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Prior work has shown that there is substantial interindividual variation in the spatial
distribution of functional networks across the cerebral cortex, or functional topography.
However, it remains unknown whether there are sex differences in the topography of
individualized networks in youth. Here, we leveraged an advanced machine learning
method (sparsity-regularized non-negative matrix factorization) to define individualized
functional networks in 693 youth (ages 8 to 23 y) who underwent functional MRI as
part of the Philadelphia Neurodevelopmental Cohort. Multivariate pattern analysis
using support vector machines classified participant sex based on functional topography
with 82.9% accuracy (P < 0.0001). Brain regions most effective in classifying partici-
pant sex belonged to association networks, including the ventral attention, default
mode, and frontoparietal networks. Mass univariate analyses using generalized additive
models with penalized splines provided convergent results. Furthermore, transcriptomic
data from the Allen Human Brain Atlas revealed that sex differences in multivariate pat-
terns of functional topography were spatially correlated with the expression of genes on
the X chromosome. These results highlight the role of sex as a biological variable in
shaping functional topography.

personalized functional networks j functional topography j sex differences j association networks

Significant sex differences have been documented in cognitive domains, including
visuospatial processing, social cognition, emotional memory, and executive function
(1–4). Prior studies have sought to understand these behavioral differences in the con-
text of sex differences in brain structure and function that emerge in childhood and
adolescence (2, 3, 5, 6). Although such studies focus on sex differences—biological dif-
ferences between males and females due to genetic, hormonal, reproductive, or physical
differences—it is important to note that an individual’s experiences based upon societal
and cultural concepts of their gender can also shape brain development and lead to
gender differences in behavior (7, 8). In this report we focus primarily on sex differ-
ences, though we also acknowledge that the effects of sex and gender are difficult to
isolate, given the correlational nature of studies in human participants. Understanding
normative sex differences in brain structure and function during development not
only allows us to learn more about the neurobiology of sex differences in cognition
but is also a necessary first step in constructing a framework to study sex differences in
psychopathology.
Previous neuroimaging studies have examined sex differences in network connectiv-

ity as a contributor to sex differences in cognition and psychiatric disorders (9–11). For
example, males on average tend to exhibit greater between-module connectivity and
lower within-module connectivity than females (12, 13). These patterns of connectivity
have been linked to better performance on spatial and motor tasks, cognitive domains
where males outperform females (12). In contrast, females outperform males on seman-
tic decision and verbal recall tasks (14, 15). These findings have been attributed to sex
differences in connectivity of functional language processing regions (14, 15). Similarly,
females also perform better than males on emotional identification and emotional dif-
ferentiation tasks (3, 4). These tasks probe social cognition, a domain linked to social
and reward networks with significant sex differences (2). Furthermore, depression and
anxiety are more prevalent in females (16), and brain connectivity patterns associated
with mood disorder symptoms are greater in females (17). In contrast, attention deficit
hyperactivity disorder (ADHD) (18) and conduct disorder (19) are more prevalent in
male youth and may be related to abnormal functional connectivity in executive sys-
tems (20). Although these studies and others suggest that sex differences in network
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connectivity may underlie diverse behavioral phenotypes, find-
ings have been heterogeneous, raising concerns about reproduc-
ibility and potential for clinical translation.
One potential reason for such heterogeneity in findings

among prior studies is the use of standardized network atlases.
Standardized network atlases assume a stable 1:1 correspon-
dence between structural and functional anatomy across indi-
viduals. Such methods assume that by aligning brain structural
anatomy across subjects, functional network anatomy across
subjects is also brought into alignment. However, evidence
from multiple independent groups has shown that there is sig-
nificant interindividual variation in the spatial distribution of
functional networks across the anatomic cortex, or functional
topography (21–25). These studies demonstrate that mapping
between structure and function varies substantially between
individuals in adults (21–24). Building on these studies in
adults, our group provided the initial description of the devel-
opment of the spatial topography of personalized functional
networks in youth (25). Interindividual variation in the topog-
raphy of personalized functional networks is maximal in associ-
ation networks such as the ventral attention, frontoparietal, and
default mode networks (25). Failing to account for functional
topography can alias individual differences in topography into
measurement of interregional functional connectivity (21). In
light of these difficulties, it remains unknown whether sex differ-
ences in functional topography exist. Furthermore, it is unknown
whether such differences might emerge in youth—a period
marked by extensive remodeling of functional networks (25).
Accordingly, here we capitalized upon a large sample of youths

imaged as part of the Philadelphia Neurodevelopmental Cohort
(26) to evaluate sex differences in functional topography. We used
machine learning to define individualized functional networks,
hypothesizing that sex differences would be greatest in association
networks. Because sex differences in neuroanatomy have previously
been linked to sex chromosome gene expression (27, 28), we also
evaluated the relationship between sex differences in topography and
gene expression.We predicted that cortex with prominent sex differ-
ences in functional network topography would also be enriched in
the expression of genes on sex chromosomes.

