS complex using the Pan Tompkins algorithm [6] for the automatic classifi-

cation of different types of beats or the Pan Tompkins algorithm together with the Windowing

and thresholding method [7]. In the case of Kaya and Pehlivan the extraction is performed to

classify three different types of beats: normal sinus rhythm (N), PVC, and left bundle branch

block (LBBB). In [7], twenty-five features are extracted for each beat and a completely new

method is introduced. In the case of Geeta and Naveen the Decision Tree (DT) are used to

classify the PVCs. Ensemble learning techniques, such as Random Forest, are also used to com-

bine three specific characteristics: RR intervals, QRS area, and R peak amplitude [8].

However, the use of Deep Learning has grown exponentially in recent years, as it has proved

to be one of the most accurate and effective techniques in a wide range of medical problems,

such as diagnosis, prediction, and intervention. Several Convolutional Neural Network struc-

tures have been used, as in [9], where the kernel size of the starting level is extended to classify

ECG beats as normal sinus rhythm (N), PVC, premature atrial contraction (APC), right bun-

dle arrhythmia (RBBB) and LBBB. However, one of the most common models is the Long-

Short Term Memory (LSTM), a particular Recurrent Neural Network, which detects and par-

tially resolves feature extraction problems [10]. All of the methods mentioned above, including

[7, 8] have limitations, such as the extensive uses of pre-processing techniques and cardiolo-

gists have difficulties using them since the results are not always immediate and have a high

proportion of error rate. Even though feature extraction techniques are not used in many

cases, the aforementioned deep learning techniques, such as [9, 10] only partially solve these

limitations due to the use of cross-validation techniques for training the models.

The introduction of innovative technologies made the use of feature extraction and cross-

validation techniques unnecessary, significantly improving performance. In this scenario, the

goal of our work was to use specific and appropriate machine learning techniques, in particu-

lar, a group of six classifiers such as Decision Tree (DT), Random Forest (RF), ResNet-18,

MobileNetv2, ShuffleNet, Long-Short Term Memory (LSMT), and Bidirectional LSTM

(BLSTM), which enabled the avoidance of feature extraction and cross-validation techniques

achieving excellent and greater performance than that reported by the state of the art.

The dataset utilized was extrapolated from the MIT-BIH Arrhythmia Database, on which

two types of tests were done to obtain a better performance analysis: (i) with the original data-

set, (ii) with the balanced dataset.

MobileNetV2 was the network that performed the best in both experiments among the

strategies utilized in this study and in comparison to the methodologies proposed in the litera-

ture. The obtained results demonstrate excellent performance without the use of pre-process-

ing techniques and highlight how the structure and size of the dataset have the greatest

influence on the final outcomes. Finally, this approach represents a significant contribution to

the investigation of the models’ misclassification reasons.

The rest of the paper is organized as follows. Section Methods describes the chosen dataset

and the classifiers used in both experiments. Section Results and Discussion presents the exper-

iment’s performance and relatives consideration. Finally, Conclusion concludes the paper.
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Methods

This section describes the dataset and the methodology used to detect and classify the non-

PVC QRS complexes from the PVC QRS complexes for the various experiments.

Dataset

The dataset used in this research, the MIT-BIH Arrhythmia Database (MIT-BIH), was the

first universally available set consisting of standard tests for the evaluation of arrhythmia

detectors. The basic technique used for monitoring transient aspects of cardiac electrical

activity is the long-term ECG, inexpensive and non-invasive, usually with a length of 24

hours [11]. The dataset was developed by the Research Team of the Beth Israel Hospital

Arrhythmia Laboratory (BIH), now Beth Israel Deaconess Medical Center, who recorded,

digitized, and annotated several patients’ long-term ECG recordings. In order to promote the

work in the field of Cardiology and to facilitate rigorously reproducible and scientifically

comparable tests of the various algorithms developed, these recordings were available to the

research community from the outset. MIT-BIH consists of 48 half-hour extracts from each

two-channel ECG recording, 24 hours a day, obtained from 47 subjects. Of these, 23 subjects

form the “100” series and have been randomly selected from a collection of over 4000 Holter

recordings, while the remaining 25 subjects that are the “200” series have been specifically

selected to include examples of very rare arrhythmias in the database but clinically significant

that could not be well represented by purely random samples. Subjects included 25 men

between the ages of 32 and 89 and 22 women between the ages of 23 and 89; nearly 60% of

subjects were hospitalized and the remaining 40% were outpatients. As expected in clinical

practice, ECG recordings differed between subjects, as surgical medications and anatomical

differences did not allow the use in all cases of the same electrode placement. The recordings

were digitized at 360 samples per second per channel with a resolution of 11 bits over a range

of 10 mV.

