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Vaccination is a crucial measure to control the scale of 
SARS-CoV-2 transmission and mitigate the severity of 
COVID-19. To date, 38 vaccines against SARS-CoV-2 are in 

early use or have been approved for application in the general popu-
lation1. However, the protective effect of the various vaccine prod-
ucts is challenged by new genetic variants. VE against COVID-19, 
which measures the relative reduction of risk for a disease outcome 
in clinical trials or in the general population, exhibited a wide range 
of variation, from −2.7% to 97.2%2,3.

Several factors may contribute to the variations in VE that 
make it difficult to directly interpret the protective effect of vac-
cines. The notable contributors include the technology platforms, 
calendar period of studies, the target population, dosing interval, 
differences in study protocols and background risk of COVID-19,  
among others. The various vaccine technology strategies gen-
erated non-identical immune responses to provide protection 
against SARS-CoV-2 infection4. For instance, the LNP-mRNA vac-
cine, mRNA-1273, induces spike (S)-specific IgG, high TH1 cell 

responses, low TH2 cell responses and CD8+ T cell responses5,6, 
whereas the inactivated virus vaccine, CoronaVac, elicits robust 
CD4+ and CD8+ T cell responses to the structural proteins, includ-
ing S, nucleocapsid (N), envelope (E) and matrix (M), in addition 
to humoral responses7,8. Among all the influencing factors, emerg-
ing genetic variants relative to the vaccine strain play a critical role 
in determining vaccine effectiveness. Serology studies showed that 
neutralizing activity against the Omicron variant decreased sub-
stantially in recipients of two COVID-19 vaccine doses9,10. Viral 
structure studies demonstrated that the amino acid substitutions 
in the receptor-binding domain (RBD) and N-terminal domain 
(NTD) alter virus–host cell interactions and reshape antigenic 
surfaces of the major neutralizing sites, leading to immune eva-
sion9,11–14. Although the mechanisms of immune escape caused by 
the new mutations are being elucidated in experimental studies, an 
integrative framework to quantify the effect of genetic mismatch 
on VE would be instrumental for efficient evaluation of vaccine 
protection for any country in real time.
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Timely evaluation of the protective effects of Coronavirus Disease 2019 (COVID-19) vaccines against severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) variants of concern is urgently needed to inform pandemic control planning. Based on 
78 vaccine efficacy or effectiveness (VE) data from 49 studies and 1,984,241 SARS-CoV-2 sequences collected from 31 regions, 
we analyzed the relationship between genetic distance (GD) of circulating viruses against the vaccine strain and VE against 
symptomatic infection. We found that the GD of the receptor-binding domain of the SARS-CoV-2 spike protein is highly predic-
tive of vaccine protection and accounted for 86.3% (P = 0.038) of the VE change in a vaccine platform-based mixed-effects 
model and 87.9% (P = 0.006) in a manufacturer-based model. We applied the VE-GD model to predict protection mediated by 
existing vaccines against new genetic variants and validated the results by published real-world and clinical trial data, finding 
high concordance of predicted VE with observed VE. We estimated the VE against the Delta variant to be 82.8% (95% predic-
tion interval: 68.7–96.0) using the mRNA vaccine platform, closely matching the reported VE of 83.0% from an observational 
study. Among the four sublineages of Omicron, the predicted VE varied between 11.9% and 33.3%, with the highest VE pre-
dicted against BA.1 and the lowest against BA.2, using the mRNA vaccine platform. The VE-GD framework enables predictions 
of vaccine protection in real time and offers a rapid evaluation method against novel variants that may inform vaccine deploy-
ment and public health responses.
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In this study, we evaluated the link between genetic mismatch 
of circulating SARS-CoV-2 viruses and reported COVID-19 VE 
from population studies. Based on our bioinformatics approach 
previously established for influenza viruses15,16, we tailored the 
VE estimation framework for COVID-19 by controlling the clus-
tered random variation of technology platforms or manufacturers 
using a mixed-effects model. Through extensive analysis of publicly 
reported VE studies and genetic sequences, we showed that a sub-
stantial proportion of the change in VE could be explained by GD, 
and we proposed an efficient approach to evaluate vaccine protec-
tion against symptomatic COVID-19.