Results

As previously described (23), we used sparsity-regularized non-
negative matrix factorization (NMF) (29) to derive individual-
ized functional networks in 693 youth (57% female) ages 8 to
23 y imaged with fMRI as part of the Philadelphia Neurodeve-
lopmental Cohort. In this procedure for defining individualized
networks, we first created a consensus atlas for the full sample
and then used this consensus atlas to define individualized net-
works for each participant (Fig. 1A and SI Appendix, Table S1).
Use of such a group-consensus atlas ensures spatial correspon-
dence across personalized networks for each individual partici-
pant. Seventeen functional networks were identified for each
participant (Fig. 1B), which correspond to other commonly
used atlases and prior work (22, 25, 30, 31). Networks were
named as in Cui et al. (25), and include default mode networks
1, 8, and 12, frontoparietal networks 3, 15, and 17, ventral
attention networks 7 and 9, dorsal attention networks 5 and
14, visual networks 6 and 10, somatomotor networks 2, 4, 11,
and 13, and auditory network 16. In contrast to hard partition-
ing methods that assign each vertex to a single network, NMF
is a soft partitioning method. NMF yields a probabilistic par-
cellation such that each location on the cortex (i.e., vertex)
receives a loading from each of the networks; these loadings

quantify the extent to which a given location belongs to a net-
work. This probabilistic parcellation can be converted into dis-
crete network definitions for display by labeling each vertex
according to its highest loading (Fig. 1C).

Visual examination of individual participants’ functional
networks revealed distinct differences in topographic features
(Fig. 2A). This interindividual variation in topography was par-
ticularly apparent in association networks such as the ventral
attention and default mode networks. In contrast, motor and
sensory networks appeared to be much more consistent across
individuals. To quantitatively evaluate this variability, we calcu-
lated the Dice coefficient between the group atlas and each par-
ticipant for all 17 networks. When ranking networks by
median Dice, we found this measure of similarity was lowest in
association networks and greatest in sensorimotor networks,
indicating greater interindividual variation in the topography of
association networks (Fig. 2B).

Machine Learning Accurately Identifies Sex Using Functional
Topography. Based on our observation that the spatial distribu-
tion of association networks varies across individuals, we hypothe-
sized that sex contributed to this interindividual variation in
topography. To test this hypothesis, we first sought to understand
the way in which high dimensional patterns of functional topog-
raphy reflect sex. Multivariate pattern analysis allows for such
integration of high dimensional data and can also identify com-
plex patterns of topography that discriminate between males and
females. We therefore used a linear support vector machine
(SVM) (32) with nested two-fold cross-validation (2F-CV) to
construct multivariate models that classified participants as male
or female (SI Appendix, Fig. S1). Given our large sample size,
using 2F-CV minimizes overfitting while leaving a sufficiently
large sample to test model performance. Although there was no
significant difference in age between males and females in our
sample, we accounted for age and in-scanner head motion
in these models by regressing these covariates from each feature
in the training datasets (33) and then applied these model param-
eters directly to the test dataset to avoid leakage. Multivariate
models were able to classify unseen participants as male or female
with 82.9% accuracy (P < 0.0001; Fig. 3A). Sensitivity and spe-
cificity of the model were 0.76 and 0.88, respectively; area under
the receiver operating characteristic (ROC) curve (AUC) was
0.94. To understand which networks contributed the most to the
prediction, we summed the positive and negative weights
separately across all vertices in each network. This revealed that
variation in the functional topography of association networks,
including the ventral attention, default mode, and frontoparietal
network, contributed the most to the model and were therefore
relatively more important in predicting participant sex (Fig. 3 B
and C). To determine the importance of a given vertex to the pre-
dictive model, we summed the absolute weight across all 17 net-
works to summarize the prediction weight of each vertex. This
summary measure highlighted that regions in association cortex,
including the temporoparietal junction, superior parietal lobule,
and orbitofrontal cortex, were most important in predicting par-
ticipant sex (Fig. 3D). A conservative spin-based spatial randomi-
zation test (34–37) confirmed that feature weights computed
from fold 1 were consistent with feature weights computed from
fold 2 (pspin < 0.0001 for each of the 100 iterations). Although
the summed weights depicted in Fig. 3C identify which networks
contribute most to the prediction, this measure does not directly
assess the extent to which each network independently contributes
to prediction accuracy. Therefore, we ran 17 network-specific
models using nested 2F-CV. These network-specific models
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revealed that topography of association networks most accurately
classified participant sex (SI Appendix, Fig. S2).
We next conducted a series of sensitivity analyses. Classi-

fication performance remained robust when the sample was
split into three age tertiles (SI Appendix and SI Appendix, Fig.
S3), when the sample was restricted to postpubertal youths

(SI Appendix, Fig. S4), when the analysis was conducted in a
sex-balanced subsample (SI Appendix, Fig. S5), when the group
atlas was built using a sex-balanced group of subjects that was
not involved in model training and testing (SI Appendix, Fig.
S6), and when implementing dimensionality reduction prior to
classification (SI Appendix, Fig. S7).

