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Abstract
This narrative review examines the possible role of microglial cells, first, in neuroinflammation and, second, in schizo-
phrenia, depression, and suicide. Recent research on the interactions between microglia, astrocytes and neurons and their 
involvement in pathophysiological processes of neuropsychiatric disorders is presented. This review focuses on results from 
postmortem, positron emission tomography (PET) imaging studies, and animal models of schizophrenia and depression. 
Third, the effects of antipsychotic and antidepressant drug therapy, and of electroconvulsive therapy on microglial cells are 
explored and the upcoming development of therapeutic drugs targeting microglia is described. Finally, there is a discussion 
on the role of microglia in the evolutionary progression of human lineage. This view may contribute to a new understanding 
of neuropsychiatric disorders.
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Introduction

Microglial cells originate from myeloid precursors in the yolk 
sac and are regarded as resident macrophages of the central 
nervous system (CNS) [1]. During the development of the 
CNS, microglial cells have various functions: they phagocy-
tose apoptotic neurons, and induce neuronal apoptosis, prune 
weak synapses, form new synapses, promote the survival of 
pyramidal neurons in the white matter, direct the expression 
of (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazole)-propionic 
acid—(AMPA) and N-methyl-D-aspartate—(NMDA) recep-
tors at thalamocortical synapses and regulate the production 
and migration of cortical inhibitory neurons [1]. Activated 
microglia produce cytokines and nitric oxide (NO). Activated 
microglial cells are polarized towards the M1 or M2 phe-
notype. While polarization towards the M1 phenotype, also 
called the proinflammatory phenotype, is caused by cytokines 
such as interferon-alpha (IFN-α) and tumor necrosis factor-
alpha (TNF-α), polarization towards the M2 phenotype, also 
termed the anti-inflammatory phenotype, is triggered by 
various cytokines such as interleukin IL-4, IL-13 and IL-25 
[2–11]. The differences between the M1 and M2 phenotypes 
have been critically discussed and might be revaluated in the 
future [10, 12].

Microglial cells and neuroinflammation

Neuroinflammation is inflammation of nervous tissue 
[13]. The hallmark of neuroinflammation in schizophre-
nia (SZ) is overactivation of microglial cells [14]. Acute 

neuroinflammation during fetal development causes neuro-
pathological abnormalities in the cerebellum, insular cortex, 
fusiform gyrus and deficits in neuronal activation in the right 
amygdala and fusiform gyrus, and ventrolateral prefrontal 
cortex (PFC) [15]. Neuroinflammation is mainly facilitated 
by microglial cells and to same extent by astrocytes and mast 
cells [16]. Microglial cells are divided into amoeboid and 
ramified cells. The so-called dark microglial cells, which 
are highly phagocytic cells under oxidative stress around 
the vasculature showing an electron-dense, condensed cyto-
plasm, are either overactivated microglial cells or a novel 
type of myeloid cell infiltrating the brain [16]. Neuroinflam-
mation is linked to white matter pathology in patients with 
schizophrenia and is caused by microglial cells [17, 18]. Fur-
thermore, focal neuroinflammation occurs in the hippocampi 
of patients with schizophrenia with an acute psychosis [19]. 
Disruption of the interaction between mast cells and micro-
glial cells increases neuroinflammation [20]. However, the 
term neuroinflammation is not interchangeable with the term 
inflammation: microarray analyses of postmortem cerebral 
cortices of patients with Alzheimer’s disease (DAT), Parkin-
son’s disease (PD), patients with schizophrenia and patients 
with inflammatory diseases have demonstrated no relation-
ship between these conditions [21].