The dataset used in this paper, obtained from the above mentioned database, contains a

total of 82,178 items from 47 patients. Each ECG record has been extrapolated using a sam-

pling method based on 169 ms time intervals that completely covered the QRS complex curve.

The original dataset contains precisely 75,048 elements for the non-PVC QRS complexes and

7,130 elements for the PVC QRS complexes. For this reason, there is a first phase in which the

dataset is balanced using the subsampling technique for reducing data size by picking a subset

of the original data; two types of experiments are carried out: (i) with the original dataset, (ii)
with the balanced dataset. In the second phase the raw data have been converted into color

images in order to correctly train the CNNs. Each image represents an entire sample (row)

from the original dataset. As a result, two types of dataset have been obtained: the original

dataset composed of raw data and the dataset made up of images. In both experiments, the

dataset was divided for CNNs into 70% for training, 15% for validation, and 15% for testing.

For the other models, however, the dataset was divided into 80% for training and 20% for

validation.

The percentage of presence of non-PVC and PVC QRS complexes in the first experiment

was 91% and 8%, respectively, with the training set consisting of 60038 non-PVC samples and

5704 PVC samples, and the test set consisting of 15010 samples of non-PVC QRS complexes

and 1426 PVC QRS complexes. Instead, in the second experiment (with the balanced dataset),

the percentage of the existence of non-PVC and PVC QRS complexes is exactly 50% in both

the training and test sets, i.e. 5704 non-PVC and 5704 PVC examples in the training set and

1426 non-PVC and 1426 PVC examples in the test set.
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QRS complexes classification

This subsection describes the chosen machine learning techniques for the classification of QRS

complexes.

The dataset obtained was used to train the models and the performance was compared in

order to evaluate the best model in both experiments. The proposed approach is detailed in

Fig 2.

Fig 2. Methodology to classify QRS complexes.

https://doi.org/10.1371/journal.pone.0268555.g002
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To achieve an ideal trade-off between execution time and performance, all the models used

in this work were trained without the use of any cross-validation techniques and without the

use of hand-crafted feature selection techniques for machine learning models.

To evaluate the models, the metrics chosen are the standard criteria performance used in

the literature: Accuracy (ACC), Sensitivity (SE), Specificity (SP), Precision (PRE), F1-score

(F1), Area Under the roc Curve (AUC); all the metrics are related to the confusion matrix so

to the True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) val-

ues:

ACC ¼
ðTP þ TNÞ

ðTP þ FP þ TN þ FNÞ
ð1Þ

SE ¼
TP

ðTP þ FNÞ
ð2Þ

SP ¼
TN

ðTN þ FPÞ
ð3Þ

PRE ¼
TP

ðTP þ FPÞ
ð4Þ

F1 ¼ 2 �
ðSE � PREÞ
ðSþ PREÞ

ð5Þ

Decision Tree. Decision Tree (DT) is one of the most common classification methods

and can be extended and used in different fields and disciplines. It can be used as a substitute

for statistical processes, for machine learning, for pattern recognition, and also for various

medical applications. There are two main reasons for the widespread use of DTs: (i) they are a

very versatile type of structure because they allow a set of classification rules to be represented

and (ii) they supports very fast computational time which depends on the depth of the tree.

The structure of DT consists of nodes and edges: the root node has no incoming edges whereas

internal nodes have both incoming and outgoing edges. At the last level, the nodes are called

leaves and have no outgoing edges. The endpoint of each classification is the leaf node, which

indicates the class assigned to the instance. Based on the value of the attribute chosen for classi-

fication, each internal node performs a test function that divides the space into two or more

subspaces (subtrees). The attribute should be chosen to have a discriminating dataset partition

that is useful for analysis. This process is repeated recursively on each subspace obtained until

all points of the partition belong to the same class (an additional partition would not add value

to the predictions). This can be checked by the use of specific heuristics, such as the Gini

index, also known as Gini impurity, which measures the impurity of a node:

Gini ¼ 1 �
Xn

i¼1

p2

i ð6Þ

where pi is the ratio of the number of class i samples to the total number of training set sam-

ples. The Gini index may assume values between 0 and 1, where 0 expresses the purity of the

classification (all samples belong to a single class) and 1 the random distribution of the ele-

ments. Another heuristic that can be used is entropy (theoretically, the average quality of