Results
GD, or genetic mismatch, is calculated by the average Hamming 
distance on the RBD of the genome of the circulating viruses to the 
vaccine strain during the timeframe of VE studies. VE data used are 
detailed in Supplementary Table 1. The prediction method for VE 
was constructed through a mixed-effects model using GD as the 
main predictor, controlling for the confounding variables, includ-
ing the midpoint (days) since the second dose and age group of the 
study. Particularly, variations in VE caused by technology platform 
or manufacturer were controlled by random effect in the mixed 
model (see Methods for details). In the following, we will first 
describe the variations in VE and GD by vaccine platform and then 
investigate their relationship.

VE and GD distributions by vaccine platform. VE and GD of the 
four vaccine platforms with authorized use are compared in Fig. 1. 
Within each vaccine platform, the vaccine effectiveness is gener-
ally lower compared to the efficacy outcome (Fig. 1a), whereas, in 
terms of genetic mismatch (Fig. 1b and Extended Data Fig. 1), the 
vaccine effectiveness cohort encompasses larger genetic mismatch 
relative to the vaccine efficacy cohorts. The result indicates that 
genetic mismatch had increased during the mass vaccination phase 
compared to the earlier clinical trial periods. This could be due to 
the accumulation of virus mutations through time, as well as the 
generally longer evaluation period of the effectiveness studies com-
pared to the efficacy trials. Across the technology platforms, vaccine 
protection (efficacy/effectiveness) shows considerable difference 
(ANOVA test P < 0.001; Fig. 1a). The mRNA vaccines reported the 
highest mean VE of 90.0% (95% confidence interval (CI): 88.2–91.8, 
n = 39), followed by the protein subunit vaccine (82.9%) (95% CI: 
67.0–98.8, n = 5), viral vector vaccines (68.5%) (95% CI: 64.8–72.1, 

n = 24) and inactivated vaccine (59.6%) (95% CI: 47.8–71.3, n = 10). 
Interestingly, the genetic mismatch of these platforms shows a per-
fect reverse trend, of which the mRNA vaccines cohorts correspond 
to the smallest mismatch, and the other platforms exhibit larger 
mismatches. This might also be contributed by the timeframe of the 
vaccine evaluations for these platforms, in which the mRNA trials 
were the earliest to complete and corresponded to a more homo-
geneous viral population. The genetic mismatch summarizes the 
deviation of genetic variants with respect to the vaccine strains, 
accounting for time, locations and multiple strain co-circulation, 
for vaccine evaluation at population level using sequencing data.

Relationship between vaccine protection and GD. Next, we 
explored the effect of GD on vaccine protection. At most, 86.3% of 
the variations in VE can be explained by the GD measure, control-
ling for the random effects of vaccine technology platforms (Fig. 2a  
and Supplementary Table 2), and 87.9% of the variation can be 
explained (Fig. 2b and Supplementary Table 3) when the random 
effects of six major vaccine products (BNT162b2, mRNA-1273, 
AZD1222, Ad26.COV2.S, NVX-CoV2373 and CoronaVac) were 
controlled. Among the candidate genomic regions, genetic mis-
match on the RBD demonstrates the strongest influence on vaccine 
protection, whereas the GD of the non-S proteins shows no asso-
ciation with VE (Extended Data Figs. 2 and 3). For every residue 
substitution on the RBD, the VE would reduce by an average of 
5.2% (95% CI: 2.4–8.0) for mRNA vaccines, 6.8% (95% CI: 4.2–9.4) 
for viral vector vaccines, 14.3% (95% CI: 9.4–19.2) for protein sub-
unit vaccines and 15.8% (95% CI: 12.4–19.3) for inactivated vac-
cines (P = 0.038) (Supplementary Table 2). The NTD and S protein 
demonstrate weaker per-amino-acid substitution association with 
VE (P = 0.086 and P = 0.082, respectively) (Extended Data Fig. 4 
and Supplementary Table 4). When no genetic mismatch is present, 
VE for the mRNA vaccines is expected to be 95.8% (95% CI: 92.0–
99.5), estimated by the RBD region; the protein subunit vaccine’s 
expected VE is similar; and the inactivated and viral vector vaccines 
are expected to exhibit a systematically lower VE by 17.3% and 
20.6% compared to the mRNA vaccines. The estimates using the 
manufacturer-based model can be found in Supplementary Table 3.