When microglial cells become activated during neuroin-
flammation, they become enlarged and phagocytic. Micro-
glial cells contribute to synaptic plasticity by releasing neu-
roactive molecules such as adenosine triphosphate (ATP), 
glutamate, D-serine, nitric oxide (NO), brain-derived neu-
rotrophic factor (BDNF), TNF-α, free radicals, prostaglan-
din E2 (PGE2), and ILs; and microglial cells communicate 
with astrocytes through glutamatergic neurotransmission [2]. 
Furthermore, glutamate controls the function of microglial 
cells via ionotropic and metabotropic receptors located in 
these cells [22]. Microglial cells also communicate with 
neurons, promoting neuronal cell death, neurogenesis, and 
synaptic interactions [7, 23, 24]. Activated microglia control 
inhibitory inputs from parvalbumin containing interneurons 
onto the basilar dendritic spines of deep layer 3 pyrami-
dal neurons in the PFC in patients with schizophrenia [25]. 
Microglia–neuronal interactions involve various signals 
such as cytokines, neurotransmitters, and neuron-microglia 
inhibitory factors, such as fractalkine (CXCL1) and clus-
ter of differentiation (CD200) [26, 27]. Microglial cells are 
also connected with astrocytes and oligodendrocytes, and 
these interactions might also cause neuropathic pain [28]. 
Dystrophic microglial cells contribute to substantial dys-
trophies in adjacent oligodendrocytes in the PFC (layer 5) 
in patients with schizophrenia with predominately negative 
symptoms and to a lesser extent in patients with schizophre-
nia with mainly positive symptoms but not in healthy control 
subjects [29]. Disruption of the balance between microglial 
cells and astrocytes (e.g., type-1/type-2 imbalance) causes a 
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dysregulation of the immune response in schizophrenia [30, 
31]. T-helper 1 cells (TH-1) and certain macrophages/mono-
cytes (M1) produce cytokines (IL-2, IL-12, IL-18, IFN-α, 
TNF- α) and this immune response is called type-1 immune 
response. T-helper 2 cells (TH-2) and certain macrophages/
monocytes (M2) create cytokines (IL-4, IL-10, IL-13) and 
this immune response is termed type-2 immune response. 
Type-1 and type-2 cytokines irritate each other with a down-
regulation in schizophrenia [30].

The various roles of microglial cells 
in neuropsychiatric disorders

Microglial cells play an important role in the pathology of 
neuropsychiatric disorders such as schizophrenia and major 
depressive disorder (MDD) [31–35]. Microglial cells are 
also involved in the cerebral cortex with autism spectrum 
disorders (ASDs), which are also regarded as neurodevelop-
mental disorders [36, 37]. Activated microglia and neuroin-
flammation are also pathological hallmarks of neurodegen-
erative diseases such as DAT and PD [38]. Original research 
on postmortem and PET studies demonstrating the presence 
or absence of microglial activation using different micro-
glial markers in brain regions of interest, predominantly, in 
patients with schizophrenia, bipolar disorder, and affective 
disorders, respectively, is summarized in Table 1.

The role of microglial cells in schizophrenia

Glucocorticoid levels are increased during stress, and influ-
ence microglial response with pro- and anti-inflammatory 
activity [9]. Stress-induced release of glutamate from neu-
rons results in the stimulation of microglial cells through the 
activation of N-methyl-D-aspartate receptors (NMDARs) by 
glucocorticoids [8, 9].

Microglial cells induce the loss of cortical gray matter in 
patients with schizophrenia by pruning synapses, phagocy-
tosing stressed neurons, and preventing the release of neu-
rotrophic factors such as BDNF [39].

In a systematic review by Trépanier et al. [40], many of 
the studies (11 of 22) reported an increase in the expres-
sion of microglial markers in the postmortem brains from 
patients with schizophrenia compared with those of control 
subjects. Moreover, a meta-analysis by van Kesteren et al. 
[41] revealed an increase in the number of microglia in spe-
cific brain areas, such as the temporal cortex, in postmortem 
brains of patients with schizophrenia compared with those 
of control subjects. Calprotectin is expressed in microglial 
cells and is considered a nonspecific marker of inflamma-
tion. Calprotectin expression is significantly increased in 
patients with schizophrenia compared with healthy control 
subjects [42]. The level of ionized calcium-binding adaptor 

molecule 1 (IBA1), a marker showing specific immunostain-
ing of resting and activated microglia, is increased in spe-
cific brain areas such as the amygdala, hippocampus, nucleus 
accumbens, and PFC in patients with schizophrenia [9, 43]. 
A lateralization of IBA1 immunopositive microglial cells 
was observed towards the right anterior midcingulate cortex 
in patients with schizophrenia and bipolar disorder com-
pared with healthy control subjects [44]. A study by Bloom-
field et al. [45] using translocator-protein positron emission 
tomography (TSPO PET) demonstrated that microglial 
activity is increased in total and frontal and temporal lobe 
gray matter in patients with schizophrenia and ultrahigh risk 
individuals compared with healthy control subjects. Never-
theless, an 18 kDa TSPO PET study revealed no increase in 
microglial activity in the dorsolateral PFC and hippocampus 
in first-episode psychosis patients compared with healthy 
control subjects [46]. Moreover, another TSPO PET study by 
Di Biase et al. [47] did not show any differences among indi-
viduals at risk for schizophrenia, patients with schizophrenia 
and healthy control subjects. A meta-analysis by Marques 
et al. [48] of TSPO PET studies and microglial activation 
exposed a moderate effect on gray matter relative to other 
brain tissue in schizophrenia when using binding potential 
as an outcome measure but no difference when using vol-
ume of distribution as an outcome measure. The TSPO PET 
study by Conen et al. [49] found no microglial activation 
in patients with recent onset and established schizophrenia 
compared with healthy control subjects in the ACC, PFC, 
parietal cortex, and brainstem, but significant changes in the 
thalamus and putamen.