PLOS ONE Classification of QRS complexes to detect Premature Ventricular Contraction using machine learning techniques

PLOS ONE | https://doi.org/10.1371/journal.pone.0268555 August 18, 2022 6 / 19

https://doi.org/10.1371/journal.pone.0268555


information present in a message) which tends to 0 as the node contains instances of only one

class:

Entropy ¼ �
Xn

i¼1

pi � log2
ðpiÞ ð7Þ

where pi is the probability of finding the element i in the node.

The DT was chosen as one of the most widely used machine learning approaches and in

this work the Gini index performed better together with the Cart training algorithm that pro-

duces binary decision trees [12].

Random Forest. The Random Forest (RF) is an Ensemble Learning model in which DTs

represent the main component. As the name suggests, the RF consists of a large number of

DTs working as a single model. Each tree in the Random Forest makes an individual forecast

and the final result is only the average of the numerical results returned by the different trees

in the event of a regression problem, or the class returned by the largest number of trees if the

Random Forest was used to solve a classification problem. A single tree growth algorithm

introduces a random component to find the best partition not between all dataset features, but

between a randomly built subset of features. The aim is to ensure the diversity of the trees.

Besides, during the training, the DTs will be able to train several times on the same instances

thanks to the use of the Bagging technique. On a case-by-case basis, DTs may not perform

very precisely but, combined as a single model, on average the projections will be closer to the

optimum.

In this paper, the RF was utilized in two different ways to analyze the results: with 60, 100,

and 128 trees, and it outperformed the DT in both circumstances.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) emerge following studies conducted between ‘58 and

‘59 by Hubel and Weisel on the visual cortex of the brain. They show that the neurons of the

visual cortex have small fields of local perception that react to visual stimuli only in a limited

area of the visual field, which combine to form the global visual field. The factors that contrib-

ute to the design of CNNs other than the classic Artificial Neural Networks are related to mem-

ory costs and computational times, which increase exponentially with the growth of input

data. To address this issue, CNN adds two specific hidden layers: the convolutional layer and

the pooling layer. The neurons present in the convolutional layer, the most important blocks

of CNNs, are not fully connected to every single neuron of the previous and the next layer,

thus simulating the functioning of the human brain’s visual cortex in which the neuron is only

connected to the neurons of the same receptive macro-area. This layer is intended to learn and

to recognize patterns with a high degree of accuracy (curves, angles, squares, etc.) through the

use of specific filters. On the other hand, the pooling layers do not have weights (they cannot

therefore learn), but use subsampling techniques to minimize the computation load and mem-

ory during training by reducing the size of the previous layer. The goal is also to minimize the

risk of overfitting, given the significant reduction in weights. Therefore an input layer, fol-

lowed by an alternating convolutions layer and pooling layers to finish with the output layer,

forms a typical CNN structure. After the convolutional layers typically the activation function

used is RELU which reduces the vanishing gradient problem and improves performance:

RELUðXÞ ¼ maxð0;XÞ ð8Þ

In case X is negative, this function will assume value 0, otherwise it will assume value X.

This implies that only a positive input is propagated forward. For the output layer the Softmax
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activation function is used to classify the input data in different groups:

sðsðXÞÞ ¼
esðXÞ

SesðXÞ
ð9Þ

where s(X) denotes the score for instance X. Softmax is a normalized exponential function that

returns the class with the maximum probability.

Since the 1980s, CNNs have been used for different purposes, including image detection,

speech recognition, and so on, and many models have been selected for this study. The CNNs

chosen in this work are trained using the transfer learning technique. This technique, which

considerably reduces the computation time, allows one to reuse most of the parameters of the

networks already trained previously on similar problems, concentrating on the modification

and training only of the last layers. Furthermore, it favours and simplifies the experiment

reproducibility.

ShuffleNet. ShuffleNet, introduced by Zhang et al. [13], is a CNN specifically designed for

devices with limited computing power, as in the clinical settings considered in this study. To

achieve excellent results even in presence of devices with limited computing resources, the

purpose is to determine the best trade-off between speed and accuracy.

CNNs, such as ResNet, are designed through the repetition of convolutional groups that

consistently increase the complexity of the network, the size, and the number of parameters

used. The ShuffleNet architecture model, described in Table 1 is based on the residual unit

structure by introducing two new operations: point-wise group convolution and channel shuf-

fle to reduce complexity and time of execution.