VE-GD model assessment by validation data. The VE-GD 
relationship can be used to make predictions on VE by vaccine 
type. A total of 57 VE data were used for model training and  
23 variant-specific VE data for validation (Supplementary Table 5). 
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Fig. 2 | The relationship between VE and GD of the circulating SARS-CoV-2 strains to the vaccine strain on RBD. a, Negative linear relationships between 
VE and GD for different vaccine platforms (P = 0.038, R2 = 86.3%). The dashed line was fitted by all data points. b, Negative linear relationship between VE 
and GD for each vaccine product (P = 0.006, R2 = 87.9%). The two-sided P value was obtained from the mixed-effects model. The colored lines were fitted 
by data points of each platform. The shaded area indicates 95% CI.
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In Fig. 3a, the predicted and observed VEs for the genetic variants 
are overlayed. The calibration plot (Fig. 3b) shows a close match-
ing, and the concordance correlation coefficient (CCC) reaches a 
high level of 0.95 (95% CI: 0.88–0.98). Against the Delta variant 
(B.1.617.2), the estimated VE is 82.8% (95% prediction interval: 
68.7–96.0) and 61.1% (95% prediction interval: 46.7–74.9) by the 
mRNA and viral vector vaccines, respectively (Fig. 3a). These esti-
mates are supported by the observed VE against the Delta variant: 
the mRNA vaccine BNT162b2 and the viral vector vaccine AZD1222 
provided 83% (95% CI: 78–87) and 67.0% (95% CI: 61.3–71.8) pro-
tection, respectively17,18. The predicted VE is 89.4% (95% prediction 
interval: 78.1–100.0) for the Alpha variant and 73.7% (95% predic-
tion interval: 58.3–90.2) for the Beta and Gamma variants by the 
BNT162b2 and mRNA-1273 vaccines, close to the observed VE 
of 86% (95% CI: 81–90) and 77% (95% CI: 63–86), respectively19. 
Against the Omicron variant, the model predicted an expected VE 
of 14.0% (95% prediction interval: 0.7–27.3) in California in late 
2021, and the observed value was 13.9% (95% CI: 10.5–17.1) for 
the mRNA-1273 vaccine20. These validation results demonstrate 
high predictive feasibility of using genetic mismatch to estimate  
vaccine performance.

Prediction for variants and Omicron sublineages without known 
VEs. Next, we fitted the model with all available data and predicted 
VE against circulating variants as well as the Omicron sublineages for 
which there are no observed VE data at the time of writing (Fig. 4a).  

Interestingly, among the four sublineages of Omicron (BA.1, 
BA.1.1, BA.2 and BA.3), the expected VEs vary between 11.9% for 
BA.1 and 33.3% for BA.2, using the mRNA vaccines. This might 
contribute to the considerable variations in VEs for Omicron 
reported from observational studies, whose cohorts might have 
been infected by divergent Omicron sublineages, in addition to dif-
ferences in immune history. The model predicts that VEs against 
variants of concern (VOCs) or variants of interest (VOIs) other than 
the Omicron, such as the Lambda and Mu variants, are expected to 
be above 50% within 3 months after the second dose of an mRNA 
vaccine; however, the VEs of inactivated vaccines against symptom-
atic infection are predicted to wane most under the challenge of  
new genetic variants.