A

B

C

Fig. 1. Defining personalized functional networks with non-negative matrix factorization. (A) We used sparsity regularized NMF to derive individual-
ized functional networks. Three fMRI runs were concatenated for each subject, resulting in a 27.4-min time series with 555 time points for each subject. In
step 1, time series from 100 randomly selected subjects were concatenated into a matrix with 55,500 time points (rows) and 17,734 vertices (columns). NMF
was used to decompose these data into a time series matrix and loading matrix. The loading matrix had 17 rows and 17,734 columns, which encoded the
membership of each vertex for each network. This procedure was repeated 50 times, with each run including a different subset of 100 subjects. In step 2, a
normalized-cut based spectral clustering method was applied to cluster the 50 loading matrices into one consensus loading matrix, which served as the
group atlas and ensured correspondence across individuals. In step 3, NMF was used to calculate individualized networks for each participant, with the
group atlas used as a prior. (B) Seventeen functional networks were identified for each participant. Networks identified included default mode networks
1, 8, and 12, frontoparietal networks 3, 15, and 17, ventral attention networks 7 and 9, dorsal attention networks 5 and 14, visual networks 6 and 10, soma-
tomotor networks 2, 4, 11, and 13, and auditory network 16. NMF yields a probabilistic (soft) parcellation such that there are 17 loadings for each vertex
that quantify the extent to which it belongs to each network. For each loading map, brighter colors indicate greater loadings. (C) The probabilistic parcellation
can be converted into discrete (hard) network definitions for display by labeling each vertex according to its highest loading.
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Mass Univariate Analyses Yield Convergent Results. The goal
of our multivariate pattern analysis was to classify participant
sex using the information contained in all regions jointly.
Although multivariate models are optimal for classification
problems, their descriptive utility is sometimes limited. The
interpretability of features within a multivariate model may be

hindered by the inability to determine how the features interact
within the model framework due to the high-dimensional
nature of the parameter space. In contrast, a traditional mass
univariate analysis describes the relationship between a given
factor and brain measures of interest on a regional basis,
thereby providing descriptive information complementary to

A

B

Fig. 2. Functional network topography varies between individuals and by sex. (A) Probabilistic loading map and discrete network parcellations of three
networks are displayed for the group and four randomly selected participants. Visual examination of individual participants’ functional networks reveal dis-
tinct differences in topographic features. This interindividual variation in topography is particularly apparent in association networks such as the ventral
attention and default mode networks. In contrast, motor and sensory networks appear to be more consistent across individuals. (B) To evaluate variability
in functional topography across networks, we calculated the Dice coefficient between the group atlas and each subject for all 17 networks. We found this
measure of similarity was lowest in association networks and greatest in sensorimotor networks, indicating greater interindividual variation in the topogra-
phy of association networks. VA, ventral attention; DM, default mode; FP, frontoparietal; DA, dorsal attention; AU, auditory; SM, somatomotor; VS, visual.

A

B

C

D

Fig. 3. Multivariate pattern analysis using support vector machines predicts subject sex based on functional topography. (A) SVMs with 2F-CV were
used to construct multivariate models that classified participants as male or female. The ROC curve of the resulting model is depicted. Area under the ROC
curve was 0.94; average sensitivity and specificity of the model were 0.76 and 0.88, respectively. Models classified participants as male or female with 82.9%
accuracy. Inset histogram shows distribution of permuted accuracies. Average accuracy from real (nonpermuted) data are represented by the dashed red
line. (B) To understand which networks contributed the most to the prediction, positive and negative model feature weights were summed separately across
all vertices in each network. The most important topographic features in this model were found in association cortex and were maximal in the ventral atten-
tion network and default mode network. (C) The top 25% of vertices in terms of feature importance in the SVM model are displayed for the ventral attention
network and default mode network. (D) At each location on the cortex, the absolute contribution weight of each network was summed, revealing that
association cortex contributed the most to the multivariate model predicting participant sex.
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multivariate results. Accordingly, we also examined the impact
of sex on network topography using traditional mass univariate
analyses. We used generalized additive models (GAMs) with
penalized splines (38) to account for linear and nonlinear devel-
opmental effects. We fit a GAM at each vertex to evaluate the
impact of sex on network loadings. Age and in-scanner head
motion were included as covariates, and age was modeled using
a penalized spline. Multiple comparisons within each network
were accounted for by controlling the false discovery rate
(FDR; Q < 0.05).
To determine the overall effect of sex at a given vertex, we

summed the absolute value of the Z statistic for the effect of sex
across all 17 networks. This summary measure highlighted that
the impact of sex on topography was greatest in association cortex
regions, including the temporoparietal junction, superior parietal
lobule, and orbitofrontal cortex (Fig. 4A). Notably, this result
from mass univariate models was convergent with our multivari-
ate analysis, which identified the same regions of association cor-
tex as most heavily weighted in classifying participant sex. We
evaluated the significance of the correspondence between this
mass univariate summary measure and the map of summed abso-
lute prediction weights from our machine learning model (Fig.
3D) using a conservative spin-based spatial randomization test
that accounts for spatial autocorrelation (34–37). This analysis
revealed a high level of convergence between approaches (r =
0.86, pspin < 0.0001; Fig. 4B). As in our multivariate analysis,
the impact of sex estimated using a univariate approach was great-
est in association networks, including the ventral attention,
default mode, and frontoparietal networks (Fig. 4 C and D and
SI Appendix, Figs. S8–S10). Males had more vertices with greater
loadings than females in the default mode network and fronto-
parietal network, though the difference in the default mode net-
work was small. In contrast, females had more vertices with
greater loadings than males in the ventral attention network and
dorsal attention network. Additionally, both the SVM and
GAMs identified the precuneus as a region with large sex differ-
ences in topography; loadings in the precuneus were greater in
females for the default mode network, but greater in males for
the frontoparietal network (Fig. 4E). Analyses evaluating the pres-
ence of an age-by-sex interaction revealed no significant effects.

