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ARTICLE

Simultaneous inference of parental
admixture proportions and admixture
times from unphased local ancestry calls

Siddharth Avadhanam1 and Amy L. Williams1,*
Summary
Population genetic analyses of local ancestry tracts routinely assume that the ancestral admixture process is identical for both parents of

an individual, an assumption that may be invalid when considering recent admixture. Here, we present Parental Admixture Proportion

Inference (PAPI), a Bayesian tool for inferring the admixture proportions and admixture times for each parent of a single admixed in-

dividual. PAPI analyzes unphased local ancestry tracts and has two components: a binomial model that leverages genome-wide ancestry

fractions to infer parental admixture proportions and a hidden Markov model (HMM) that infers admixture times from tract lengths.

Crucially, the HMM accounts for unobserved within-ancestry recombination by approximating the pedigree crossover dynamics,

enabling inference of parental admixture times. In simulations, we find that PAPI’s admixture proportion estimates deviate from the

truth by 0.047 on average, outperforming ANCESTOR and PedMix by 46.0% and 57.6%, respectively. Moreover, PAPI’s admixture

time estimates were strongly correlated with the truth (R ¼ 0:76) but have an average downward bias of 1.01 generations that is partly

attributable to inaccuracies in local ancestry inference. As an illustration of its utility, we ran PAPI on African American genotypes from

the PAGE study (N ¼ 5,786) and found strong evidence of assortative mating by ancestry proportion: couples’ ancestry proportions are

highly correlated (R¼ 0.87) and are closer to each other than expected under randommating (p < 10�6). We anticipate that PAPI will be

useful in studying the population dynamics of admixture and will also be of interest to individuals seeking to learn about their personal

genealogies.
Introduction

Widespread consumer interest in one’s personal genetic

ancestry and genealogy has fueled the rise of direct-to-con-

sumer genetic testing companies,1,2 enabling high resolu-

tion studies of population structure, admixture, and

migration patterns.3–5 One of the most popular features

these companies provide is ancestry estimation: the

geographic locations of the populations from which

customers inherited their DNA. The techniques for such

estimation, first developed by academic researchers,6–8

have applications both to demographic inference9–11 as

well as to disease association mapping.12,13

Inferring an individual’s genome-wide and locus-specific

ancestry—i.e., local ancestry6—reveals not only that per-

son’s genetic heritage but also information about the ge-

netic ancestry of his or her parents.14,15 Indeed, each

parent transmits half of his or her genome to a child, so

in principle, one can recover half the DNA of each parent

by analyzing data from a single individual. In practice

however, phasing errors and uncertain interchromosomal

phase pose substantial challenges to reconstructing the

parents’ genomes, although methods that analyze multi-

ple siblings and/or use population allele frequencies can

be effective.16–18

Manypast studies of admixed individuals have focusedon

population-level ancestry questions, including migration

times,5,9,19 yet analyzing data from couples has the power
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to provide refined information about demographic patterns.

For example, it makes possible studies of assortative mating

by ancestry,20–22 could help identify subgroups with

different admixturehistories, andmaydetectoutlier individ-

uals with patterns distinct from the bulk of the population.

The features derivable from local ancestry signals

include population ancestry proportions and estimated

times since admixture based on tract lengths.9,23 Individ-

ual-level ancestry proportions are generally reliable to

infer, depending on the ancestral populations,6,24,25 yet

computing admixture times for an individual (or his/her

parents) from only one genome has not received careful

attention and may be difficult. In particular, high variance

in tract lengths9 and the finite genome size can lead to

noisy admixture times estimates.26 Even so, noisy esti-

matesmay still be useful when analyzed in aggregate across

many samples.

Although phase accuracy remains an issue in the context

of local ancestry inference,13 homozygous ancestry regions

provide unambiguous information about the ancestry

of the two parents at that locus. As such, even when

analyzing unphased local ancestry tracts,6,25 one can

leverage these homozygous regions (as well as the lack

thereof) to estimate the parental ancestry fractions.

Analyzing unphased local ancestry tracts also helps pre-

vent biases due to phase inaccuracy, both in estimating

the parental ancestry proportions and the time since

admixture (see subjects and methods).
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A B Figure 1. Example pedigree and local
ancestry data
(A) Pedigree with vertical bars next to each
individual representing two of their chro-
mosomes, each colored to represent local
ancestry from two populations, blue and
green. tA and tB are the number of genera-
tions to the unadmixed ancestors for par-
ents A and B, respectively; this is the gener-
ation in which at least one couple contains
individuals of different ancestries.
(B) PAPI takes in unphased local ancestry

tracts denoted by xi ¼ (li, ai). The image depicts a particular phasing of the data with labels that correspond to the observed unphased
data.
We developed Parental Ancestry Proportion Inference

(PAPI), a tool that provides estimates of both the admixture

proportions and times since admixture of both parents of

two-way admixed individuals. PAPI uses both a binomial

model and a hidden Markov model (HMM) to infer these

parental values, and, by default, combines these two

models into a composite likelihood. We validated PAPI

by using both simulated African Americans and trios

from the HapMap African ancestry in Southwest USA

(ASW) population.27 PAPI’s parental ancestry estimates

are highly accurate, its time since admixture estimates

are well correlated with the ground truth, and it can deter-

mine when the two parents have different times since

admixture. We applied PAPI to African Americans from

the PAGE study28 and find strong evidence for ancestry-

based assortative mating (results).
Subjects and methods

PAPI is designed to infer the ancestry proportions (pA,pB) and the

average number of generations to unadmixed ancestors (tA,tB)

for the unsexed parents A and B of a single admixed individual

(Figure 1). It takes unphased diploid local ancestry tracts for focal

admixed individuals as input and works on two-way admixed

samples, but the approach can be extended to handle multi-way

admixture. Throughout this paper, we label the two populations

being analyzed arbitrarily as 0 and 1.

The advantage of using unphased local ancestry calls is that they

are immune to switch errors that affect the phased input to (and

therefore output of) haplotype-based local ancestry methods.

PAPI makes inferences of times since admixture (tA,tB) based on

local ancestry tract lengths, and switch errors can create artificially

short or long ancestry tracts that would bias this approach if it

relied on phased input. Additionally, switch errors in phased input

can put an ancestry tract on an incorrect haplotype, which would

lead to incorrect (pA,pB) estimates.

PAPI employs a composite likelihood built from two component

models: a binomial model that infers (pA,pB) and a hidden Markov

model (HMM) that jointly infers all parameters q ¼ ðpA;pB; tA; tBÞ.
The binomialmodel uses genome-wide diploid ancestryproportions

to infer (pA,pB). In turn, the HMM estimates q by integrating over all

possible phasings of the input local ancestry tracts using the forward

algorithm.Our empirical findings indicate that forming a composite

likelihood from these two models provides more accurate estimates

of q than those of each component alone (results).
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A key challenge in inferring (tA,tB) is that a subset of the cross-

overs the ancestors transmitted typically occurs between haplo-

types of the same ancestry and, as a result, are not observable in

local ancestry calls. The HMM accounts for this by approximating

the rate of these hidden crossovers from the parental ancestry pro-

portions (pA,pB) as described below. This approximation relies on a

population genetic model of ancestry tract length distributions

following a pulse migration,9 which serves here as a simplified

model of the complex dynamics of the meioses in the focal indi-

vidual’s pedigree.

A binomial model to infer parent ancestry proportions
The binomial model for estimating (pA,pB) operates on genome-

wide diploid ancestry fractions. As a motivating example, consider

a locus in the focal individual that is homozygous for ancestry. This

locus carries unambiguous information about both parents’ ances-

tries—it is certain that each parent carries at least one copy of the

given ancestry in that region. Furthermore, low proportions of ho-

mozygous ancestry regions indicate that the parents most likely

differ in their ancestry at most loci. For example, a child that is het-

erozygous for ancestry at every positionmost likely has two parents

with very high levels of ancestry from distinct populations. An

alternative but unlikely explanation of such data is that the parents

have ancestries that alternate between the two populations across

chromosomes. Thus, considering the genome-wide fraction of

each type of unphased local ancestry call in the focal sample (i.e.,

homozygous for population 0 or 1 or heterozygous for ancestry) al-

lows us to formulate a parsimoniousmodel of the parents’ ancestry

fractions. These observations, which may not be fully captured in

some other models of parental ancestry, are the key motivation

behind PAPI’s binomial model. We note that the approach

described below is equivalent to that adopted in another recently

developed method to model parental ancestry.29

PAPI’s binomial model treats the DNA transmitted by a given

parent j˛ fA;Bg as a sequence of Bernoulli trials parameterized

by the parent’s ancestry proportion—i.e., by the target of inference

pj. We calculate pj as the fraction of parent j’s genome contained in

tracts of ancestry 0, calculated with Morgan units. Note that PAPI

only has access to the ancestry proportion of the haplotype the

parent transmitted. This proportion will in general differ from pj
because of recombination and random assortment of alleles to

gametes and is only equal to pj in expectation. The difference

between the transmitted and true parent proportions most likely

accounts for some of the variance in estimation accuracy we

observe in practice (results).