Depicting trend of VE in serial cross-sectional sequencing data. 
We demonstrated the application of predicting VE in real time 
against the circulating virus in a given geographical region, using 
California as an example. Sequencing data of virus isolates from 
California were downloaded from public databases. VEs were esti-
mated for the major vaccine platforms at weekly intervals by GD 
in the serial cross-sectional sequencing data (Fig. 4b). In general, 
a decreasing trend of VE is depicted, with a sharp drop after the 
Omicron predominance since December 2021. The observed VEs 
from clinical trials and observational studies conducted during the 
period in the United States are overlaid on the prediction outcomes 
for reference2,21–32.
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Exploration of candidate vaccine strains. We further explored the 
possibility of developing region-specific vaccines and how well they 
would match the circulating virus profiles. We investigated the opti-
mal candidate vaccine strains for 13 regions, including the United 
Kingdom, Germany, South Africa, Russia, India, Hong Kong, 
Malaysia, Japan, California, New York, Mexico, Peru and Brazil. 
Based on the GD between the vaccine strain and observed viruses 
circulating in a given region and period, hierarchical clustering of 
regions was performed to show the similarity of vaccine mismatches 
(Fig. 5 and Extended Data Fig. 5). We found that, although the 
Omicron sublineages can match to epidemic viruses in all investi-
gated regions except for Russia during January and February 2022, 
the dominant sublineages were not the same in these regions. This 
suggests that updating vaccine compositions with a single genetic 
variant might not be sufficient for matching the distribution of 
global viral population.

Discussion
As novel variants of SARS-CoV-2 keep emerging in the ongoing 
pandemic, rapid assessment of vaccine performance in popula-
tions is crucial to inform public health and clinical responses. 
This study established an efficient computational framework to 
estimate COVID-19 VE against symptomatic infection using viral 
sequence data. We show that the predicted VEs against genetic 
variants are close to the observed outcomes. The framework 
has several advantages. First, it enables prediction of VE against 
novel variants using existing virus surveillance networks to derive 
a rapid estimate; thus, it could inform timely public health pre-
paredness. Second, it provides an integrated measure to facilitate 
the interpretation of vaccine effects, which accounts for the poten-
tial confounding effects of time and location related to genetic 
evolution. Third, through mixed-effects modeling, the framework 
controls for variations by vaccine type, providing a consistent and 
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adaptable prediction framework for inclusion of multiple vaccine 
platforms and manufacturers.

Among candidate genomic regions, the RBD region exhibits 
the strongest statistical association with VE. Weaker associations 
between VE and GD were detected for NTD and the entire S pro-
tein. These findings are also supported by biological evidence. The 
RBD is the major target for neutralizing antibodies that interfere 
with viral receptor binding33,34. The NTD is reported to be the target 
of 5–20% of S-specific monoclonal antibodies from memory B cells 
against SARS-CoV-2 (refs. 35,36).

Recent studies have investigated the use of neutralization titer as 
a predictor of vaccine efficacy37–39; however, the neutralizing results 
against SARS-CoV-2 genetic variants showed varying outcomes. 
The vaccine protection against the B.1.351 variant reduced from 
95.0%2 to 75.0%40 for BNT162b2 in early 2021. Due to differences in 
standardization and cohorts, one neutralization study showed that 
the titer against B.1.351 is 7.6-fold and nine-fold lower compared 
to the early Wuhan-related Victoria variant in the BNT162b2 vac-
cine serum and AZD1222 vaccine serum, respectively41, whereas 
another experiment reported a 2.7-fold decrease in neutralization 
titers against the B.1.351 lineage in the BNT162b2-elicited serum42. 
Similar results have also been observed for the Omicron variant43–45. 
The varying neutralization results increase the challenge of inferring 
vaccine performance solely by neutralization levels. The association 
of neutralization with protection across studies showed that neutral-
izing antibodies might not be deterministic in mediating protec-
tion, and the effect of other vaccine-induced immune responses also 
need to be quantified. This work uses an alternative angle to bridge 
the link between genetic variations and population-level vaccine 
responses. Further investigations are needed to integrate potential 
correlates of vaccine protection and improve the existing framework.