To allow a correct correlation between input levels and output levels, in the ShuffleNet unit,

the dense 1×1 convolution layer is replaced by the 1×1 point-wise group convolution (GConv)

layer. The channel shuffle comes after the 1×1 GConv layer, followed by the 3×3 depthwise

convolution layer (DWConv), and finally the GConv layer, which resets the channel size to

match the size of the shortcut path. The DWConv layer differs from normal convolutional

operations in that it aims to distinguish the depth and spatial dimensions to produce excellent

results while reducing computational costs. One shuffle channel is necessary in the ShuffleNet

unit because it allows for the correct exchange of information between convolution groups. If

stride(the amount of movement over the image or video) = 1, as shown in Fig 3, the input and

output data can be added directly; if stride = 2, the number of channels increases and the input

Table 1. ShuffleNet architecture.

Layer Output Size Kernel Size Stride Repeat

image 224×224

conv1 112×112 3×3 2 1

maxPool 56×56 3×3 2

stage2 28×28 2 1

stage2 28×28 1 3

stage3 14×14 2 1

stage3 14×14 1 7

stage4 7×7 2 1

stage4 7×7 1 3

globalPool 1×1 7×7

fullyConnected 2

softmax 2

classification 2

https://doi.org/10.1371/journal.pone.0268555.t001
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and output data cannot be matched through the added element; however, two changes must

be made: add the 3×3 AVG Pool layer on the input to the shortcut path so that the number of

feature maps is the same size as the output and the last element is the concatenation channel,

as defined in Fig 4.

In addition, Table 1 describes also the ShuffleNet units which are represented by three

stages: (i) stage2, (ii) stage3, and (iii) stage 4, which differ in output size. The modified layers

are highlighted in order to adapt the network to the dataset used.

Fig 3. ShuffleNet unit with stride = 1. The activation functions used are Relu and Batch normalization (BN).

https://doi.org/10.1371/journal.pone.0268555.g003
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In this work, ShuffleNet was chosen because its essence is to minimize convolution opera-

tions by having a model that significantly reduces complexity while maintaining the highest

accuracy.

ResNet-18. Most of the very CNNs are affected by the convergence problem with an

increase in the network’s depth. The residual block solved this problem. The design of the

Residual Network (ResNet), shown in Table 2, has allowed very deep neural networks to be

trained and to avoid gradient problems [14].

The definition of the skip connection reflects the fundamental turning point of the residual

block: the introduction of interactions between neurons belonging to non-adjacent layers. The

skip connection, which is an identity mapping, has no parameters but is used to add to the last

level of the jump, the output of the previous level (F(x)) and the output of the first level (x)

Fig 4. ShuffleNet unit with stride = 2.

https://doi.org/10.1371/journal.pone.0268555.g004
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from which it starts the jump. This allows the model to learn correctly and to avoid a gradient’s

problem:

y ¼ Fðx;WiÞ þ x ð10Þ

where F() represents the residual mapping. The ResNet chosen is ResNet-18, which has 18

deep layers and represents an efficient trade-off between the computation times and the final

performance achieved.

MobileNetv2. MobileNetv2 was introduced by Sandler et al. [15]. It is a CNN designed

specifically for devices and environments with limited computational resources. The network

structure, shown in Table 3, is based on the previous version of MobileNetv1, which

Table 2. ResNet-18 architecture.

Layer Output Size Kernel Size Stride

conv1 112×112×64 7x7, 64 2

conv2_x 56×56×64 3×3 maxPool 2

3� 3; 64

3� 3; 64

" #

� 2

conv3_x 28×28×128 3� 3; 128

3� 3; 128

" #

� 2

conv4_x 14×14×256 3� 3; 256

3� 3; 256

" #

� 2

conv5_x 7×7×512 3� 3; 512

3� 3; 512

" #

� 2

avgpool 1×1×512 7×7

fullyConnected 2 512×2

softmax 2

classification 2

https://doi.org/10.1371/journal.pone.0268555.t002

Table 3. MobileNetv2 architecture.