Formally, let X ¼ x1;.;xN be the input unphased diploid

local ancestry tracts of a focal sample. Each of these tracts is a tuple

xi ¼ (li,ai) for i˛ f1;.;Ng where li represents the tract length in
ust 4, 2022



Figure 2. Markovian approximation to an
individual’s full pedigree
Example pedigree for an admixed individual
(left). Viewing the unadmixed ancestors as a
pool of founder haplotypes (right), one for
each parent, and further viewing recombi-
nations as a Markovian switching process
in this pool motivates the use of a single-
pulse migration model to capture the effect
of tj and pj on the observed between-
ancestry Poisson switch rates l0j and l1j .
Morgans and ai ˛ ff0;0g; f0;1g; f1;1gg is its unphased local

ancestry (Figure 1B). Curly braces in the ancestry component indi-

cate that these values are unordered, since the data are unphased,

so the f0;1g class is consistent with the phased, ordered states (in

square brackets) ½1;0� and ½0;1�.
The likelihood of the binomial model is:

PðSjpA; pBÞ ¼ ðpApBÞsf0;0g 3 ðpAð1 � pBÞ þ pBð1 � pAÞ Þsf0;1g
3 ðð1 � pAÞð1 � pBÞ Þsf1;1g

(Equation 1)

where 1 � pj is the fraction of parent j’s genome contained in tracts

of ancestry 1, S ¼ ðsf0;0g; sf0;1g; sf1;1gÞ, and sa ¼ P
i

liIða ¼ aiÞt,
with I being the indicator function. That is, sa is the total Morgan

length of the genome contained in tracts of ancestry type a, scaled

by a hyperparameter t that accounts for the effective number of in-

dependent markers. This hyperparameter is necessary because the

segment lengths are in Morgan units, and the effective number of

independent loci in a tract of length 1 Morgan is the number of

crossovers that have occurred in that interval since admixture

began. In expectation, this number is exactly tj for the haplotype

parent j transmitted. Following this reasoning, we set t to a rough

population averaged number of generations since admixture. For

all the analyses presented in results, we set t ¼ 7, consistent

with average estimates of the time since admixture from previous

studies in African Americans,6,30,31 and with PAPI’s own estimates

in theHapMap ASWpopulation of African American samples27 (re-

sults). PAPI is strongly robust to even large variations in t: consid-

ering t ¼ 7 versus t ¼ 20, the accuracy of its admixture propor-

tion estimates decreases by only 1.32% (in relative terms and

measured with dabs;p; see ‘‘computing measures of accuracy and

bias’’) and that of its admixture time estimates by 0.621%

(measured with Pearson correlation; Figures S2 and S3).

Modeling the relationship between admixture time and

ancestry switch rates
Crossover placement along a haplotype that was subject tommei-

oses can be modeled as a Poisson process with rate m per Morgan.

IfmR4, this model provides a good fit to intercrossover distances

generated under a crossover interference model.26 However,

applying the Poisson model to local ancestry segments is compli-

cated by the presence of within-population hidden crossovers.

These are historical crossovers that occur at homozygous ancestry

positions and, as a result, are not directly observed in local

ancestry tracts. Their presence requires an adjustment to the

ancestry switch rate parameter—i.e., this rate is not a direct mea-

sure of the number of meioses since admixture.
The American
In this subsection we assume that for each parent j˛ fA;Bg, all
the ancestors tj generations ago are unadmixed and that at least

one couple in that generation includes individuals of both

ancestries, while the other individuals have the same ancestry

(Figure 1A). We refer to this form of pedigree throughout as the

‘‘base case,’’ and it corresponds to a single pulse of admixture,

with migrants entering only tj generations ago. This means that

at least one of the ancestors tj � 1 generations ago is entirely het-

erozygous for ancestry. We do this to defer consideration of the

crossover rate parameter in more complex admixture scenarios—

those with multiple pulses of admixture—to later in the text (see

‘‘simulating multiple pulses of admixture on a pedigree’’).

The model we adopt approximates pedigree-generated cross-

overs as Markovian transitions within a pool of haplotypes

(Figure 2). The proportion of haplotypes in the pool from popula-

tion 0 is pj, the parental ancestry proportion. Gravel proposed a

population genetic model of this form in the context of pulse

admixture events,9 and noted that the probability of transitioning

to a haplotype of a different ancestry is simply the proportion of

haplotypes of that ancestry in the population. In particular, the

Poisson rates l0j for switching from ancestry 0 to 1 and l1j for

switching from 1 to 0, are as follows:

l0j ¼
�
1 � pj

�
tj and l1j ¼ pjtj: (Equation 2)

Thus, to obtain the switch rate out of a given ancestry, the

adjustment to the crossover rate tj is the proportion of haplotypes

of the opposite ancestry. Intuitively, one can view these rate

parameters (l0j and l1j ) as the expected count of crossovers perMor-

gan that result in an ancestry switch.

Note the nature of the approximation made here, which is

2-fold: first, crossovers in the model are no longer constrained to

occur within an individual, which ignores long-range correlations

caused by within-individual meioses.32 Second, pj is used to repre-

sent the proportion of founder haplotypes of ancestry 0 even

though this value—parent j’s ancestry proportion—may differ

from the fraction of founders that have this ancestry. Despite these

caveats, our empirical results suggest that this is an effective

approximation (results).

An important limitation in applying the formulas in Equation 2

is that they incorrectly account for the crossovers transmitted by

an individual that is entirely heterozygous for ancestry. To

illustrate this, consider such a parent j, who will have pj ¼ 0.5.

Equation 2 implies that tj ¼ 2l0j ¼ 2l1j , and because every locus

in parent j’s genome is heterozygous for ancestry, all of j’s cross-

overs will produce ancestry switches. This makes the rate of

switches l0j ¼ l1j ¼ 1 per Morgan, and so, despite including only
Journal of Human Genetics 109, 1405–1420, August 4, 2022 1407



one meiosis, the equations will suggest that tj ¼ 2. The issue is that

the model implicitly assumes that the ancestry proportions of

parent j’s two chromosomes are both 0.5 when in fact one is

entirely composed of ancestry 0 and the other of ancestry 1. This

scenario arises for all ancestors with entirely heterozygous ancestry,

and we have found that subtracting 1 from the raw estimates is an

effective fix no matter how large tj is
26 (data not shown). PAPI ap-

plies this correction internally by subtracting 1 from the tj point es-

timates and from eachMarkov chainMonte Carlo (MCMC) sample

followed by rounding up negative values to 0.

A hidden Markov model to jointly infer admixture times

and ancestry proportions
PAPI computes the likelihood of the observed unphased local

ancestry tracts X given assignments of the parameters q, and

uses either anMCMCor gradient descent (GD)method to estimate

these parameters (below). The hidden states of the HMM encode

phased local ancestry assignments z ¼ z1; z2;.; zN , where zi ˛
f½0;0�; ½0;1�; ½1;0�; ½1;1�gci, and the two elements of zi correspond

to a transmitted chromosome by a given parent; as a matter of

convention, we let the first element zi;1 be the chromosome trans-

mitted by parent A. Because the phase is unknown, the HMM

integrates over all possible phase assignments to compute the

likelihood of the unphased data. In order to model the relation-

ship of pj and tj to the observed data while accounting for hidden

recombinations (above), PAPI internally reparameterizes q ¼
ðpA; pB; tA; tBÞ as g ¼ ðl0A; l1A; l0B; l1BÞ by applying Equation 2 for

j˛ fA; Bg, and the method therefore calculates the likelihood

PðXjqÞ ¼ PðXjgÞ. Below, we treat the conditioning on parameters

as implicit and omit them from the probabilities.

The HMM models the local ancestry tract lengths as exponen-

tially distributed, as follows from a Poisson crossover model.

More specifically, the initial probability is a product of the proba-

bilities of the first observed tracts (for haplotypes A and B) in z1,

both of which have length l1: Pðz1Þ ¼ Pðl1jlz1;1A ÞPðl1jlz1;2B Þ ¼
l
z1;1
A expð� l

z1;1
A l1Þlz1;2B expð� l

z1;2
B l1Þ. We define the transition prob-

abilities to ensure that tracts that extend beyond the interval they

start in have a total probability consistent with their full length.

That is, the transition probability Pðzijzi�1Þ depends on whether

the ancestry of a haplotype changes between adjacent intervals

and only includes the leading lj term in the first interval where

haplotype j has switched ancestries. We express these as follows:
Pðzijzi�1Þ ¼

8>>>>>><
>>>>>>:

l
zi;1
A exp

�� l
zi;1
A li

�
exp

�� l
zi;2
B li

�
if zi;1szi�1;1 and zi;2 ¼ zi�1;2

l
zi;2
B exp

�� l
zi;2
B li

�
exp

�� l
zi;1
A li

�
if zi;1 ¼ zi� 1;1 and zi;2szi�1;2

exp
�� l

zi;1
A li

�
exp

�� l
zi;2
B li

�
if zi;1 ¼ zi� 1;1 and zi;2 ¼ zi� 1;2

0 if zi;1szi�1;1 and zi;2szi�1;2

: (Equation 3)
For example, in thefirst case inEquation3, parentB’s transmitted

chromosomedoesnot changeancestry (zi;2 ¼ zi�1;2), and the tran-

sition probability incorporates the expð� l
zi;2
B liÞ term to reflect this.