Although 42% of the world population has not completed the 
full vaccine primary series up to this date46, additional booster 
doses of vaccine are being rolled out in many places. Neutralization 
activity after the booster can be restored to a higher level for a 
short period of time. BNT162b2 immune sera of individuals who 
received only two doses had a low ability to neutralize the Omicron 
variant, whereas a third dose of the BNT162b2 increased the 
Omicron-neutralizing titer 23-fold relative to their level at 21 days 
after the second dose47. Similar results have been reported for the 

mRNA-1273 vaccine48. The booster-enhanced neutralizing level 
against Omicron was lower than that against the Beta, Delta and 
Wuhan strains and declined faster than those against the D614G 
variant47,48. Recent studies showed that the VE against symptomatic 
infection of Omicron is restored up to near 50% after the booster. 
In Qatar, the VE against symptomatic Omicron infection was 56.6% 
and 53.1% for the BNT162b2 and mRNA1732 vaccines, respec-
tively, 1 month after the third dose49; and, in Israel, the VE against 
symptomatic Omicron infection was 43% and 31% for BNT162b2 
and mRNA1273, respectively, 1 month after the fourth dose among 
healthcare workers50. The flexible VE-GD framework proposed here 
could be further extended to account for the booster’s protection as 
more effectiveness data of homologous and heterologous booster 
studies are available.

VE against infection is generally lower compared to the VE against 
symptomatic infection. For instance, in the Coronavirus Efficacy 
(COVE) phase 3 trial of the mRNA-1732 vaccine, the VEs for infec-
tion and symptomatic infection are 82.0% and 93.2%, respectively51. 
In view of waning immunity, a systematic review including 78 VE 
studies up to 2 December 2021 showed that the VE dropped by 
21.0% (95% CI: 13.9–29.8) and 24.9% (95% CI: 13.4–41.6) against 
infection and symptomatic infection, respectively, 6 months after 
the second dose, aggregating the data from several vaccine plat-
forms52. VE against severe disease or hospitalization showed lon-
ger preservation compared to the protection against symptomatic 
infection. In Qatar and Canada, the VE against hospitalization due 
to infection with the Alpha, Beta and Delta variants among all age 
groups was above 90% after the second dose of the mRNA-1273, 
BNT162b2 and AZD1222 vaccines53–56. VE against hospitalization 
with Delta infection remained at above 80% in the United Kingdom 
20 weeks after vaccination with the BNT162b2 and AZD1222 vac-
cines57. In Qatar and South Africa, VE against hospitalization was 
in the range of 70–80% during the Omicron predominance within 
6 months after the second dose for mRNA vaccines49,58.

Previously, the effect of genetic diversity on vaccine efficacy 
was investigated by sieve analysis, originating in the study of the 
human immunodeficiency virus 1 (HIV-1) vaccines59–61. Sieve anal-
ysis compares the infection strains between vaccinated and unvac-
cinated individuals and estimates the odds ratio of a viral strain 
type to penetrate the vaccine protection barrier. The sieve method 
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requires individual-level data of virus isolate sequences and infec-
tion outcome of trial participants, whereas the model proposed 
in this study uses viral sequences in the general population and 
integrates multiple VE studies. Other studies have considered the 
proportion of genetic mismatch in the dominant epitope region 
to account for variations in the VE against influenza viruses62,63, 
whereas the VE-GD model in this report provides a unified frame-
work to account for multiple genes and vaccine types.