Activated microglial cells are linked to the increased 
expression of peripheral benzodiazepine binding sites 
(PBBS). (R)-PK1195 is a specific ligand for the PBBS and 
combines with carbon-11 in PET studies in schizophrenia, 
which can be used as a novel PET biomarker of activated 
microglial cells in schizophrenia [50].

The discrepancies in findings related to microglia acti-
vation in schizophrenia obtained by PET- and postmortem 
studies may have been caused by effects of confounding fac-
tors (e.g., tissue quality and aging) and comorbid factors 
(e.g., use of antipsychotic medication, suicidal tendencies, 
smoking, or drug abuse) [24].

Human leukocyte antigen (HLA-DR) is a class II anti-
gen, and different gene loci code for the alpha (α)- and 
beta (ß)-chains. Other important genes, namely, TNF-α 
and tumor necrosis factor beta (TNF-ß) are distributed 
throughout the HLA-complex [51]. Steiner et  al. [52] 
(2008) found that the density of HLA-DR, which reacts 
with activated microglia, was increased in the PFCs of 
suicidal patients. Bayer et  al. [53] reported that three 
late-onset out of 14 patients with schizophrenia, 1 out 
of 6 patients with affective disorders (AD), and four out 
of 8 patients with dementia of Alzheimer’s type (DAT) 
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exhibited increased HLA-DR immunostaining in the fron-
tal cortex and hippocampus. Radewicz et al. [54] observed 
an increase in HLA-DR density in the frontal and temporal 
cortices in patients with schizophrenia compared with con-
trol subjects, and Wierzba-Bobrowicz et al. [55] detected 
a greater expression of HLA-DR in the anterior cingu-
late and temporal cortices in patients with schizophrenia 
compared with control subjects. Additionally, Krause et al. 
[56] found that the number of HLA-DR immunopositive 
cells was increased in patients with schizophrenia com-
pared with healthy control subjects. Steiner et al. [57] 
reported decreased cerebral lateralization of HLA-DR in 
patients with schizophrenia compared with healthy con-
trol subjects. Fillman et al. [58] found an increased HLA-
DR in the dorsolateral prefrontal cortex in patients with 
schizophrenia compared with control subjects. A study by 
Busse et al. [59] also demonstrated that HLA-DR immu-
nostaining was increased in the posterior hippocampus 
in patients with paranoid schizophrenia compared with 
patients with residual schizophrenia and healthy control 
subjects. Moreover, patients with residual schizophrenia 
showed a greater concentration of CD3+ and CD20+ lym-
phocytes in the posterior hippocampus [59]. No signifi-
cant differences in microglial density using the microglial 
marker IBA1 in the medial frontal gyrus in patients with 
bipolar disorder compared with healthy control subjects 
have been demonstrated [60]. A correlation has also been 
found between HLA-DR and alcoholism or even alcohol-
ism withdrawal [61–64].

These discrepancies in the results of postmortem stud-
ies could be explained by methodological differences such 
as the immunohistochemical markers used, the methods 
used to count microglial cells, the brain regions studied, 
the cortical layers in which the expression of the markers 
was measured, and technical issues such as the postmor-
tem interval and brain pH. Other confounding variables 
including age differences, sex, age at death, cause of death, 
clinical variables, illness history and duration, medica-
tion history, diagnosis method and inclusion and exclusion 
criteria also exist [14, 65]. Recently, microglial activa-
tion rather than microglial density has been investigated 
[65]. Microglial activation reflects innate immune memory 
(history of life events) including prenatal and perinatal 
influences and genetic background [14, 66]. Furthermore, 
the use of a single microglial marker (such as HLA-DR) 
for phenotypic identification is problematic, since detailed 
knowledge of the time course of death is crucial [14]. Mul-
tiple markers must be used to identify the functional state 
[14]. The association between microglial activation and 
reduced synaptic plasticity, and neuropil alterations and 
reduced neuroplasticity needs to be studied in a multi-
modal manner combining imaging studies and postmortem 

brain analyses of patients with schizophrenia with various 
immunological markers [14].

Research conducted by Goudriaan et al. [67] has demon-
strated that genes that are involved in microglial activation 
do not contribute genetically to schizophrenia susceptibility. 
However, there is an association between the HLA-DRB1 
gene and schizophrenia in the human population [68–70].