Gene Enrichment Analyses Link Sex Differences in Topography
to X-Chromosome Genes. The above findings indicated that
there were robust differences in functional topography between
males and females. We next sought to understand the biological
basis of these sex differences in topography. Although little is cur-
rently known about what factors drive interindividual variation
in topography, sex differences in neuroanatomy have previously
been attributed to differences in sex chromosome gene expression
(27, 28). Accordingly, we conducted a chromosomal enrichment
analysis to determine whether sex differences in topography were
spatially coupled to gene expression. We compared the map of
summed absolute prediction weights from our machine learning
model to gene expression data from the Allen Human Brain
Atlas (across n = 12,986 genes using a 1,000-parcel atlas; Materi-
als and Methods). We first correlated each gene’s spatial pattern
of expression with the feature weights from the multivariate
(SVM) model. Next, we quantified the degree of spatial corre-
spondence between a chromosomal gene set and the feature
weights from the multivariate model as the median rank of the
set of correlations between the SVM loading map and expression
of genes on that chromosome. As predicted, we observed a signif-
icant enrichment of X-chromosome genes (P = 0.02; Fig. 5A)—
locations more important in predicting participant sex showed

higher correlation with the expression of genes on the X chromo-
some. This X-chromosome enrichment remained significant in a
series of sensitivity analyses that varied the parcellation resolution
(P = 0.001); that both varied parcellation resolution and used an
independent processing pipeline with alternate methods for
annotation, filtering, and sample assignment (39–41) (P = 0.02);
that limited the transcriptomic data to male donors only (P =
0.02); and that limited the sample to a sex-balanced subset (P =
0.03); see Materials and Methods and SI Appendix, Materials and
Methods for details.

The above results indicate that sex differences in multivariate
patterns of functional topography are correlated with the
expression of X-linked genes. However, regional differences in
cortical gene expression may reflect regional differences in cellu-
lar composition of the cortex (42). Therefore, we conducted
cell-type–specific enrichment analyses to understand the con-
vergent and divergent patterns of discrete underlying gene sets.
Using cell-type–specific gene sets as assigned in prior work
(28), we found that regions more important in classifying par-
ticipant sex were enriched in expression of astrocytic (P <
0.0001) and excitatory neuronal genes (P < 0.0001). To obtain
a more nuanced understanding of cytoarchitecture, we then
assigned cell types using the finer-grained neuronal subclass
assignments determined by Lake et al. (43). Convergent with
the coarser cell-type results, regions more important in classify-
ing participant sex were enriched in astrocyte-related genes
(P < 0.006; Fig. 5B) as well as several excitatory neuron sub-
classes, including Ex5b (P < 0.0001), Ex1 (P < 0.0001), Ex3e
(P < 0.0001), Ex6b (P = 0.02), and Ex2 (P = 0.03). Nota-
bly, these gene sets included numerous X-linked genes (SI
Appendix, Table S2). Finally, we conducted a rank-based gene
ontology (GO) enrichment analysis using GOrilla (44, 45) to
examine functional enrichment. This analysis identified several
GO terms relevant to brain anatomy, including “neuron part,”
“synapse,” and “glutamatergic synapse” (SI Appendix, Fig. S11).

Discussion

In this study, we leveraged machine learning and a large sample
of youths to study sex differences in functional network topog-
raphy. We first demonstrated that sex differences in topography
are greatest in association networks, including the ventral atten-
tion and default mode networks. Using complex multivariate
patterns of functional topography, we were able to predict an
unseen participant’s sex with a high degree of accuracy. Chro-
mosomal enrichment analyses revealed that sex differences in
multivariate patterns of functional topography were spatially
coupled to the expression of X-linked genes as well as astrocyte
and excitatory neuron cell-type expression signatures. These
results identify normative sex differences in the topography of
personalized association networks and highlight the role of sex
as a biological variable in shaping functional topography.

Sex Differences in Functional Topography Are Greatest in
Association Networks. Our principal finding is that there are
significant sex differences in functional topography, and that
these differences are greatest in association networks. This finding
is in line with prior studies of functional topography that show
that interindividual variation in topography is greatest in associa-
tion networks (21–25). Importantly, our findings suggest that
some significant portion of interindividual variation in topogra-
phy is driven by sex. Sex differences in topography were greatest
in the default mode network, frontoparietal network, ventral
attention network, and dorsal attention network. Variation in the
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topography of these networks has been linked to emotional,
social, and executive functions (22, 25), all of which are behaviors
with documented sex differences (2, 46, 47).

Our findings are also generally convergent with studies exam-
ining sex differences in functional connectivity, where standard-
ized network atlases may have aliased differences in topography

into measurements of connectivity. The sex differences we found
in association cortex topography are in line with several prior stud-
ies that have found sex differences in association cortex connectiv-
ity (11, 48–52). Specifically, prior studies have documented sex
differences in default mode network connectivity (48, 49, 53) and
have postulated that sex hormones like estrogen and progesterone

A

C

D E

B

Fig. 4. Mass univariate analyses provide convergent results, identifying significant sex differences in association networks. A GAM was fit at each ver-
tex to evaluate the impact of sex on network loadings. Age (modeled using a penalized spline) and motion were included as covariates. Multiple comparisons
within each network were accounted for by controlling the false discovery rate (Q < 0.05). (A) To determine the overall effect of sex at a given vertex, we summed
the absolute sex effect across all 17 networks. This summary measure is depicted and highlights that the impact of sex on topography was greatest in associa-
tion cortex regions, including the temporoparietal junction, superior parietal lobule, and orbitofrontal cortex. (B) Hexplot shows agreement between univariate
summary measure (GAM loadings in A) and multivariate summary measure (SVM weights in Fig. 3D; r = 0.86, pspin < 0.0001). (C) To identify networks with the
greatest sex differences, the number of vertices in each network with a significant sex effect was summed separately for males and females. This analysis
revealed that sex differences were greatest in association networks. (D) Significant vertices are displayed for the ventral attention network and default mode net-
work, the networks where sex differences were maximal. (E) Both SVM and GAMs identified the precuneus as a region with large sex differences in topography;
loadings in this region were greater for females in the default mode network, but greater in the frontoparietal network for males. F, female; M, male.