This study has several limitations. The scope of inference is sub-
ject to the range of VE studies included in model fitting; thus, the 
VE estimated is presumably for a time close to the second vaccine 
dose. In model estimation, the effect of waning immunity on VE 
was controlled by a proxy time variable at population level, and the 
VE decline corresponding to time was estimated to be 2.4% (95% CI: 
1.0–3.8) per 30 days for mRNA vaccines. This estimation is in line 
with the phase 2/3 efficacy trial of the BNT162b2 vaccine through 
6 months of follow-up32, which showed an average decline of 2.5% 
per month by comparing the VE after 4–6 months to VE within 
2 months since the second dose. The exact relationship between time 
and waning of host immunity will be calibrated in individual-level 
data, in which the main variable of interest is time-to-infection. 
For these analyses, including the genetic mismatch information 
would be helpful to control for the genetic variant’s effect on vac-
cine breakthrough alongside waning of host immunity. Second, VE 
prediction in this study only considered the GD of vaccine strain 
to circulation strains, and the effect of prior infection on vaccine 
protection was not captured. Studies showed that natural infection, 
either before or after vaccination, substantially increased vaccine 
protection for symptomatic infection and hospitalization during the 
Beta-predominant and Delta-predominant periods64 and against the 
Omicron variant by the mRNA vaccine65,66. As more hybrid immu-
nity data become available, the mixed-effects prediction model 
could be extended to account for this additional level of variation. 
Moreover, bias might occur if sequences in databases disproportion-
ately represented regions with known circulation of a given variant. 
Enhanced efforts are needed to ensure better geographical repre-
sentativeness of available SARS-CoV-2 sequences. Despite these 
limitations, we demonstrated a robust relationship between genetic 
mismatch and VE, which we validated using independent data.

To conclude, this work developed a modeling framework inte-
grating data from genetics and epidemiological studies for estimat-
ing COVID-19 vaccine effectiveness against a specific variant or 
for a particular cohort in a given period and region. Rapid assess-
ment of VE against an evolving pathogen can be a useful instru-
ment to inform vaccine development, distribution and public health 
responses.
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Methods
VE data. VE is calculated by (1 − RR) × 100), where RR is the relative risk of a 
disease outcome in the vaccinated group compared to the unvaccinated group. 
Vaccine efficacy is measured in randomized controlled trials, whereas vaccine 
effectiveness is obtained from observational studies. VE reports before 24 December 
2021 were collected from published articles and preprint articles. Inclusion criteria 
for the vaccine effectiveness studies include: target population is a cohort without 
special conditions; the primary outcome is symptomatic COVID-19 infection after 
the second vaccine dose; and the study period of VE evaluation is clearly reported. 
A total of 78 VE data from 49 studies were obtained for estimating the effect size of 
GD, among which were 33 efficacy data and 45 were effectiveness data. The vaccine 
efficacy studies include 28 phase 3 trials, one phase 2 trial and four phase 2/3 trials. 
The vaccine effectiveness studies include 16 cohorts and 29 case–control studies. 
Detailed information of VE studies is available in Supplementary Table 1.

Genetic sequences. Human SARS-CoV-2 strains with collection dates ranging 
from 4 August 2020 to 6 March 2022 were retrieved from the Global Initiative on 
Sharing All Influenza Data (GISAID) EpiCoV database67. All available sequences 
that matched to the period and locations of the clinical trials or observational 
studies totaled 1,984,241 full-length genome sequences from 31 geographical 
regions. The sources of SARS-CoV-2 sequences involved in this study are reported 
in the Supplementary Acknowledgement Table. Strains with duplicated names and 
unclear collection time of samples were removed. Multiple sequence alignment 
was performed using MAFFT (version 7). The ‘Wuhan-Hu-1’ genome (GenBank 
NC_045512.2 or GISAID EPI_ISL_402125) was set as the reference sequence. The 
variants involved in this study are summarized in Supplementary Tables 6 and 7. 
Lineage classification for sequences was referenced from the GISAID.

