Skip to main content
. 2022 Aug 18;30(3):5730–5748. doi: 10.1007/s11356-022-22302-7

Table 4.

Error analysis results of different multi-kernel support vector regression models

Kernel function RMSE MAE MAPE (%)
Linear 93.88 79.59 0.84
RBF 878.03 859.19 8.95
Poly 751.88 728.42 7.58
Sigmoid 1697.99 1692.36 17.68
EGMPA-Linear 93.88 79.59 0.84
EGMPA-RBF 135.64 121.22 1.28
EGMPA-Poly 97.98 79.22 0.83
EGMPA-Sigmoid 130.91 115.84 1.22
EGMPA-Linear-Poly 89.92 74.48 0.78
EGMPA-Linear-RBF 93.88 79.59 0.84
EGMPA-Linear-Sigmoid 87.78 72.26 0.76
EGMPA-Poly-RBF 57.27 46.75 0.49
EGMPA-Poly-Sigmoid 89.95 74.48 0.78
EGMPA-RBF-Sigmoid 37.43 30.63 0.32

Note: Bold values in the table represent the best values