6 of 11 https://doi.org/10.1073/pnas.2110416119 pnas.org



might impact default mode connectivity (50, 51, 53, 54). Simi-
larly, our findings of sex differences in the topography of fronto-
parietal, ventral attention, and dorsal attention networks align
with prior studies that have reported sex differences in functional
connectivity of these networks (48, 52, 55, 56). Our multivariate
pattern analysis showed that features from the default mode, fron-
toparietal, and ventral attention networks were most important in
classifying participant sex.
Although no prior studies have classified participant sex

based on functional topography, our results generally cohere
with findings from a large study using data from the Human
Connectome Project that found that functional connectivity
features within the default mode network and frontoparietal
network were most important in identifying participant sex
(48). Further, abnormal patterns of connectivity involving the
default mode, frontoparietal, ventral attention, and dorsal
attention networks have also been associated with mood, fear,
and externalizing symptoms (17), which are all dimensions of
psychopathology with well-documented sex differences. Specifi-
cally, connectivity abnormalities of default mode, frontoparietal,
and ventral attention networks associated with fear symptoms
are greater in females (17). Together, these findings suggest that
sex differences in topography may contribute to sex differences
in cognition and psychopathology, though further work is
needed to establish such a relationship.

Sex Differences in Topography Are Associated with X-Linked
Gene Expression. The mechanisms by which sex differences in
topography arise are likely multifold. Despite the growing interest
in interindividual differences in functional topography, little is
currently known about what genetic or environmental factors

drive these differences. In prior work, we demonstrated that inter-
individual variability in topography aligns with fundamental
properties of brain organization, including myelin content and
cerebral blood flow (25). Here, we built on these findings by
linking sex differences in topography to gene expression data. As
expected, we found that regions more important in predicting
participant sex correlated with the expression of genes on the X
chromosome. The correspondence between sex differences in
topography and the spatial expression pattern of X-linked genes
suggests that the observed sex differences in topography are likely
in part driven by gene expression. Although to our knowledge no
prior studies have examined the genetic basis of sex differences in
functional topography, this finding is globally consistent with
prior work that has linked sex differences in brain structure to sex
chromosome gene expression (27, 28).

Highly ranked X-linked genes included those related to neu-
ron development [PPEF1 (57) and PCDH19 (58)], neuronal
cytoskeletal transport [DYNLT3 (59)], chloride ion channels
(CLCN5 and GABRA3), metabolism [GYG2 and PDK3 (60)],
and disease states with neuropsychiatric and cognitive symp-
toms [DMD (61), DYNLT3 (59), and PCDH19 (58)]. Of
note, one gene ranking in the top 10 X-linked genes was
PCDH19, a gene that encodes a protocadherin protein that
supports neuronal organization and migration (58). PCDH19
was also identified as a gene whose spatial expression pattern
correlates with sex differences in gray matter volume (27).
Mutations in PCDH19 have been associated with intellectual
disability, behavioral problems, and autism spectrum disorder
(58). Although speculative, it is plausible that these X-linked
genes could influence functional topography through their
actions on brain development.

A B

Fig. 5. Regions exhibiting sex differences in multivariate patterns of functional topography are enriched in expression of X-linked, excitatory
neuronal, and astrocytic-related genes. To understand the biological basis of sex differences in topography, we compared the map of summed absolute
prediction weights from our machine learning model to gene expression data from the Allen Human Brain Atlas parcellated to the Schaefer1000 atlas.
(A) Cortex where sex differences in functional topography were more prominent were significantly correlated with the spatial pattern of expression of genes
on the X chromosome. (B) We conducted cell-type–specific enrichment analyses to understand the convergent and divergent patterns of discrete underlying
gene sets. We assigned cell types using the neuronal subclass assignments determined by Lake et al. (43). Regions more important in classifying participant
sex were enriched in astrocyte-related genes and several excitatory neuron-related gene sets, including Ex5b, Ex1, Ex3e, Ex6b, and Ex2. Point range plots
show the median (point) and SE (range) rank of each chromosomal or cell-type gene set. Dashed lines indicate nonsignificant enrichments. All permuted
P values were not further corrected for multiple comparisons and determined based on one-sided tests of gene set enrichment. Ast, astrocyte; Ast_cer,
cerebellar-specific astrocytes; End, endothelial cells; Ex, excitatory neuron; Gran, cerebellar granule cells; In, inhibitory neuron; Mic, microglia; Oli, oligo-
dendrocytes; OPC, oligodendrocyte progenitor cells; OPC_cer, cerebellar-specific oligodendrocyte progenitor cells; Per, pericytes; and Purk, cerebellar
Purkinje cells.
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Another mechanism by which sex differences in topography
may arise is through organizational effects of hormones on
cytoarchitecture. Our finding that sex differences in topography
were spatially coupled to excitatory neuron cell–type gene expres-
sion was robust using two separate cell-type categorizations. This
result coheres with the extensive rodent and nonhuman primate
literature examining the impact of estradiol on glutamatergic
dendritic spine architecture (62) and sex differences in excitatory
neurotransmission (63). For example, estrogen is essential to the
maintenance of prefrontal cortex dendritic spine density in ovari-
ectomized female rodents and nonhuman primates (62, 64–66).
Estrogen also increases the number of spine synapses in the
prefrontal cortex of gonadectomized male rats (67). Similarly,
compared to male rodents, female rodents show larger α-amino-
3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor
synaptic responses (68), greater sensitivity to N-methyl-D-
aspartate (NMDA) receptor manipulations (63, 69, 70), and increased
expression of NMDA and metabotropic glutamate receptors
(63, 71).
We also found that sex differences in topography correlated