Statistical methods. GD. Following our previous framework developed for 
influenza virus15, let X = {xij} denote the i-th sample from the GISAID database 
collected for a target population, where i = 1,…, n, j = 1,…, J; and let V = {vj} 
denote the vaccine strain applied in the target population, where index j indicates 
the j-th codon position in the sequence. Denote the amino acids in a given 
genomic region as W = {wk}, where k is the index for codon positions contained 
in the segment, k = 1, …, K, 0 ≤ K ≤ J. Suppose the Hamming distance is used as a 
basic measure of dissimilarity between two sequences, the vaccine genetic distance 
(d) calculated for the target population is:

d =

n∑

i=1
di/n =

n∑

i=1

K∑

k=1

I (vwk ̸= xwk ) /n. (1)

Thus, the d summarized the average amino acids mismatch of circulating 
strains versus the vaccine strain based on a given genomic segment in a target 
population. In this study, we considered a wide range of candidate W, including 
the RBD, NTD and S, E, M, N, ORF1ab and accessory proteins. A schematic 
representation of the SARS-CoV-2 genome and the structure of S protein are 
available in Supplementary Figs. 1 and 2. All vaccine strains are based on the 
Wuhan strain isolated in January 2020. When the target population is composed 
of individuals infected with multiple co-circulating variants, the d captures the 
average mismatch over all co-circulating variants in the cohort, whereas, when the 
target population is a single genetic variant, d captures the variant-specific distance.

The VE-GD mixed-effects model. A two-level mixed-effects model was adopted to 
account for the random effect associated with vaccine type (technology platform 
or manufacturer). The genetic distance, dij, is the main predictor variable for study 
i and vaccine type j, i = 1,…, nj, and nj is the number of studies for vaccine type j. 
Therefore, the following random intercept and random slope model is specified for 
the VE response Yj:

Yj = Xjβ + Zjuj + εj (2)

In the equation, Xj is the covariate matrix of fixed factors, and β is the fixed 
effect vector. Zj = [1, dj] is the matrix containing a unit vector and the nj-length 
genetic distance vector dj; and uj = (u0j , u1j)T  is composed of a random intercept 
variable u0j and a random slope variable u1j. uj ∼ N(0, D), where D is a variance 
component matrix. The fixed factors include the age category of the study, midpoint 
(days) after the second dose extracted from each study and the genetic distance 
dj. εj ∼ N(0, Rj) is the error term of the mixed-effects model, Rj = σ2Inj. The 
model was fitted using the R package lmerTest68. The prediction interval of the 
mixed-effects model was calculated using the R package merTools69. All analyses 
were performed using R statistical software (version 4.0.3). Statistical significance 
was declared if P < 0.05.

Model assessment was performed in a training–validation setting. A total 
of 23 variant-specific VEs were extracted from the data as the validation set 
(Supplementary Table 5). The model was fitted using the remaining 57 VEs 
(non-variant specific), and predictions were made for the genetic variants. The 
agreement between the predicted and observed VEs is measured by the CCC70.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. Detailed information of VE 
outcomes is available in the Supplementary Materials. Viral sequence data 
were downloaded from the GISAID at http://platform.gisaid.org/, and the 
accession numbers are provided in the online Supplementary Acknowledgment 
Table (https://github.com/VaccineEffectivenessPrediction/COVID
19-Vaccine-Effectiveness).