Layer Output Size Kernel Size Expansion Factor Stride Repeat

image 224×224×3 2 1

conv2d 112×112×32 2 1

bottleneck 112×112×16 1 1 1

bottleneck 56×56×24 6 2 2

bottleneck 28×28×32 6 2 3

bottleneck 14×14×64 6 2 4

bottleneck 14×14×96 6 1 3

bottleneck 7×7×160 6 2 3

bottleneck 7×7×320 6 1 1

conv2d 7×7×1280 1×1 1

avgpool 1×1×1280 7×7 1

fullyConnected 2

softmax 2

classification 2

https://doi.org/10.1371/journal.pone.0268555.t003
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introduced the concept of Depthwise Separable Convolutions (DWConv), a key block for

many neural networks.

With DWConv, the full convolution operator is replaced by a factored version so dividing

convolution into two separate layers. The first is a DWConv that performs a single filter on

input data while the second, GConv, is a 1×1 convolution that builds new features through a

linear combination. The aim is to significantly reduce the cost of complexity and the size of the

network model. For MobileNetv2, 3×3 DWConv are used to further reduce computational

costs.

The introduction of a new layer module is the absolute novelty: the inverted residual with

linear bottleneck. Similar to the residual block, it is based on two insights: (i) the input mani-

fold can be encoded in low-dimensional subspaces, (ii) the non-linear activation functions

cause information loss only if the input manifold does not have a low input space in the sub-

space. Fig 5 presents the bottleneck residual block just mentioned. This block consists of a first

1×1 conv layer (convolutional layer), followed by a 3×3 DWConv and again a 1×1 conv layer.

If stride = 1, as shown in Fig 5, the input and output data can be added directly. As in the resid-

ual block standard, the addition of shortcuts represents an attempt to improve the gradient’s

spread capacity. On the other hand if stride = 2, there is no shortcut path because input and

output cannot be added directly (Fig 6). There are 19 bottleneck residual blocks in the final

network architecture. The resulting structure, reduces the use of memory and enables very

powerful inferences to be accessed. In our case, MobileNetv2 proved to be the best classifier in

both experiments.

Recurrent Neural Networks

As opposed to the feed-forward networks where the signal moves from the input level to the

output level, Recurrent Neural Networks (RNNs) introduce a feedback loop that allows the

newly processed output to be fed back into the network as a new input. Essentially, RNNs

provide for backward links. The feedback loop allows the network to process, learn and pre-

dict sequential data that may vary in length and are not independent of each other but related

to the data that precedes them. The concept of recurrence intrinsically introduces the concept

of network memory: output can influence itself in a subsequent step, or it can influence the

neurons of the previous chain, which in turn interferes with the neurons on which the loop

closes.

The RNN replaces conventional hidden layers with recurrent layers in which it will also

adds its output at time t − 1 as the input ut at time t. The neural network’s current state

depends on the previous state and the current input given by:

xt ¼ �ðWrxt � 1þWiutÞ ð11Þ

where xt is the network state at time t on the ut input with Wr and Wi the weights of the recur-

ring layer and the weights of the input layer, respectively. ϕ() is the activation function. For a

recurrent neural network the input data are time series that can be considered in many

instants of time as a sampled function.

In the case of ECGs, RNNs are a popular tool due to their memorizing skills, which allow

for better identification of alterations in curves, which are the main symptom of PVCs.

Long Short Term Memory. Long Short Term Memory (LSTM) is a particular RNN spe-

cifically designed to avoid the long-term dependency issue and is especially suitable for data-

based classification, processing, and forecasting, such as time series [16]. The structure of the

LSTM is similar to the vanilla RNN in which the flow of information is processed through a

memory cell. In this way, the LSTM can determine what to memorize and what to forget, i.e.,
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it can decide the relevant details for the final classification from the less important ones. The

cell consists of three gates through which the flow of information is controlled and can be

read, written, or deleted by weight. Each gate produces a value of 0 to 1. No knowledge may be

passed by a value of 0.

Fig 5. Bottleneck residual block of MobileNetv2 with stride = 1.

https://doi.org/10.1371/journal.pone.0268555.g005
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As in the RNNs, the input is the output at time t − 1 and the input ut at time t. To update

the memory cell status, first identify the information to be deleted and then the operation is

divided into two parts to decide which information to update and which to add to the cell sta-

tus. When the cell status is updated, the network output is calculated:

zt ¼ ot � tanhðxtÞ ð12Þ

where ot is the output gate and xt is the updated cell status.

The vanishing gradient problem is solved thanks to LSTM as information is stored by the

network and long-term dependencies can be modeled.