with astrocytic subtype gene expression. Sex differences in astro-
cyte structure and astrocytic glutamate release are critical deter-
minants of sex-specific synaptic patterning, which has been
implicated in the male-biased risk for autism spectrum dis-
order (72). Similarly, rodent studies have suggested that estra-
diol’s differential impact on astrocyte proliferation and apoptosis
in males and females may contribute to sex differences in brain
organization (73). Additionally, androgen receptors play a role
in establishing sex differences in astrocyte number and complex-
ity seen in rodents (74). In the context of this literature, we
speculate that hormone effects on cytoarchitecture may contrib-
ute to sex differences in functional topography.

Limitations. Certain limitations of the present study should be
noted. First, we concatenated three fMRI runs, two of which
were task time series where task effects were regressed from the
data. Residuals from task-regressed time series, while similar,
are not identical to true resting state data and nonlinear effects
associated with performing the task may therefore not have
been removed (75). However, several independent studies have
shown that functional networks are primarily defined by
individual-specific rather than task-specific factors (76) and that
networks present during task performance and at rest are simi-
lar (75). Including task-regressed data enabled us to generate
individualized networks using 27 min of high-quality data.
Time series of this length are necessary to reliably detect indi-
vidual differences in functional networks (77) and sufficient to
create parcellations highly similar to those generated using
380 min of data (78). Second, subcortical and cerebellar net-
works were not evaluated in this study, as individualized parcel-
lation of these networks requires specialized analysis techniques
that are distinct from those applied to the cortex (79, 80).
Future work should evaluate sex differences in topography in
subcortical and cerebellar networks, which are critical for behav-
iors with known sex differences, including emotional regulation
and executive function.
Third, correspondence between sex differences in topography

and gene expression were assessed at the group rather than the
individual level, though evaluating this relationship on a within-
subject basis in a large, developmental sample is precluded by the
necessity of postmortem samples for gene expression profiling.
Fourth, using the Allen Human Brain Atlas introduces several
inherent limitations, including the use of microarray to quantify
gene expression, asymmetric sampling, small sample size, donor

age, and most notably, donor sex. The Allen Human Brain Atlas
includes postmortem samples from five male donors and one
female donor. However, our findings regarding the correspon-
dence between sex differences in topography and X-linked gene
expression were robust to sensitivity analyses leaving out the
female donor, and prior studies have similarly leveraged the Allen
to examine sex differences in independent neuroimaging samples
(27, 28). Nevertheless, replication of these findings in a sex-
balanced sample will be important when such spatially compre-
hensive maps of cortical gene expression are available. Fifth, sex
was assessed using a binary self-report question, and we therefore
did not have a sufficient sample to examine functional topogra-
phy of intersex youths. Furthermore, it should be noted that
existing data and theory suggest that binary sex classification may
not be useful and that brains may be understood as complex
mosaics of male and female characteristics (81).

Conclusions

In summary, we identified normative sex differences in the
functional topography of personalized association networks in
youth. These results suggest that interindividual variation in
functional topography is in part driven by sex. Further, our
findings suggest that sex differences in topography are likely in
part linked to gene expression. Future work should examine
whether the sex differences in the topography of personalized
networks explain normative variation in socioemotional or cog-
nitive functions. The relationship between topography and sex
differences in psychopathology is also a clear area for future
research, as this may identify sex-specific biomarkers of risk for
psychiatric disorders.

Materials and Methods

Participants. In this report, we considered the entire cross-sectional sample of
1,601 subjects imaged as part of the Philadelphia Neurodevelopmental Cohort
(26). From this sample, 340 subjects were excluded due to clinical factors,
including medical disorders that could affect brain function, current use of psy-
choactive medications, prior inpatient psychiatric treatment, or an incidentally
encountered structural brain abnormality. An additional 568 subjects were
excluded because of low-quality or missing structural, resting-state, n-back, or
emotion identification imaging data; a functional run was excluded if mean rela-
tive root mean square (RMS) framewise displacement was higher than 0.2 mm,
or it had more than 20 frames with motion exceeding 0.25 mm (82, 83).
The final sample included in the analyses comprised 693 participants of which
301 were male and 392 were female. This sample of participants and their
individualized networks are the same as those included in our prior report on
individual variation in functional network topography (25). All subjects or their
parent/guardian provided informed consent, and minors provided assent. All
study procedures were approved by the institutional review boards of both the
University of Pennsylvania and the Children’s Hospital of Philadelphia.

Image Acquisition, Preprocessing, and Individualized Network Definition.