Code availability
All code is freely available at https://github.com/VaccineEffectivenessPrediction/
COVID19-Vaccine-Effectiveness.
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Extended Data Fig. 1 | Distribution of genetic mismatch on the NTD and complete S protein. The genetic mismatch on the NTD and S protein was 
measured. The results show that the genetic mismatch is lowest for mRNA vaccines (Kruskal-Wallis test: two-sided P of NTD = 0.006, two-sided P of 
S protein = 0.065; n = 78). In the box plots, the middle bar indicates the median, the white dot indicates the mean, and the boundaries are Q1 and Q3. 
Whiskers of the box plot are extended to Q3 + 1.5×IQR and Q1 − 1.5×IQR.
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Extended Data Fig. 2 | Scatterplot of the observed VE and genetic distance on the non-S proteins of SARS-CoV-2. The same analysis under the null 
hypothesis to explore the association of VE with genetic distance was performed on the structural proteins containing envelope (E), membrane (M) and 
nucleocapsid (N); ORF1ab; accessory proteins containing ORF3a, ORF6, ORF7a, ORF7b, ORF8 and ORF10 proteins. No significant relationship with VE  
was observed.
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Extended Data Fig. 3 | Scatterplot of the observed VE and genetic distance on the non-structural proteins (NSPs). The ORF1ab polyprotein is composed 
of 16 non-structural proteins (NSPs). The genetic distance of each NSP was also calculated and no relationship with VE was observed.
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Extended Data Fig. 4 | The relationship between VE and genetic distance on the NTD and S protein. Panels (a-b): negative linear relationships between 
VE and genetic mismatch for NTD (P = 0.086, R2 = 75.8%), and full-length sequence (P = 0.082, R2= 78.4%), respectively. The two-sided P was obtained 
from the mixed-effects model. The colored lines were fitted by data points of each platform. The shaded area indicates 95% CI.
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Extended Data Fig. 5 | Clustering of regions by circulating strains similarities to SARS-CoV-2 genetic variants. Genetic mismatch of genetic variants to 
the local circulating virus during January and February 2022. The best candidate vaccine antigen for a geographical region measured by genetic distance 
is shown by dark red. Rows: target geographical regions; columns: candidate vaccine strains. The figure shows that the Omicron sublineages can match to 
the epidemic viruses in most regions, but the dominant sublineages are not the same.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection No software was used for data collection.

Data analysis We used MAFFT (version 7) for multiple sequence alignment and R statistical software (version 4.0.3) in all statistical analyses. R packages 
used in this study include lmerTest (3.1-3) and merTools(0.5.2). All code is freely available at  
https://github.com/VaccineEffectivenessPrediction/COVID19-Vaccine-Effectiveness.
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All data used in this study is publicly available. The detailed information of VE outcomes is available in the Supplementary Information. Viral sequence data were 
downloaded from the global initiative on sharing all influenza data (GISAID) at http://platform.gisaid.org/ and the accession numbers are provided in the online 
Supplementary Acknowledgment Table (https://github.com/VaccineEffectivenessPrediction/COVID19-Vaccine-Effectiveness).
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The study extracted vaccine efficacy or vaccine effectiveness (VE) data before 24 Dec, 2021 from published articles and preprint articles. A 
total of 78 VE data were obtained for model building. All available sequences that matched to the period and locations of the clinical trials or 
observational studies totaled 1,984,241 full-length genome sequences from 31 geographical regions. 

Data exclusions For VE data, exclusion criteria include: target population has special conditions; the primary outcome is not symptomatic COVID-19 infection 
after the second vaccine dose; and the study period of VE evaluation is not reported. For sequence data, strains with duplicated names and 
unclear collection time of samples were removed.

Replication This study demonstrated a clear relationship between COVID-19 VE and genetic distance on RBD, NTD and entire S protein. Our findings can 
be supported by biological experiments. We first collected data before June 2021 and determined genetic distance is associated with VE 
against symptomatic infection. After adding subsequent data before Match 2022, the results are consistent with previous results. Such 
relationships exist in different vaccine platforms and vaccine products. The prediction results were validated by independent data. All 
attempts at replication were successful. Additionally, this bioinformatics framework has been applied to influenza A/H1N1pdm09, H3N2 and 
influenza B viruses and such a relationship was also detected. 

Randomization Randomization is not applicable in our study design. The vaccine efficacy outcomes included in this study were based upon clinical trials. The 
vaccine effectiveness outcomes were obtained from observational studies. All available sequences that matched to the period and locations 
of the clinical trials or observational studies were collected.

Blinding Blinding is not relevant to the study. This study used population-level data and did not involve individual participants.
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