Bidirectional Long Short Term Memory. Bidirectional Long Short Term Memory

(BLSTM) is an enhancement to conventional LSTM where two LSTMs are trained. This will

provide the network with additional background and contribute to quicker and more com-

plete learning of the problem.

The idea of Bidirectional RNN (BRNN) is simple: it uses two RNN networks where one

reads the forward sequence and the other reads the reverse sequence and can be trained using

all the input data available in the past and in the future of a particular time interval [17]. The

forward states do not interact with the backward states and vice versa, so it is possible to use

the same algorithm which is used with simple RNN. The training process follows three steps:

at first, at the forward pass, the input is processed first by the forward states (from time t = 1 to

t = T) and then by the backward states (from time t = T to t = 1) and only at last by the output

neurons. In the second step, the backward step, the passage from the output neurons to the

backward states (from time t = T to t = 1) and then to the forward states (from time t = 1 to t =

T) are carried out. Finally, the weights will be updated.

The BRNN approach has been widely used with LSTMs as past and future input informa-

tion processed within a specific time interval obtain better results than linear interpretation

without including excessive time delays in the processing of future information.

Table 4 summarizes the architecture of the LSTM and BLSTM developed for our purpose.

Experiments setup

All tests were performed on a Windows 10 laptop equipped with i7-8550U CPU, 16 GB RAM,

and the NVIDIA MX150 GPU (2GB),. Matlab, a programming interface, has been used for

machine learning algorithms. The optimization is provided by the Adam algorithm for LSTM

and BLSTM with a learning rate of 0.005, while the optimization is given by the SGDM

Fig 6. Bottleneck residual block of MobileNetv2 with stride = 2.

https://doi.org/10.1371/journal.pone.0268555.g006
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algorithm with a learning rate of 0.001 for ResNet-18, ShuffleNet, and MobileNetv2. The num-

ber of epochs and hyperparameters depend on the time and memory costs needed by the

model.

Results and discussion

This section presents and discusses the results of the various models detailed in the Method

section. The number of epochs and hyperparameters can be changed depending on the com-

putation time necessary. Three types of RF studies were carried out, one with 60 DT, one with

100 DT, and the last with 128 DT, as shown in the Tables 5 and 6. On the two types of datasets,

these types of experiments were carried out in order to accurately evaluate the RF’s perfor-

mance in various situations. The results for the various metrics reveal that the performances

are slightly different from one another, with excellent performance (above 90%) even when no

features extraction approaches are used.

LSTM and BLSTM have been trained with two different values using both for 500 and 800

epochs; the results obtained are shown in Tables 7–10.

It’s interesting to note that in the first experiment, both LSTM and BLSTM produced better

results with only 500 epochs because the entire dataset was used for training, rendering

Table 4. LSTM and BLSTM architecture implemented in Matlab without transfer learning technique.

LSTM Output Size BLSTM Output Size

SequenceInput 1 SequenceInput 1

Lstm 50 Blstm 50

fullyConnected 2 fullyConnected 2

softmax 2 softmax 2

classification 2 classification 2

https://doi.org/10.1371/journal.pone.0268555.t004

Table 5. Random forest results (1st experiment).

Random Forest ACC SE SP PRE F1 AUC

RF–60 0.9926 0.9315 0.9987 0.9865 0.9582 0.9651

RF–100 0.9927 0.9322 0.9987 0.9865 0.9586 0.9654

RF–128 0.9925 0.9308 0.9987 0.9858 0.9575 0.9647

https://doi.org/10.1371/journal.pone.0268555.t005

Table 6. Random forest results (2nd experiment).

Random Forest ACC SE SP PRE F1 AUC

RF–60 0.9783 0.9783 0.9987 0.9783 0.9783 0.9783

RF–100 0.9804 0.9797 0.9811 0.9811 0.9804 0.9804

RF–128 0.9804 0.9804 0.9804 0.9804 0.9804 0.9804

https://doi.org/10.1371/journal.pone.0268555.t006

Table 7. LSTM results (1st experiment).