Neuroimaging acquisition and preprocessing were as previously described (25);
see SI Appendix, Materials and Methods for further details.

Across-Subject Variability of Functional Network Topography. Prior
studies of adults have consistently reported that across-subject variability of func-
tional networks is high in association networks and lower in primary sensorimo-
tor networks (22, 23, 71, 84, 85). In a prior report using the same sample (25),
we calculated across-subject variance in network loadings using the median
absolute deviation and demonstrated that interindividual variation in topography
was greatest in association networks and lowest in sensorimotor networks. To
further evaluate variability in functional topography across networks, here we
calculated the Dice coefficient between the group atlas and each subject for all
17 networks. Networks were then ranked by the median Dice value.
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Multivariate Pattern Analysis. We used a linear support vector machine
(LSVM) as implemented in LIBSVM (86) to construct multivariate models that classi-
fied participants as male or female. A free parameter C determines the balance
between the training errors and the generalizability of the LSVM classification model.
We evaluated the classification using a nested two-fold cross-validation (2F-CV), with
the inner 2F-CV determining the optimal parameter C for the SVM classifier and the
outer 2F-CV estimating the generalizability of the model (SI Appendix, Fig. S1).
Given the large sample size in this study, using two folds minimizes variance and
overfitting while leaving a sufficiently large sample to test model performance.

In the outer 2F-CV, the data were randomly divided into two subsets. We ini-
tially used subset 1 as the training set, with subset 2 used as the testing set. We
accounted for age and in-scanner head motion by regressing these effects from
each feature in the training dataset using SurfStat (33) and then applied the
acquired coefficients to regress the effects in the testing dataset. Each feature
was linearly scaled between zero and one across the training dataset; these scal-
ing parameters were then applied to scale the testing dataset (87, 88).

Within the training dataset of each outer 2F-CV loop, we employed inner
2F-CV loops to determine the optimal C. To do this, the training set of the outer
2F-CV loop was again randomly divided into two subsets; one subset was
selected to train the model with a given C in the range [2�5, 2�4, … , 29, 210]
(i.e., 16 values in total) (89), and the remaining subset was used to test the
model. This procedure was repeated two times such that each subset was used
once as the testing subset, resulting in two inner cross-validations in total. The
accuracies were calculated for each C value and then averaged across the two
inner cross-validations. The C with the highest inner prediction accuracy was cho-
sen as the optimal C (87, 90). Then, we trained a model using the optimal C
and all participants in the training set (subset 1) and then used that model to
predict the sex of all participants in the testing set (subset 2).

We repeated the above procedure using subset 2 as the training set and sub-
set 1 as the testing set. Because the split between training and testing sets was
chosen randomly, the nested twofold cross-validation was performed 100 times
to reduce the impact of group assignment. The results of these 100 nested
cross-validations were then averaged. This procedure yielded an overall classifica-
tion accuracy score for classifying unseen males or females on the basis of their
functional topography. This procedure also yielded a vector of feature weights for
each functional network that described how heavily weighted a given topo-
graphic feature was within the multivariate model.

Significance of Prediction Performance. Permutation testing was used to
evaluate whether the prediction performance was significantly better than expected
by chance (91). The predictive framework was repeated 1,000 times. In each run,
we permuted sex across the training subset without replacement. Significance was
determined by ranking the actual prediction accuracy (the average across 100 runs)
versus the permuted distribution; the p-value was the proportion of permutations
that showed a higher value than the actual accuracy value for the real data.

Interpreting Model Feature Weights. The nested 2F-CV was repeated 100
times. This yielded a total of 200 weight maps across the 100 iterations. Averag-
ing these 200 weight maps, the features with a nonzero mean weight can be
understood as contributing features in the prediction model (87, 91), with the
absolute value of the weight quantifying the contribution of the features to the
model (91). To understand which networks contributed the most to the predic-
tion, we summed the positive and negative weights separately across all vertices
in each network. As vertices had 17 loading values (one for each network), we
summed the absolute weight across all 17 networks to summarize the prediction
weight of each vertex. This sum represents the importance of a given vertex to
the predictive model. To evaluate whether feature weights computed from fold 1
were consistent with feature weights computed from fold 2, we used a conserva-
tive spin-based spatial randomization test that accounts for spatial autocorrela-
tion (34–37) [see Spatial Randomization Testing (Spin Test)]. This spin test
compared the map of summed absolute weights from fold 1 with the map of
summed absolute weights from fold 2 in each of the 100 iterations.

Univariate Associations of Network Topography with Sex. The goal of a
multivariate pattern analysis is to predict an outcome using the information con-
tained in all regions jointly. In contrast, the goal of a traditional mass univariate
analysis is to describe the relationship between a given factor and brain meas-
ures of interest on a regional basis. Although multivariate models are ideal for

classification problems, their descriptive utility is limited. While it is possible to
identify the most heavily weighted features within a model, it is not possible to
directly visualize their action within the model framework due to the high-
dimensional nature of the parameter space. As such, we used both multivariate
(predictive) and mass univariate (descriptive) approaches, which are complemen-
tary and provide converging evidence.