The total probability of this tract from its origin in a given

interval k to its termination at the end of some interval [ then is

l
zi;2
B expð� l

zi;2
B ðlk þlkþ1 þ.þl[ÞÞ—which is identical to the proba-

bility of observing a tract of length ðlk þlkþ1 þ.þl[Þ. By contrast,
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for this case to apply, haplotype Awould have changed ancestries,

and the formula includes a leading l
zi;1
A termherewhere the tract be-

gins. Other cases follow this same pattern, but the final case (in

Equation 3) requires two crossovers to occur at the same position

(one on each haplotype). This is prohibited by the model, and

the corresponding transition probability is set to 0. If the observed

data implies such a transition and PAPI is run without an error

model (below), it will throw an error. Although in our analyses

such transitions never occurred in the HAPMIX local ancestry

tracts, a user can address any such cases by pre-processing them

to introduce a small tract that switches the ancestry of only one

haplotype between the two disallowed tracts.

The above formulation is somewhat non-standard in that the

initial and transition probabilities depend on the tract lengths,

which are part of the observed data. An alternative might put

the exponential terms—which are calculated from the tract

lengths—into the emission probabilities, leaving only the leading

l terms in the transition probabilities. However, doing this yields

transition probabilities that are typically greater than one and ob-

scures the conceptual underpinnings of the model—that of Pois-

son processes. The current formulation can be thought of as

implicitly combining more standard transition and emission

terms in the transition probabilities. We therefore set the emission

probabilities in this formulation to 1 if the hidden state is a phased

version of the observed local ancestry and 0 if not. We describe an

optional error model that allows for mismatched hidden and

observed ancestry states in the next subsection.

We treat the final tract of a chromosome as partially observed, as

the position of the next crossover is unknown and would land

somewhere beyond the chromosome endpoint. Such tracts should

contribute only an exponential term to the likelihood, with the

leading lj termomitted—corresponding to the probability of a tract

of length greater than that observed. PAPI accomplishes this by

setting the probability of transitioning from the final tract to a spe-

cial end stateUas follows:Pðz� ¼ UjzNÞ ¼ �
l
zN;1

A

��1�
l
zN;2

B

��1
. These

inverse terms act to cancel out the l
zN;1

A and l
zN;2

B terms that were

introduced when the tracts with ancestry zN;1 and zN;2 were first

transitioned to, leaving only exponential terms as desired.

With the HMM’s initial, transition, and emission probabilities

specified, PAPI computes the likelihood of the observed data X

given q by marginalizing over all possible hidden state paths

PðxjqÞ ¼ P
z
Pðxjq; zÞwith the forward algorithm. Themodel treats
each chromosome as independent given q, so the total likelihood

is the product of each chromosome’s likelihood. Note that the

fact that parent labels are arbitrary and interchangeable introduces

non-identifiability into the model. In particular, q ¼ ðp1; p2; t1; t2Þ
and q� ¼ ðp2; p1; t2; t1Þ have the same likelihood and only produce

swapped parent labels. When run in the MCMC inference mode

(see below), PAPI handles this non-identifiability by restricting
ust 4, 2022



the parameter space to points such that pA > pB. When run in the

GD inference mode (below), there is no need to restrict the space,

as PAPI will find a mode of the posterior distribution, and the pres-

ence of more than one equivalent mode does not hamper the

inference.

The above HMM is similar to that of ANCESTOR,14 another

approach for inferring parent ancestry proportions. Both methods

apply to unphased local ancestry calls and model the phase of

those calls in the hidden states. A point of departure is that PAPI

parameterizes the model explicitly in terms of q (although it still

performs the underlying calculations in terms of g), which affords

it two advantages. First, by modeling hidden crossovers (above),

PAPI can produce direct estimates of tA and tB rather than only

lA and lB. Second, PAPI’s HMMusesmore of the available informa-

tion for inferring ðpA; pBÞ by incorporating these parameters into

the transition probabilities (via lA and lB), thus producing more

accurate estimates of ðpA; pBÞ across a range of scenarios (results).

While the ðpA; pBÞ estimates from PAPI’s HMM are in general

more accurate than those of ANCESTOR, for the most accurate pj
estimates, PAPI’s binomial component is important, and PAPI per-

forms best when run with the HMM and binomial component

together with the full model (results).
Handling erroneous tracts
Despite being immune to switch errors, unphased local ancestry

segments are still subject to erroneous calls that have the potential

to bias the inference of tj. We address this by providing an optional

error model that has a non-zero probability of emitting unphased

local ancestry tracts with a different ancestry than that of the hid-

den state. Using the congruence operator, we say zya if the or-

dered hidden state z has the same ancestry values as those in

the unordered observed local ancestry a; e.g., ½1;0�yf0;1g and

½0; 0�mf0; 1g. Using this notation, the emission probabilities of

the error model are as follows:

PðxijziÞ ¼
�
expð � 4liÞ=2 if zimai

1 � expð � 4liÞ if ziyai
: (Equation 4)

Here, 4 is a hyperparameter that we set heuristically so that

when zimai, PðxijziÞ decreases by a factor of 1=2 for every

centiMorgan unit increase in li, so 4 ¼ 100 ln 2. We divide the

first case in Equation 4 by 1/2 because there are three unordered

local ancestry calls and therefore two ways to select ai such that

zimai. The exponential form of these equations leads to higher

emission probabilities for incongruous tracts that are small.

Another way to think about this is that themodel applies a penalty

for treating larger tracts as erroneous and that the penalty de-

creases exponentially with decreasing tract size. So if the HMM en-

counters a sufficiently small tract where ai differs from both ai�1

and aiþ1, it may favor the incongruous hidden state (i.e., where

zimai but zi ¼ zi�1 ¼ ziþ1) in order to avoid ancestry state

switches over a small distance (see Equation 3) while incurring

the incongruous tract penalty from Equation 4.
Combining component models and performing

inference
As noted earlier, PAPI can combine the output signals from its two

component models—the binomial model and the HMM—which

improves its inference of q compared to either model alone (re-

sults). Notably, both models operate on the same data X, which

renders their likelihoods non-independent, but the HMManalyzes

the unphased local ancestry calls X directly, while the binomial
The American
model considers the summary statistics in S. Despite this non-in-

dependence, PAPI’s default setting combines them to form a com-

posite likelihood, treating PðX; SjqÞzPðXjqÞPðSjqÞ. Furthermore,

PAPI uses a Bayesian model, computing the following posterior

based on the composite likelihood (which we refer to as the full

model):

PðqjX;SÞfPðX;SjqÞPðqÞzPðXjqÞPðSjqÞPðqÞ
¼ PðXjqÞPðSjpA; pBÞPðpAÞPðpBÞPðtAÞPðtBÞ (Equation 5)

Here, wemake explicit the assumption that all themodel param-

eters (in q) are independent, and note that the binomial likelihood

PðSjqÞ ¼ PðSjpA; pBÞ since that model only considers ðpA; pBÞ. We

use uniform priors on the parameters, with pA; pB � Uð0;1Þ and

tA; tB � Uð0; 25Þ. The full model can be thought of as treating

the posterior distribution on ðpA; pBÞ from the binomial model as

a prior to the HMM. This may explain the improved accuracy

(and speed) of the full model when compared to either the bino-

mial or HMM alone (results); i.e., the genome-wide information

from the binomial likelihood shapes the overall distribution,

making it more strongly peaked near the true pA and pB.

PAPI uses one of two methods to perform inference, as specified

by the user. By default, it performs gradient descent (GD) with the

constrained optimization algorithm L-BFGS-B (implemented in

the scipy-optimize33 Python package). This yields a point estimate

corresponding to a local maximumof the likelihood function. The

empirical results suggest that these estimates, despite being local

maxima, are reliable in practice. The second inference method

uses MCMC in order to draw from the posterior distribution—spe-

cifically performing slice sampling (via the PyMC3 package34). In

this setting, PAPI performs 500 burn-in iterations followed by

1,000MCMC draws across four independent chains per individual

(6,000 samples total) and outputs a 90% credible interval for each

of the parameters.

The GD inference method is quite fast, whereas the MCMC

approach requires larger compute times. In light of timing and per-

formance (see results), we recommend running PAPI with the full

model (Equation 5) in the GD inference mode. It is also possible to

run the HMM or binomial model alone, i.e., to analyze PðqjXÞ or
PðqjSÞ, respectively. (In these settings, PAPI does not leverage a

composite likelihood.) Note that all three models supply pj esti-

mates, and a user can run the binomial model in MCMC mode

if posterior distributions of pj alone are required (which we recom-

mend, as the MCMC runs are much faster with the binomial

model alone [results]).
Simulating realistic admixed genotypes
Perhaps the most realistic way to simulate genetic data for an ad-

mixed individual is to explicitlymodel their pedigree and simulate

a meiosis for each of their ancestors. This would appropriately

constrain crossovers to occur only between the two haplotypes

of each ancestor and can incorporate crossover interference

modeling.26 However, doing this requires the use of data from

2T founders, where T is the number of ancestral generations in

the pedigree, thus consuming large data resources from unad-

mixed individuals to simulate only a single admixed individual.