LSTM ACC SE SP PRE F1 AUC

500 0.9938 0.9562 0.9973 0.9709 0.9635 0.9767

800 0.9922 0.9527 0.9960 0.9584 0.9556 0.9744

https://doi.org/10.1371/journal.pone.0268555.t007

PLOS ONE Classification of QRS complexes to detect Premature Ventricular Contraction using machine learning techniques

PLOS ONE | https://doi.org/10.1371/journal.pone.0268555 August 18, 2022 15 / 19

https://doi.org/10.1371/journal.pone.0268555.t004
https://doi.org/10.1371/journal.pone.0268555.t005
https://doi.org/10.1371/journal.pone.0268555.t006
https://doi.org/10.1371/journal.pone.0268555.t007
https://doi.org/10.1371/journal.pone.0268555


unnecessary 800 epochs. The case with 800 epochs performs better for both LSTM and

BLSTM in the second experiment, where a reduced dataset was used.

The purpose of these experiments is to determine which model among those used achieved

the best performance on the dataset. Therefore, the final summary values, have been reported

in Tables 11 and 12 sorted by the accuracy from the best to the worst.

Table 10. BLSTM results (2nd experiment).

BLSTM ACC SE SP PRE F1 AUC

500 0.9846 0.9839 0.9853 0.9853 0.9846 0.9846

800 0.9870 0.9900 0.9842 0.9837 0.9868 0.9871

https://doi.org/10.1371/journal.pone.0268555.t010

Table 8. LSTM results (2nd experiment).

LSTM ACC SE SP PRE F1 AUC

500 0.9884 0.9860 0.9908 0.9709 0.9885 0.9884

800 0.9905 0.9871 0.9938 0.9935 0.9903 0.9905

https://doi.org/10.1371/journal.pone.0268555.t008

Table 9. BLSTM results (1st experiment).

BLSTM ACC SE SP PRE F1 AUC

500 0.9941 0.9592 0.9974 0.9715 0.9653 0.9783

800 0.9922 0.9503 0.9961 0.9586 0.9544 0.9732

https://doi.org/10.1371/journal.pone.0268555.t009

Table 11. Final results (1st experiment).

Models ACC SE SP PRE F1 AUC

MobileNetv2 0.9990 0.9930 0.9996 0.9958 0.9944 0.9963

ResNet-18 0.9984 0.9902 0.9991 0.9909 0.9905 0.9947

ShuffleNet 0.9967 0.9727 0.9990 0.9893 0.9809 0.9858

BLSTM 0.9941 0.9592 0.9974 0.9592 0.9653 0.9783

LSTM 0.9938 0.9562 0.9973 0.9709 0.9635 0.9767

Random Forest 0.9927 0.9322 0.9987 0.9865 0.9586 0.9654

Decision Tree 0.9871 0.9234 0.9934 0.9335 0.9284 0.9584

https://doi.org/10.1371/journal.pone.0268555.t011

Table 12. Final results (2nd experiment).

Models ACC SE SP PRE F1 AUC

MobileNetv2 0.9909 0.9895 0.9923 0.9923 0.9909 0.9909

LSTM 0.9884 0.9860 0.9908 0.9909 0.9885 0.9884

ResNet-18 0.9860 0.9874 0.9846 0.9846 0.9860 0.9860

ShuffleNet 0.9853 0.9832 0.9874 0.9873 0.9852 0.9853

BLSTM 0.9846 0.9839 0.9853 0.9853 0.9846 0.9846

Random Forest 0.9804 0.9804 0.9804 0.9804 0.9804 0.9804

Decision Tree 0.9642 0.9601 0.9684 0.9682 0.9641 0.9643

https://doi.org/10.1371/journal.pone.0268555.t012
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The final results show that all models performed well (above 96%), but the MobileNetv2

neural network was the top model in both experiments, ranking first with the original dataset

and the balanced dataset. All these results suggest that although deeper and more efficient net-

works, such as ResNet-18, have shown better outcomes than MobileNetv2, but in presence of

smaller datasets, the deeper network is not always more efficient.

The works at the state of the art analyzed in the Introduction use always ECG recordings

extracted from the MIT-BIH database, except for one work, which uses the Chinese Cardio-

vascular Disease Database (CCDD) in addition to MIT-BIH. Geeta and Naveen have used

only 5 files for normal beats: 100, 101, 103, 105 and 220 while six files for PVC beats: 200,

203, 213, 214, 215, 221 and 223 [7]. In Xie et al. [8] and Zhou et al. [10] the dataset, consist-

ing of 44 records, is divided into two dataset, each containing 22 records: one for training

and the other for testing. Finally, all MIT-BIH recordings except 4 pacemaker patients are

used in Kim et al. [9]. In addition, in Geeta and Naveen [7] and Xie et al. [8] there is a pre-

processing phase for the selection features. However, the proposed approach, outperforms

the aforementioned methods. Table 13 summarizes the various performances for each

work.