We evaluated mass univariate associations between sex and network topogra-
phy using GAMs with penalized splines (38) to account for linear and nonlinear
developmental effects. GAMs estimate a smoothing function using restricted maxi-
mum likelihood (REML) and penalize nonlinearity in order to avoid overfitting the
data. We fit a GAM at each vertex to evaluate the impact of sex on network load-
ings. This yielded one p-value per vertex where the p-value describes the signifi-
cance of the sex effect; this p-value was transformed to a signed z-statistic that
describes the effect of sex on topography across all subjects in the sample.
In-scanner head motion was included as a linear covariate, and age was modeled
using a penalized spline. To examine whether sex differences in topography evolve
across development, we tested for an age-by-sex interaction on loadings at each
vertex using GAMs with penalized splines; these models included motion as a
covariate and also accounted for main effects of age and sex. As we considered
three functional runs, in-scanner motion was summarized as the grand mean of
the mean relative RMS displacement of each functional run. Multiple comparisons
within each network were accounted for by controlling the FDR (Q< 0.05).

Spatial Randomization Testing (Spin Test). To evaluate the significance of
the correspondence between our multivariate and univariate results, we com-
pared a map of summed absolute prediction weights from our machine learning
model (Fig. 4D) to a map of summed effect sizes from the GAMs (Fig. 5A). We
compared these maps using the spin test (34–37) (https://github.com/spin-test/
spin-test). The spin test is a spatial randomization method based on angular per-
mutations of spherical projections at the cortical surface. The spin test generates
a null distribution of randomly rotated brain maps that preserve spatial features
and the spatial covariance structure of the original map. This procedure is there-
fore far more conservative than randomly shuffling locations, which destroys the
spatial covariance structure of the data and produces an unrealistically weak null
distribution. The spin-based p-value was calculated as the proportion of times
that the observed correlation was higher than the null distribution of correlation
values from rotated parcellations.

Gene Enrichment Analysis. To examine the transcriptomic correlates of sex
differences in functional topography, we compared the map of summed abso-
lute prediction weights from our machine learning model to gene expression
data from the Allen Human Brain Atlas (92). Publicly available microarray gene
expression data processed in line with recent benchmarking recommendations
and parcellated to the Schaefer1000 atlas were downloaded from https://
figshare.com/articles/dataset/AHBAdata/6852911. Details regarding gene proc-
essing, including gene information reannotation, data filtering, probe selection,
sample assignment, data normalization, and gene filtering, are described in
Arnatkeviciute et al. (93). Of the available parcellations of processed Allen data,
the Schaefer1000 parcellation was selected for primary comparison with topogra-
phy, given the granularity of topographic features. As only two of the six donor
brains were sampled from both hemispheres, analyses were restricted to the left
hemisphere to minimize variability of samples available across regions (93).

Chromosomal Enrichment Analysis. We used ranked gene lists to test
whether the spatial expression pattern of a given gene set was nonrandomly
related to the spatial pattern of sex differences in functional topography. As in
prior studies (27, 28, 41), we quantified the degree of spatial correspondence
using the median gene set rank. Genes were assigned to chromosomes as anno-
tated in Richiardi et al. (94). We calculated the median ranks for 24 nonoverlap-
ping gene sets: each autosome (chromosomes 1 through 22), chromosome X,
and chromosome Y. For each chromosomal gene set, we compared the observed
median rank to a null distribution of median ranks calculated from 1,000 same-
sized scrambled lists generated by randomly reordering the original ranked list.
The p-value from this nonparametric permutation test was the proportion of per-
mutations with a more extreme value than the median rank of the real data.
Permuted-based p-values were not further corrected for multiple comparisons.

To test the robustness of our chromosomal enrichments, we conducted a
series of sensitivity analyses, including varying the processing strategy and
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parcellation resolution, as well as leaving the female donor out. Specifically, we
replicated our results using publicly available gene expression data processed by
Arnatkeviciute et al. (93) and parcellated to the Schaefer300 atlas. For consis-
tency with prior work, we also parcellated Allen data to the Schaefer400 atlas
using an independent processing pipeline (39–41) and computed gene expres-
sion matrices with and without the female donor.

Cell-Type–Specific Expression Analyses and Gene Ontology. Because
regional differences in cortical gene expression may reflect regional differences
in cellular composition of the cortex (37), we conducted cell-type–specific enrich-
ment analyses to understand the convergent and divergent patterns of discrete
underlying gene sets. As in chromosomal enrichments, we used ranked gene
lists to test whether the spatial expression pattern of a cell-type–specific gene set
was nonrandomly related to the spatial pattern of sex differences in functional
topography. Nonparametric permutation testing assessed the significance of
median ranks of cell-type–specific gene sets. Gene sets for each cell type were
first assigned according to categorizations determined by Seidlitz et al. (28). To
obtain a more nuanced understanding of cytoarchitecture, we then used the
finer-grained neuronal subclass assignments determined by Lake et al. (43). In
both cases, only brain-expressed genes (28) were considered, defined by expres-
sion levels in the Human Protein Atlas (95, 96).

Finally, we also conducted a rank-based GO enrichment analysis using GOrilla
(44, 45) to examine functional enrichment.

Visualization. Connectome Workbench (version: 1.3.2) provided by the human
connectome project (https://www.humanconnectome.org/software/connectome-
workbench) (97) was used to visualize the brain surface.

Data, Materials, and Software Availability. The Philadelphia Neurodeve-
lopmental Cohort (PNC) (26) data are publicly available in the Database of
Genotypes and Phenotypes; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000607.v3.p2 (98). All analysis code is available
at https://pennlinc.github.io/funcParcelSexDiff1/ (99).
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