Furthermore, some unadmixed samples must be held out of the

simulation for use in the panels required by the local ancestry

inference software.

We adopted a three-step hybrid simulation scheme that explic-

itly accounts for pedigree-based transmissions while using far

fewer unadmixed samples (Figure S1). First, we ran Ped-sim26 to
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simulate individuals from a specified pedigree structure, similar to

the above approach, but without providing input genetic data,

and thus obtained no output genotypes at this stage. We used a

sex-specific genetic map,35 a Poisson crossover model, and ran

Ped-sim in a mode (using the –bp option) that outputs the

founder haplotype ID that the focal admixed individual carries

at each position, with crossover break points indicated. Rather

than using the resulting break point file as is, with its 2T unique

haplotypes, in step two we modified it by mapping each founder

haplotype to one of the two ancestral population labels according

to the desired value of E½ðpA; pBÞ� as well as ðtA; tBÞ (see below).

Finally, we used this population-only break point file as input

to admix-simu,36 which also takes in genetic data corresponding

to unadmixed founder haplotypes from each population. Admix-

simu treats the founder haplotypes as a pool and samples haplo-

type segments on the basis of the population labels and break

points contained in the break point file. More specifically, at

each break point, the method randomly samples a new haplotype

(of the appropriate population) from the pool, creating non-over-

lapping sampling paths (Figure S1). This interrupts the linkage

disequilibrium (LD) on either side of a break point as in a real

crossover and approximates the full pedigree model. After sam-

pling all segments of the target admixed individuals’ haplotypes,

admix-simu outputs the final haplotypes, which we then grouped

in pairs to form individual diploid genotypes.

We simulated pedigrees of the base case form introduced earlier

(see ‘‘modeling the relationship between admixture time and

ancestry switch rates’’), assigning the founders in generations

ðtA; tBÞ to different populations according to the proportions

given by the expectation E½ðpA;pBÞ�. This expectation will in gen-

eral differ from the realized values ðpA; pBÞ (in the parents of the

focal individual) that we used to calculate deviation statistics

(see ‘‘computing measures of accuracy and bias’’). Further, the

range of E½ðpA; pBÞ� values is constrained by the number of

founder individuals in the pedigree, which depends on ðtA; tBÞ
(e.g., it is impossible to simulate E½ðpA; pBÞ� ¼ ð0:1;0:1Þ when

ðtA; tBÞ ¼ ð2; 2Þ, as the number of founder haplotypes is too

small). Therefore, we assigned the founder ancestries to approxi-

mate the expected proportions as closely as possible.

We used data from the HapMap CEU and YRI populations as the

input unadmixed founder haplotypes for simulating. In order to

provide large unadmixed panels to the local ancestry inference soft-

ware and ensure these are unrelated to the target simulated individ-

uals, we first excluded children from the HapMap CEU and YRI

populations and split the remaining individuals (trio parents, duo

parents, and unrelated samples) into four sets of 22 individuals

for the two populations. We then used the pipeline described above

to simulate admixed individuals in four separate runs, each using

one of the four sets of simulation founders as input to admix-

simu and with each assigned a different E½ðpA; pBÞ� value:

ð0:25;0:75Þ; ð0:4;0:6Þ; ð0:25;0:5Þ or ð0:5; 0:5Þ. We repeated this

procedure (with the same four founder datasets) for each of the

desired settings of (tA,tB) (see results for these values). This produces

four sets of simulated samples for every (tA,tB) that are unrelated to

the other three sets of unadmixed samples. Doing this allows us to

utilize the three sets of unadmixed samples (66 individuals in total)

as panels in HAPMIXwhen analyzing the corresponding simulated

individuals, thus leveraging all the available data for simulating

while still maintaining sizeable panels for local ancestry inference.

To phase the HapMap samples, we first downloaded the Phase III

genotypes (see data and code availability) and performed a lift over

to GRCh37 coordinates.37 We then removed all markers that were
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unmapped by the lift over and, for positions typed on both the Af-

fymetrix and Illumina arrays, removed the Affymetrix genotypes.

A few positions remained duplicated, and we retained one random

genotype for each such site. Following this, we used the reported

relationships to identify trios and duos and used PLINK 1.938 to

set sites with Mendelian errors to missing (using the –set-me-

missing option). Finally, we phased the data by running Beagle

3.3.2 (October 31, 2011)39 on all the samples, supplying the

labeled trios and duos as well as all unrelated individuals. (Notably

this phasing run included all HapMap populations, not just the

YRI and CEU samples.)
Simulating multiple pulses of admixture on a pedigree
The base case pedigree only includes a subset of the admixture his-

tories that are possible, as unadmixed ancestors from distinct pop-

ulations will in general appear at more than one generation in an

admixed individual’s pedigree. We sought to ask what value of tj
our pulse-migrationmodel (Equation 2) will estimate inmore gen-

eral cases.

To characterize this, we simulated admixed haplotypes that have

two admixture time parameters, tej and tlj, which are, respectively,

the earlier and later generations ðtej > tljÞ in which couples contain-

ing unadmixed individuals of different ancestries occur (all other in-

dividuals are unadmixed of themajority ancestry). To perform these

simulations, we used a base case pedigree for tlj with a desired setting

of E½pj� and generated new pedigrees by replacing lineages—starting

from the left-most lineage and working to the right—by lineages

with a time since admixture of tej and with the same E½pj�. We use

a parameter q to define the proportion of all the couples in the tej
generation composed of individuals of different ancestries. By this

definition, the range of q depends on E½pj�, as themaximum fraction

of couples containing unadmixed individuals of different ancestries

is 2E½pj�, so when E½pj� ¼ 0:5, q ranges between 0 and 1 and when

E½pj� ¼ 0:25, q’s maximum value is 0.5.

Note that for this analysis we used only the exact local ancestry

tracts derived from the Ped-sim break point positions. We repre-

sent the tracts lengths from population 0 as l0k for k˛ f1;.;N0g
and from population 1 as l1[ for [˛ f1;.;N1g. From these, we esti-

mated the Poisson rates by using the maximum likelihood esti-

mator for the 22 finite autosomes26 as bl0j ¼ ðN0 �22Þ=P
k

l0k and

bl1j ¼ ðN1 � 22Þ=P
[

l1[ . Finally, from these same data, we also esti-

mated bpj ¼ P
l0k=

�P
l0k þ

P
l1[

�
.

In order to calculate the value of tj the model in Equation 2 in-

fers, we reasoned that bl0j =�1 � bpj� and bl1j =bpj each give a measure

of tj, and we compute a weighted average of these two estimators.

Specifically, because our estimates of the total Morgan fraction of

the genome that fall in tracts of ancestry 0 and 1 are bpj and 1 � bpj
respectively, we calculated this as a weighted average:

bt j ¼ bpj

bl0j
1 � bpj þ

�
1 � bpj� bl1jbpj � 1: (Equation 6)

Here, as in PAPI, we subtract 1 for reasons described earlier (see

‘‘modeling the relationship between admixture time and ancestry

switch rates’’).
Handling local ancestry calls as input to PAPI
PAPI reads local ancestry calls produced by either HAPMIX or

LAMP-LD. (Note that methods such as RFMix24 that require
ust 4, 2022



phased haplotypes and produce phased local ancestry calls are un-

suitable for input to PAPI.) HAPMIX outputs posterior probabilities

of the three possible unphased diploid local ancestry states at every

marker, which PAPI converts into an internal representation of

fixed (i.e., non-probabilistic) local ancestry calls. This conversion

works by taking the maximally probable state at each marker. In

contrast, LAMP-LD outputs fixed local ancestry calls and PAPI con-

verts them directly into an internal representation. In simulated

data, we found that LAMP-LD is prone to producing erroneous

short segments, leading to an upward bias in admixture time infer-

ence. To address this, we filtered out LAMP-LD tracts shorter than 1

cM, which helps correct this bias (results not shown). Note that

filtering out tracts can introduce state transitions prohibited by

the HMM (see ‘‘a hidden Markov model to jointly infer admixture

times and ancestry proportions’’). In order to avoid this, we filtered

out only those tracts that are flanked by tracts of identical ancestry

state. The filtering process consists of deleting the target tract and

merging the flanking tracts to fill in the missing space. We applied

this filter in all the LAMP-LD-based analyses.

Data processing for ANCESTOR and PedMix
We formed the input to ANCESTOR by converting the non-prob-

abilistic local ancestry calls that PAPI uses into the format expected

by ANCESTOR. In order to run PedMix, we followed the authors

recommendations and applied (1) a 0.05 minor allele frequency

filter, (2) LD pruning (removing SNPS with r2 > 0:25) by using

overlapping blocks of 1,000 SNPs and a sliding window increment

of 25 SNPs (with the PLINK option –indep-pairwise 1000 25 0.25),

and (3) a switch-error correction tool provided by the authors. An

additional utility for filtering SNPs on the basis of allele frequency

differences between the ancestral populations reduced PedMix’s

performance, and we thus omitted this step.