Even if there is no feature selection or cross-validation technique within the various record-

ings, our approach has the best performance. Differently from the results in [18] where DT

outperformed all other models, in this work, the DT ranked the worst in both experiments,

since the amount of data to be processed was too high and did not allow the model to achieve

high performance. Therefore, the deeper model is not always the best performing model, as it

is evident from the results; however, on the contrary, the less profound models have produced

better results with smaller dataset.

Classification errors (albeit in very small percentages) are motivated by the very nature of

PVCs. By definition they do not have a common pattern that allows them to be identified

uniquely, but the morphology is very often very similar to other arrhythmias and in some

cases, it can be almost imperceptible. For this reason, classifiers very often confuse non-PVC

QRS complexes from PVC QRS complexes [19]. False predictions have caught the interest of

cardiologists who are always on the lookout for systems that can accurately detect arrhythmias

and heart problems. These diseases are not always characterized by specific patterns immedi-

ately recognizable by the human eye, such as PVCs. Specifically, cardiologists who manually

analyze long-term ECG in normal cases have a classification rate of over 90%, while techni-

cians and other experts have a rate of just 71% [20]. However, in rare and abnormal cases, car-

diologists’ classification rate can fall as low as 72% [20].

The proposed system allows for very high performance (in the range 96.4-99.9% if we con-

sider the accuracy) while maintaining a low percentage of classification errors, emphasizing

how the model chosen can influence the final diagnosis.

Table 13. Summary of research on the classification of PVC.

Authors ACC SE SP PRE F1 AUC

Geeta and Naveen [7] - 0.9800 - 0.9607 - -

Xie et al. [8] 0.9638 0.9788 0.9756 0.9546 - -

Kim et al. [9] 0.9864 0.9840 0.9870 - - -

Zhou et al. [10] 0.9803 0.9642 0.9806 0.9340 - -

Proposed Method 1st experiment 0.9990 0.9930 0.9996 0.9958 0.9944 0.9963

Proposed Method 2nd experiment 0.9909 0.9895 0.9923 0.9923 0.9909 0.9909

https://doi.org/10.1371/journal.pone.0268555.t013
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Conclusion

PVC is a very common occurrence and is represented by an extra heartbeat perceived in the

chest as a skipped beat. Single beat PVC is not harmful and does not require specific treat-

ments, but frequent PVCs and associated with other cardiomyopathies may be extremely dan-

gerous. The development and analysis of techniques for the correct detection of PVC are

therefore of vital importance.

The goal of our work is to determine under what conditions classifiers produce optimal

results, particularly for biomedical data, and under what conditions detection and classifica-

tion produce suboptimal performance, resulting in disastrous consequences in practice.

This approach is based on a group of six classifiers: DT, RF, LSTM, BLSTM, ResNet-19,

ShuffleNet, and MobileNetv2 to detect PVCs and to understand the reason for misclassifica-

tion of the models. The MobileNetv2 had the highest accuracy, with 99.90% and 99% percent

in the first and second experiments, demonstrating that the final results are influenced by the

size of the dataset rather than the network’s power. Furthermore, the use of the transfer learn-

ing technique to train the CNNs, combined with the thorough descriptions of the other net-

works, makes the experiments easily repeatable.

This study provides an automatic detection system for PVCs, which is highly desired by car-

diology experts. It allows for the identification of PVCs with a precision of greater than 99%

(neural network models), and these results indicate that the system can be used in clinical set-

tings, as it maintains stability even for samples that represent rare clinical conditions or sam-

ples acquired in less-than-ideal conditions. Furthermore, the system represents a fair trade-off

between accuracy and cost because it employs models with low computational power, satisfy-

ing cardiologists and experts who require a simple, and, most importantly, reliable system.

The choice of avoiding the feature extraction phase on one hand does not reduce the infor-

mation in the ECG signal but on the other hand, may represent limitations in case of noise,

baseline bundle branch block, aberrant conduction, paced beats. The goal for future work is to

expand the dataset from 1-lead to 12-lead in order to evaluate its performance and to extend

the cut-off of the PVC to better capture the morphology of the waves. Future research will also

focus on validating our approach by experts, which is delayed by the current COVID-19 pan-

demic, on detecting other cardiac problems (e.g., left bundle branch block and right bundle

arrhythmia), and identifying specific patterns that can assist systems and experts to provide an

early diagnosis.
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