Computing measures of accuracy and bias
The A and B parent labels in PAPI’s bq ¼ ðbpA; bpB;btA;bt BÞ estimates

separate the inferred time and ancestry proportions of one parent

from the other. However, PAPI does not infer the sexes of these par-

ents, and in order to computemeasures of accuracy and bias in our

simulations, it is necessary to map these labels to specific parents.

To do this, we choose the assignment that minimizes the sum of

squared errors. Let pmax and pmin be the ancestry proportions of

the parent with the larger and smaller estimates, respectively.

Then, representing the estimated labels by an ordered vector v˛
fðA;BÞ; ðB;AÞg, we minimize f ðvÞ ¼ ðbpv1 � pmaxÞ2 þ ðbpv2 � pminÞ2
and use v� ¼ arg minvf ðvÞ as the mapping between estimated

and true parent labels.

In results, we report the mean absolute deviation of the esti-

mated parameters from the truth, which serves as a measure of ac-

curacy, computing this as

dabs;p ¼

���bpv�
1
� pmax

���
2

þ

���bpv�
2
� pmin

���
2

: (Equation 7)

We also report a measure that uses exact rather than absolute dif-

ferences, which serves as a measure of bias. This statistic is a vector

of two numbers corresponding to the bias of each parent’s

ancestry proportion individually:

dbias;p ¼
�bpv�

1
� pmax; bpv�

2
� pmin

�
: (Equation 8)

We also compute analogous metrics for the bt j estimates, denoted

dabs;t and dbias;t .
The American
Filtering and processing the PAGE data
We used PAPI to analyze African American individuals from the

BioMe Biobank subset of the Population Architecture using Geno-

mics and Epidemiology (PAGE II; dbGaP: phs000925.v1.p1)

study.28 In order to identify admixed individuals with African

and European ancestry, we merged all the individuals (N ¼
12,754) with the HapMap CEU and YRI trio parents—the latter

providing known population labels—and ran ADMIXTURE

v1.340 with K ¼ 5. We analyzed the estimated ancestry propor-

tions for the HapMap individuals to determine which of the K

populations corresponded to African and European ancestry. We

then selected PAGE individuals that met each of the following

three criteria as subjects for our study: (1) has R5% African

ancestry, (2) hasR5% European ancestry, and (3) the sum of these

two ancestries is R99.5%. This identified a total of 5,786 subjects

for our analysis.

Because the number of SNPs that intersect between the PAGE

and HapMap III datasets is small, we used 107 YRI and 95 CEU un-

related individuals from the 1,000 Genomes Project41 (1000G)

data as panels for performing local ancestry inference in the

PAGE subjects. To get a common set of SNPs between 1000G

and PAGE, we first filtered out multiallelic and indel variants

from both datasets. Next, in order to prevent any strand inconsis-

tencies in the allele encodings of the two datasets, we ran PLINK

v2.00a2.3LM with the –ref-from-fa option to recode the PAGE al-

leles to the forward strand of the GRCh37 reference genome (the

1000G data are already encoded in this manner). This may not

correctly assign alleles at A/T and C/G SNPs, and we filtered these

SNPs later (below). Next, we applied the ‘‘composite filter’’ pro-

vided in the quality control report distributed with the PAGE

data, which includes filters for Hardy-Weinberg equilibrium,

discordant calls in duplicated samples, and Mendelian errors,

among others. In order to identify any remaining incorrectly

coded alleles, we applied a chi-squared test for allele frequency dif-

ferences between two groups of subjects—the 5,786 PAGE individ-

uals and a subset of 1000G composed of 80 YRI and 20 CEU indi-

viduals. Markers in the PAGE data and the 1000G subset are

expected to have similar allele frequencies, and those with statisti-

cally significant differences indicate a potential mismatch in the

strand encoding. We filtered all markers with jzj > 4 from both

datasets. Finally, we removed all A/T and C/G SNPs, as allele-en-

coding mismatches in these markers (e.g., at high minor allele fre-

quency variants) may not be detected by any of the analyses

above. All of these steps left 409,095 markers that overlapped be-

tween PAGE and the 1000G data, and we used these to perform

local ancestry inference via HAPMIX on each PAGE sample with

the 1000G data as panels.
Results

We validated PAPI’s approach to deconvolving parental

transmissions within unphased diploid local ancestry

tracts of a given individual by using simulated and real

data. Our first analysis contrasts the accuracy of PAPI’s es-

timates with each of its models and inference modes.

Following this, we compare PAPI’s parameter estimates of

(pA,pB) with those of ANCESTOR and PedMix (which do

not estimate (tA,tB)) under a number of simulated sce-

narios, finding that PAPI reliably infers these parent

ancestry fractions. We then turn to an examination of
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the quality of PAPI’s (tA,tB) estimates by using both inferred

local ancestry tracts and exact tracts from our simulation

pipeline. For these analyses, we considered a range of

admixture histories, including the base case and more

complex pedigrees (subjects and methods).

Following these efforts, we applied PAPI to a large dataset

of African Americans from the PAGE study. By leveraging

PAPI’s power to accurately infer parental ancestry propor-

tions, we examined the relationship of couples’ ancestries

to one another and find strong evidence of non-random

mating, as described below.

Evaluating the performance of PAPI’s component

models

We simulated the genotypes of admixed individuals under

three scenarios: (1) tA > tB, with tA ¼ 9 and tB ˛ ½2; 8�;
(2) tA ¼ tB ˛ ½2; 9�; and (3) ðtA; tBÞ˛ fð0; 0Þ; ð1;1Þg
(Table S1; see subjects and methods for simulation details).

For every ðtA; tBÞ in scenarios 1 and 2, we simulated 22 ad-

mixed individuals for each of E½ðpA; pBÞ� ˛ fð0:5;0:5Þ;
ð0:25;0:5Þ; ð0:4; 0:6Þ; ð0:25;0:75Þg for a total of 88 individ-

uals per scenario. In scenario 3, the small numbers of gener-

ations correspond to limited ranges of parent ancestry pro-

portions; as such, when ðtA; tBÞ ¼ ð0; 0Þ, we simulated a

total of 88 admixed individuals for E½ðpA; pBÞ�˛ fð0;0Þ;
ð1;0Þ; ð1;1Þg (22 individuals for each of E½ðpA; pBÞ�˛
fð0;0Þ; ð1;1Þg and 44 individuals for E½ðpA; pBÞ� ¼ ð1; 0Þ)
and when ðtA; tBÞ ¼ ð1;1Þ, we simulated 22 admixed indi-

viduals for each of E½ðpA; pBÞ�˛ fð0:5; 0:5Þ; ð0;0:5Þg for a

total of 132 individuals. Note that here and elsewhere in re-

sults, pj corresponds to African ancestry proportions. As

described in subjects and methods, our simulation pipeline

assigns population labels to unadmixed founders while

matching as closely as possible the desired parent ancestry

proportions. Because of randomassortment and recombina-

tion, the realized (pA,pB) vary, and in general these founder

ancestry assignments only give the expectation E½ðpA; pBÞ�
(or more precisely, the closest possible values to this expec-

tation). However, we used the realized values of (pA,pB) for

computing deviation metrics dabs;p and dbias;p.

PAPI can estimate (pA,pB) by using any of its three

models: the binomial, the HMM, or the full model (a com-

posite of the binomial and the HMM; subjects and

methods). We ran all three models on the scenario 1 simu-

lated individuals (Figure S4), and, averaged across all data

points taken together, the GD estimates of (pA,pB) under

the full model are quite reliable with dabs;p ¼ 0:043. This

is the best performing GD-based model overall with an ab-

solute deviance 6.52% and 14.0% smaller than those of the

HMM (dabs;p ¼ 0:046) and binomial model (dabs;p ¼
0:050), respectively. The same trend holds for the

MCMC estimates, albeit with lower relative differences

among the models: averaged across all scenario 1 data

points, the full, HMM, and binomial models achieve

dabs;p values of 0.040, 0.041, and 0.042, respectively. The

differences between the models are most pronounced

when E½ðpA; pBÞ� ¼ ð0:5; 0:5Þ; in particular, using the GD
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inference mode for this setting, the dabs;p statistics for the

binomial, HMM, and full models are, respectively, 0.061,

0.054, and 0.053; in turn, using MCMC inference, the cor-

responding dabs;p measures are 0.061, 0.054, and 0.049,

respectively. Note that while the MCMC (pA,pB) estimates

under the full model are more accurate than the corre-

sponding GD estimates overall, this method’s increased

runtime and loss of accuracy in (tA,tB) estimation (below)

make the MCMC estimates less effective when a user also

seeks admixture time estimates.

Considering PAPI’s (tA,tB) estimates, we measured the

Pearson correlation R of the inferred tB estimates with

the true simulated tB values in scenario 1 data (tA ¼ 9 is

held fixed in scenario 1, and we ignore it in the correlation

analysis). Here, PAPI’s GD estimates under the full model

yield R ¼ 0.761, representing a modest improvement

compared to the HMM (R ¼ 0.713). By contrast, the

MCMC results in this case show weaker performance,

with the full model yielding R ¼ 0.678 and the HMM

model alone obtaining R ¼ 0.681.

We also benchmarked PAPI’s runtime for every combina-

tion of options (inference mode and model) on compute

nodes with Intel Xeon E5 4620 processors, utilizing 4 GB

of RAM (Table S2). We analyzed the 88 individuals simu-

lated under scenario 2 with tA ¼ tB ¼ 5, one individual

per PAPI run. The average wall clock time for the full model

using the MCMC mode is 8.97 h per individual compared

to 23.9 s using the GDmode, making the GDmode 1,3463

faster than MCMC. The MCMC and GD runtimes for the

full model are, somewhat counter-intuitively, slightly

shorter than those for the HMM model (6.00% and

9.20% shorter, respectively), while runtimes for the

HMM with the error model option turned on are slightly

longer (3.29% and 8.75% longer for the MCMC and GD

options, respectively). Finally, the binomial model run-

times are quite fast, with the MCMC mode completing in

5.38 min and GD mode requiring only 7.3 s.

In light of these results, we recommend running PAPI

with the full model and using the GD inference option

in most cases. These are PAPI’s default settings, and unless

otherwise stated, we used these options to produce the rest

of the results. A notable exception to this recommendation

is when a user seeks only ðpA; pBÞ estimates; in this case the

MCMC runtimes for the binomial model are relatively

fast, and while this mode provides the least accurate

ðpA; pBÞ estimates of all MCMC-based models, they are

more accurate than the best GD estimates, making

the speed and accuracy trade-off worthwhile.

Accuracy of parent ancestry estimates across admixture

scenarios

To evaluate PAPI’s performance in the context of other

methods, we compared its inferred parental ancestry

proportions with those of ANCESTOR and PedMix across

all three simulation scenarios described above. Figure 3A

shows dabs;p for the three methods considering all scenario

1 and 2 data points, and Figures 3B and 3C show
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Figure 3. Deviance statistics in simulated data for inferred parent ancestry proportions ðpA; pBÞ from PedMix, ANCESTOR, and PAPI
(A) Average absolute deviances (dabs,p) on all scenario 1 and 2 data.
(B and C) Absolute deviances for data points where (B) tA ¼ tB ¼ 5 and (C) tA ¼ 9 and tB ¼ 5.
(D and E) Average absolute deviance on all scenario 3 data.
(D) PAPI estimates the ground truth near perfectly when E½ðpA; pBÞ�˛ fð1;0Þ; ð0;0Þ; ð1;1Þg and (E) ANCESTOR and PedMix outperform
PAPI when E½ðpA; pBÞ� ¼ ð0:5;0:5Þ but PAPI’s deviance is low when E½ðpA;pBÞ� ¼ ð0;0:5Þ.
representative cases from each scenario. Overall, PAPI

achieves dabs;p ¼ 0:047 on average for all scenario 1 and

2 cases compared to dabs;p ¼ 0:087 and dabs;p ¼ 0:111

from ANCESTOR and PedMix (representing improve-

ments of 45.9% and 57.6%), respectively. PAPI’s perfor-

mance improves with increasing
��pA � pB

��; for example,

when E½ðpA; pBÞ� ¼ ð0:25; 0:75Þ, PAPI’s absolute deviance

(averaged over admixture times) is 0.032, which is 75.6%

and 81.1% lower than ANCESTOR and PedMix’s corre-

sponding values of dabs;p ¼ 0:131 and dabs;p ¼ 0:169. In
The American
fact, this E½ðpA; pBÞ� setting yields PAPI’s lowest mean devi-

ance and ANCESTOR and PedMix’s highest. This trend is

recapitulated when using PAPI’s HMM alone compared to

ANCESTOR (Figure S5). While the exact explanation of

these results is likely multi-factorial, it seems that the

PAPI HMM is better equipped to exploit the strictly less

informative heterozygous ancestry regions as well as those

with homozygous ancestry (see discussion). We examined

the relative performance of PAPI, ANCESTOR, and PedMix

in every setting of (tA,tB) from scenarios 1 and 2 and find
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A B Figure 4. PAPI and ANCESTOR’s parent
ancestry proportion estimates for the
HapMap ASW trio children
Scatter plots of estimated versus true parent
ancestry proportions for (A) PAPI’s full
model and (B) ANCESTOR.
that PAPI outperforms both ANCESTOR and PedMix in the

majority of cases, with a handful of exceptions when

E½ðpA; pBÞ� ¼ ð0:5;0:5Þ (see Figures S6 and S7).

PAPI’s parent ancestry estimates have little bias, with

average dbias;p ¼ ð0:0085; �0:0078Þ in scenario 1 samples

and dbias;p ¼ ð0:0096; �0:010Þ in scenario 2 samples. The

corresponding biases for ANCESTOR are higher at

dbias;p ¼ ð�0:056;0:022Þ and dbias;p ¼ ð�0:047;0:035Þ in

scenarios 1 and 2, respectively. Those of PedMix are also

higher than PAPI with dbias;p ¼ ð �0:069; �0:013Þ in sce-

nario 1 and dbias;p ¼ ð �0:069; �0:009Þ in scenario 2.

Furthermore, the standard deviations of PAPI’s dabs;p esti-

mates are low at 0.035 in scenario 1 and 0.029 in scenario

2 samples, with corresponding values for ANCESTOR

being 0.064 and 0.065 and for PedMix being 0.059 and

0.062.

Turning to the scenario 3 simulated data, in cases where

both parents of the focal sample are unadmixed and from

different populations (E½ðpA;pBÞ� ¼ ð1;0Þ, so the focal sam-

ple is heterozygous for ancestry genome-wide), PAPI infers

the ground truth with near-perfect accuracy (dabs;p ¼
0:0018). In turn, ANCESTOR and PedMix have fairly

high deviances in this case with average dabs;p ¼ 0:277

and 0.416, respectively (Figure 3D). When all four grand-

parents are unadmixed with each couple containing

individuals of each ancestry (tA ¼ tB ¼ 1 and E½ðpA;
pBÞ� ¼ ð0:5; 0:5Þ), PAPI is less accurate than both

ANCESTOR and PedMix, with the three methods having

dabs;p values of 0.089, 0.067, and 0.087, respectively

(Figure 3E). Even so, when exactly one parent is unad-

mixed (tA ¼ tB ¼ 1 and E½ðpA; pBÞ� ¼ ð0; 0:5Þ), PAPI

achieves dabs;p ¼ 0:030, which is considerably better

than ANCESTOR’s dabs;p ¼ 0:150 and PedMix’s 0.176

(Figure 3E).

Finally, we validated PAPI’s parent ancestry estimates

in real data by running it on the offspring of all ten

African American trios in the HapMap ASW population.

The availability of parental data provides a direct

measure of the ground truth via those parents’ local

ancestries (which we inferred with HAPMIX). As in the

simulated data, we assigned the estimated parent labels to

the real parents by minimizing the sum of squared

deviances (subjects and methods). Figure 4 shows the

estimated and true parent ancestry proportions of the

trio children for PAPI and ANCESTOR. In these real
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samples, PAPI achieves dabs;p ¼ 0:0497 and dbias;p ¼
ð0:0272; � 0:0263Þ, which is more accurate and less

biased compared to ANCESTOR’s values of dabs;p ¼ 0:111

and dbias;p ¼ ð �0:150; �0:0547Þ. PAPI’s parental

ancestry proportion estimates with the binomial and

HMM models alone achieve similar but slightly

reduced performance compared to these full model

results (binomial model mean dabs;p ¼ 0:0542 and dbias;p ¼
ð� 0:0264; 0:0253Þ; HMM mean dabs;p ¼ 0:0597 and

dbias;p ¼ ð�0:0184;0:0263Þ; Figure S8).

Accuracy of time since admixture estimates

We used PAPI to estimate (tA,tB) in data simulated under

scenarios 1 and 2 (above) and found that it reliably re-

covers the truth under both scenarios (Figures 5A and

5B). In scenario 1 data, the PAPI estimates for the two par-

ents are well separated, with the difference between the

two estimates proportional to the true difference. More

specifically, there is a high correlation between tB and

the corresponding PAPI estimate (R ¼ 0.76), and a more

moderate one between the inferred branch differencesbt A � bt B and the truth (R ¼ 0.53). PAPI achieves similar

quantitative results in the scenario 2 data, where the corre-

lation between its estimates and the truth is R ¼ 0.79

(calculated with both the tA and tB data points).

PAPI’s estimates in these simulated data have an overall

downward bias, with mean dbias;t ¼ ð�1:03; �0:986Þ for

scenario 1 and dbias;t ¼ ð�1:42;0:075Þ for scenario 2 data

points. In order to understand the source of these biases,

we ran PAPI on the exact ancestry tracts output by the

simulator for data from both scenarios. This analysis yields

reduced bias measures of mean dbias;t ¼ ð0:041; �0:701Þ
for scenario 1 and dbias;t ¼ ð�1:06;0:394Þ for scenario 2

samples (Figures 5C and 5D), suggesting that some of the

downward bias can be explained by errors in local ancestry

inference. The larger number of outliers in Figures 5C and

5D may be due to the presence of small tracts in the exact

simulated data, which may go undetected by HAPMIX.

We contrasted these HAPMIX-based results with those

obtained with tracts inferred by LAMP-LD (after filtering

out tracts smaller than 1 cM; subjects and methods). As

shown in Figure S9, the LAMP-LD-based estimates are

biased upwards on average for both scenarios, with

mean dbias;t ¼ ð1:07; �0:089Þ for scenario 1 and

dbias;t ¼ ð�0:576;1:66Þ for scenario 2 data points. The
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Figure 5. PAPI’s estimated time since admixture in simulated individuals
(A and B) Box plots of estimated times based on HAPMIX local ancestry tracts for (A) scenario 1 samples (where tA > tB) and (B) scenario
2 data (where tA ¼ tB).
(C and D) Estimated times based on exact local ancestry tracts for (C) scenario 1 and (D) scenario 2 individuals. In (A) and (C), the x-axis
gives the true tB since tA is held fixed in these cases. Blue and orange dashed lines represent the simulation ground truths for tA and tB,
respectively in (A) and (C), while the red dashed lines in (B) and (D) represent the simulation ground truths for tA and tB.
LAMP-LD-based estimates also show weaker correlations

with the truth compared to the HAPMIX-based estimates

with R ¼ 0.59 for scenario 1 (considering only tB values)

andR ¼ 0:69 for scenario 2datapoints.Given these results,

and the fact thatHAPMIX further classifiesR98.5%of SNPs

correctly for all threediploid ancestry states (see Figure S10),

we conducted all further analyses with HAPMIX local

ancestry tracts.

The above results consider the ðbt A;bt BÞ estimates in aggre-

gate across simulated individuals, but PAPI is designed to be

applied to individual samples as well. We plotted sample-

specific point estimates of ðtA; tBÞ (obtained with the

MCMC inference mode) in the scenario 2 data along with

their 90% Bayesian credible intervals (CIs) in Figure S11.

The 90% CIs overlap true values in 86% of data points and

have a mean range of 4.99. Notably, when the true tA ¼
tB ¼ 0, the 90% CIs of the model (in this case run with

the error model option) have very large mean range of

16.5 and are strongly biased (dbias;t ¼ 7:06; Figure S12).

This is due to the fact that when tA ¼ tB ¼ 0, both pA
and pB must be either 0 or 1, and hence the inferred values

in ðbpA; bpBÞ are each close to one of these extremes. Equation

2 implies that when this happens, either l0j z0tj or l
1
j z0tj,

and therefore relatively small changes in lj can lead to large

changes in tj; thus small erroneous tracts can readily bias the
The American
results. Note that PAPI performs better in GD inference

mode when using the error model (see ‘‘effectiveness of PA-

PI’s error model’’); this may be because GD identifies a local

maximumwhile theMCMCcalculation integrates error and

non-error state assignments for short, erroneous tracts. Still,

as noted below in the discussion of the error model, we

advise caution in interpreting the tj estimates when

pj > 0:95 or pj < 0:05.

We further validated PAPI’s tj estimates in real data by

again analyzing the ten ASW trio offspring. Here, the par-

ents’ true time since admixture cannot be directly ascer-

tained, so we first ran PAPI on each trio parent and

computed the truth as an average of that parent’s time

since admixture estimates, adding one for the meiosis to

the trio offspring: tP ¼ ðbt PA þbt PBÞ=2þ 1 and tM ¼
ðbtMA þbtMB Þ=2þ 1, where for j˛ fA; Bg, bt Pj and btMj represent

PAPI’s estimates on the trio father and trio mother, respec-

tively. We then assigned the trio children’s ðbt A;bt BÞ esti-

mates to parent labels by minimizing the sum of squared

differences (subjects and methods). PAPI’s estimates in

these data have a strong correlation with the truth of R ¼
0.77, in line with that observed in the simulated data

(Figure S13). These estimates are somewhat biased with

dbias;t ¼ ð2:061;�0:332Þ.
Journal of Human Genetics 109, 1405–1420, August 4, 2022 1415
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Figure 6. PAPI’s estimated time since admixture with two migrant pulses
Plots show estimated time since admixture versus q (the proportion of couples in the tej generation with unadmixed individuals of
different ancestries) when tej ¼ 9 and tlj ¼ 7 for (A) E½pj� ¼ 0:25 and (B) E½pj� ¼ 0:5. The blue lines depict the least-squares regressions
on the plotted data points.
Interpreting time since admixture estimates

As described in subjects and methods, we simulated single

haplotypes under a larger class of pedigree structures

defined by four parameters—tej , t
l
j, E½pj�, and q. We carried

out these simulations with ðtej ; tljÞ ¼ ð9;7Þ for each of

E½pj�˛ f0:25;0:5g, where, when E½pj� ¼ 0:5, q varied be-

tween ½0;1� in increments of 2�6, and when E½pj� ¼ 0:25,

q varied between ½0;0:5� in the same increments (q’s

maximum value is 0.5 for E½pj� ¼ 0:25). We further simu-

lated structures with ðtej ; tljÞ ¼ ð9;5Þ for E½pj� ¼ 0:5, vary-

ing q between ½0;1� in increments of 2�4.

Given the exact local ancestry segments output by the

simulation pipeline, we applied Equation 6 to estimate bt j
and then empirically examined the relationship betweenbt j and the simulation parameters tej , t

l
j, E½pj�, and q. Our re-

sults suggest that bt j linearly increases from tlj to tej as q in-

creases from 0 to its maximum value (Figures 6 and S14),

but notably, the bt j estimates are downwardly biased from

the weighted average over all N simulated datapoints. In

particular, when E½pj� ¼ 0:5, this weighted average is

tavgj ¼ 1
N

P
i

ðqitej þð1 � qiÞtljÞ, where i indexes individual da-

tapoints.When E½pj� ¼ 0:25, we use 2qi and ð1 �2qiÞ as the
weights on tej and tlj, respectively, with the factor of 2 ac-

counting for q’s smaller range in this case. We measured

the bias as

�
1
N

P
i

bt j;i
	

� tavgj ¼ �0:584 when E½pj� ¼ 0:25

and �0:282 when E½pj� ¼ 0:5. Similar biases arise in PAPI’s

tj estimateswhenusingboth simulated exact ancestry tracts

and tracts inferred by HAPMIX (see the previous

subsection).

While these results indicate that the estimated times

since admixture may generally be a weighted average of

the times in which individuals of a given ancestry entered

an individual’s pedigree, a full understanding of the quan-

titative relationship requires more detailed analyses that
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are beyond the scope of this work. Instead we note simply

that PAPI’s admixture time estimates potentially represent

inputs from several generations and should not be inter-

preted as the generation in which admixture occurred.
Effectiveness of PAPI’s error model

While generally reliable, local ancestry inference methods

do produce erroneous tracts, which can lead to biased

ðtA; tBÞ estimates (see ‘‘accuracy of time since admixture

estimates’’). These biases are most pronounced when

the true pA and pB values are close to 0 or 1, such as in

a subset of the scenario 3 simulated data (where

E½ðpA; pBÞ� ˛ fð0; 0Þ; ð1;0Þ; ð1;1Þg and ðtA; tBÞ ¼ ð0; 0Þ). In
these cases, PAPI’s error model helps account for any erro-

neous tracts, leading to improved estimates of ðpA; pBÞ
(dabs;p ¼ 0:0078 with the error model as opposed to

dabs;p ¼ 0:0148 without) and ðtA; tBÞ (dbias;t ¼ 0:957 with

the error model and dbias;t ¼ 9:934 without). Despite

these improvements when the true tA ¼ tB ¼ 0, note

that in practice a few small tracts in real data that this

model considers to be erroneous may in fact be real and

reflect old admixture. As such, by default, PAPI runs

without the error model, and we advise caution in

interpreting its tj estimates when pj > 0:95 or pj < 0:05.

If a user is confident that the population under study

is only recently admixed, using the error model can

improve the results. In either case, it may be prudent to

re-run PAPI in MCMC mode and examine the posterior

distribution of ðtA; tBÞ for samples with pj > 0:95 or

pj < 0:05 or to simply avoid consideration of results

from such parents.
Ancestry proportions of parental couples are strongly

correlated with each other in PAGE African Americans

We ran PAPI on detected African Americans from the

BioMe Biobank subset of the PAGE study,28 considering a

total of 5,786 individuals that met our ancestry-based
ust 4, 2022
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Figure 7. PAPI analyses from African Americans in the BioMe Biobank subset of PAGE
(A) Distribution of the parent ancestry estimates (both pA and pB plotted separately) in these African Americans.
(B) Distribution of time since admixture estimates (tA and tB plotted separately).
(C) Heatmap of the ancestry proportions of couples (pA, pB) ordered as (pmax, pmin).
(D) Distribution of

��pA � pB
�� estimates from the real couples along with a permuted distribution.
criteria for inclusion (subjects and methods). Here, we

initially examined the parental ancestry proportion esti-

mates from PAPI’s binomial model run inMCMC inference

mode—the recommended mode when only pj estimates

are required (see ‘‘evaluating the performance of PAPI’s

component models’’). The average African ancestry pro-

portion in the parents is pj ¼ 0.71, which is roughly consis-

tent with previous estimates in African Americans.6,30,31

The majority of parents have proportions between 0.8

and 1.0, corresponding to high African ancestry, but a

heavy left tail in the distribution drives down the mean

(Figure 7A). Figure 7B plots the estimated time since

admixture—obtained by running PAPI with the default op-

tions—considering all parents that have pj ˛ ½0:05;0:95�
for j˛ fA; Bg. This distribution has an overall Gaussian-

like shape, whichmay suggest randommating with respect

to the time since admixture among the ancestors of these

African Americans. The population mean of tj estimates

is 6.10, again roughly consistent with previous estimates

in African Americans.6,30,31 We infer a small set of individ-

uals (0.04% of the dataset) with tj > 15, but since the

simulated data also contain some overestimated extreme

values, we assumed that these estimates are inflated.

We analyzed PAPI’s parental admixture proportion

estimates within all parent pairs—all couples—from these

African Americans. Figure 7C depicts a heatmap of
The American
ðpmax; pminÞ ¼ ðmaxðpA; pBÞ; minðpA; pBÞÞ (since the A and B

labels are arbitrary) where one salient feature is a strong clus-

ter of points centered roughly at ð0:95; 0:85Þ that spreads

diffusely outward. This cluster is consistent with a pattern

of assortativemating between individuals with high African

ancestry, and includes a meaningful fraction of the couples

(25.2% of individuals in the dataset have pmax R0:90 and

pmin R0:80). Furthermore, the Pearson correlation coeffi-

cient between pmax and pmin is R ¼ 0.871, also indicating as-

sortative mating by ancestry.

To more precisely characterize the strength of the

signal for non-random mating in these couples, we

examined the per-individual distribution of
��pA � pB

��
(Figure 7D). This density is roughly Gaussian with a

heavy right tail and has a mean of 0.169, largely driven

by the high density of couples noted above. This real

data distribution is visibly distinct from what would arise

under random mating, as randomly shuffling the mem-

bers of the couples creates a much more dispersed,

thick-tailed density (Figure 7D). Indeed, the mean��pA � pB
�� across 106 permutations is 0.272, and no per-

mutation mean reached as small a value as in the real

data (minimum permutation mean 0.264; p < 10�6).

Notably the real data distribution has a depletion of

mass near
��pA � pB

�� ¼ 0, which could be due to PAPI be-

ing biased when pAzpB. Consistent with this, PAPI
Journal of Human Genetics 109, 1405–1420, August 4, 2022 1417



shows slightly reduced performance in simulated data

when E½ðpA; pBÞ� ¼ ð0:5; 0:5Þ (see Figure 3).

In order to ensure that the assortativemating signal is not

being driven by this bias (or other biases in PAPI’s infer-

ence), we simulated genotypes for 176 admixed African

Americans in the same manner as before (subjects and

methods) but with tA ¼ tB ¼ 6 and with the (pA,pB) pairs

randomly sampled from the parental admixture proportion

distribution depicted in Figure 7A. As we sampled pA and pB
independently, this produces a null (randommating) distri-

bution akin to the shuffled distribution above. The results

from running PAPI on these simulated individuals (see

Figure S15) are remarkably similar to the permuted distribu-

tion in Figure 7D, and themean
��pA � pB

�� in these simulated

individuals is 0.261. This indicates that potential bias in

PAPI’s inference is not driving the assortative mating signal.

Moreover, the simulated data distribution also lacks mass

near
��pA � pB

�� ¼ 0, suggesting that, while PAPI is some-

what biased in this region of the parameter space, this

bias alone does not drive the assortative mating signal.

Taken together, these observations provide strong evidence

for assortative mating by ancestry proportion in the parents

of these African American individuals.
Discussion

In this paper, we described and evaluated PAPI, a novel

approach to inferring the admixture proportions and

times since admixture for each parent of an extant indi-

vidual that combines two models. The first is a binomial

model that takes a global view of the ancestry of an in-

dividual, considering the overall proportions of homozy-

gous and heterozygous ancestry in their genome. As

noted earlier, this model is equivalent to that described

in a recent paper.29 PAPI employs a Bayesian framework

and combines this binomial model with a second HMM

that leverages the information present in the length dis-

tribution of local ancestry tracts. The HMM incorporates

a population genetic model9—but uses parameters spe-

cific to the individual’s pedigree—to capture the hidden

recombinations within these tracts (i.e., those that do

not switch the ancestry of the haplotype).

To characterize PAPI’s accuracy, we simulated African

Americans under various pedigree topologies and distri-

butions of parent ancestry proportions and also used the

real HapMap ASW trios. Our results show that PAPI is

more accurate than ANCESTOR and PedMix at inferring

parent ancestry proportions in many settings (Figure 4)

and can detect when tAstB (Figure 5). In simulations

that rely on inferred local ancestry tracts, PAPI is able to

recover tj estimates highly correlated with the truth, albeit

with a downward bias when using HAPMIX local ancestry

tracts and an upward bias when using tracts from LAMP-

LD (Figure 5).

PAPI’s approach models historical crossovers with a

Markovian approximation to the more elaborate dynamics
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of crossover transmissions in a pedigree. The transition

probabilities of PAPI’s HMM are otherwise similar to those

of ANCESTOR, although ANCESTOR also supports non-

exponential tract length distributions by using a stochastic

expectation maximization technique for inference. In

contrast, PedMix15 parameterizes the full pedigree up to

the grandparental generation by using an ancestral config-

uration vector (which captures grandparental ancestry

states, phase error, and all transmitted recombinations)

while treating older recombinations as Markovian.

Despite only approximating pedigree-based crossovers,

and through its two component models, PAPI produces

highly accurate estimates of parental ancestry proportions

without relying on phased input. Note that neither

PedMix nor ANCESTOR estimate parental admixture times

(ANCESTOR instead provides estimates of average ancestry

tract lengths for each parent).

As noted earlier, ANCESTOR and PedMix’s performance

decline as the difference
��pA � pB

�� increases, while PAPI

maintains strong performance throughout the (pA, pB) set-

tings we considered. By using a pulse-migration model for

local ancestry, PAPI’s HMM embeds the parent ancestry

proportions pj in its transition probabilities, enabling it to

derive signal from all tracts, including those of heterozygous

ancestry that arephase-uncertain.Compared toANCESTOR,

this change in the likelihood functionshiftsprobabilitymass

to regions of parameter spacewith divergent pA and pBwhen

the focal individual has high heterozygous ancestry.

ANCESTOR’s model, on the other hand, seems to derive

signal for (pA, pB) by using the HMM initial probabilities,

i.e., from the first tract on each chromosome, rather than

from all tracts (see section 2.3 in the ANCESTOR paper for

its transition probabilities14). In turn, PedMix’s performance

is affected by phase errors that its model partially ad-

dresses15—an issue that both PAPI and ANCESTOR avoid.

Another factor in PAPI’s improved performance when��pA � pB
�� is large may be that the difference between the

true parent ancestry pj and that transmitted to the focal indi-

vidual has lower variance when pA and/or pB are near either

end of the ½0; 1� range.
PAPI’s ancestry estimates in the PAGE dataset add to a

growing body of evidence for assortative mating by

ancestry proportion in African Americans.22 Others have

noted these signals in Latinos21 and found that they

frequently cannot be explained by socioeconomic factors

alone and are important to take into account when

designing genetic studies. For example, using Wright-

Fisher simulations that allow for ancestry-based assortative

mating, Zaitlen et al.22 showed that assuming random-

mating leads to significant underestimates of population-

scale admixture times.

Overall, PAPI’s applications include both the study of the

population genetics of mating in African Americans and

the potential to provide individual-level information to

study subjects. Given this ability to infer parental ancestry

proportions for individual samples, we expect PAPI to be of

interest to direct-to-consumer genetic testing companies
ust 4, 2022



and to consumers themselves who wish to better under-

stand their genetic heritage.
Data and code availability

The PAPI code is available at https://github.com/williamslab/papi.

Genotype data for BioMe Biobank subset of the PAGE II dataset

are available (dbGaP: phs000925.v1.p1), and the phased 1000

Genomes data used for local ancestry inference are publicly

available at ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/

20130502/. The simulated genotype data supporting the

current study have not been deposited in a public repository but

can be reproduced using Ped-sim (https://github.com/williamslab/

ped-sim), admix-simu (https://github.com/williamslab/admix-

simu), scripts distributed with PAPI, and the publicly available

HapMap CEU and YRI data (https://ftp.ncbi.nlm.nih.gov/

hapmap/genotypes/2009-01_phaseIII/plink_format/).
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.06.016.
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