Maternal infection during pregnancy is known to be an 
environmental risk factor for the development of neuropsy-
chiatric disorders such as schizophrenia and ASDs in off-
spring. The causative role of immunological processes that 
interfere with brain development in schizophrenia have been 
discussed [71–73]. Sex differences in processes related to 
microglial cells exist and might contribute to the sex differ-
ences in neuropsychiatric disorders such as schizophrenia 
[74, 75] and in a neonatal rat animal model of early-life 
infection [76].

Although Smolders et al. [77] demonstrated that a single 
or double injection of poly(I:C) in pregnant mice does not 
result in a fetal microglial activation during mid- or late 
embryonic development, other research groups have found 
an involvement of microglial cells in maternal immune 
activation. In an animal study using pregnant mice injected 
with poly(I:C) on gestational day 9 as an animal model of 
schizophrenia, the number and shape of microglia in several 
brain regions were assessed in the offspring on postnatal 
day (PND) 30 using immunofluorescence with an anti-
IBA1 antibody [78]. There were more microglial cells in 
the hippocampus and striatum in the offspring of poly(I:C)-
injected mice than in the offspring of vehicle-treated mice. 
Additionally, these microglial cells were morphologically 
characterized by reduced arborization, which is indicative 
of a greater activation. This is supported by studies show-
ing that microglial cells from control animals show greater 
microglial arborization, which is indicative for a noninflam-
matory state of microglia than those from offspring from 
poly(I:C) treated mice, which were characterized by no or 
few branched cells, indicating an activated and inflamma-
tory or phagocytic microglial state [79, 80]. Furthermore, 
in a pilot study comparing the offspring of poly(I:C) treated 
mice on PND10 and PND100, the mouse pups displayed 
no microglial alterations in response to prenatal exposure 
to poly(I:C), whereas adolescent mice showed a significant 
increase in the number of microglial cells in the frontal 
association cortex, ventral striatum, dentate gyrus of the 
hippocampus and secondary visual cortex. In contrast, in 
adult mice (PND100), immunological activation was only 
observed in the frontal association cortex [81]. Prenatal 
poly(I:C) treatment in mice prevents an increase in the 
number of microglial cells in the cortex [82]. These stud-
ies support the hypothesis that maternal infection during 
embryogenesis contributes to an increase in the number of 
microglial cells in offspring, which in subsequent periods 
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of life results in decreases in dopamine and the stimulation 
of high-affinity dopamine receptors (involving DRD3 and 
DRD5). These alterations in dopamine levels may, therefore, 
cause a neuroinflammatory response, which contributes to 
the pathogenesis of schizophrenia [83].

The involvement of microglial cells in depression 
and suicide

Suicide is a major public health problem [84] with a preva-
lence of 5.92% and is supported by ongoing neurobiologi-
cal research [85], suicide behavior is listed as an independ-
ent mental disorder in the fifth edition of the Diagnostic 
Statistical Manual of Mental Disorders-DSM V [86]. The 
dorsal raphe nucleus (DRN) comprises the caudal and ros-
tral subregions, which are further divided into the dorsal, 
ventral, interfascicular, ventrolateral, and caudal subregions 
[87]. The DRN sends serotonergic projections to the stria-
tum, frontal cortex, thalamus, lateral septal nuclei, nucleus 
accumbens, habenular complex, and hippocampus [88–93]. 
The dorsal raphe nucleus is implicated in the pathology of 
schizophrenia, major depression, suicidal behavior [94–104] 
and even alcoholism [105]. Disruption of serotonergic func-
tions is implicated in the pathophysiology of stress, MDD, 
and suicide [106–110], while serotonin deficiency contrib-
utes to suicidal behavior and MDD [111–126]. Additionally, 
a link between smoking, suicide, and low serotonin levels 
has been demonstrated [127]. Nicotine-induced microglial 
activation in reward seeking brain regions such as nucleus 
accumbens and basolateral amygdala increases cocaine rein-
forcement in adolescent rats but not adult rats [128].

Microglial cell activation correlates with transcriptional 
activity in the DRN neurons in the non suicidal depressed 
subgroup [104]. In addition, microglial activation induced 
by interferon-alpha (IFN-α) is associated with depressive-
like behavior and the expression of proinflammatory sur-
face markers such as major histocompatibility complex-II 
(MHC-II) and CD86 in a mouse model of immune-medi-
ated depression, demonstrating that microglia are polarized 
towards the M1-phenotype [129]. A study by Steiner et al. 
[52] demonstrated that microglial density is increased in the 
dorsolateral prefrontal cortex, anterior cingulate cortex, and 
mediodorsal thalamus in suicidal patients with schizophrenia 
and suicidal patients with depression compared with healthy 
control subjects. Schnieder et al. [130] also observed that 
microglial density is augmented in the white matter of the 
PFC in suicidal patients with schizophrenia and depression 
compared with nonsuicidal subjects. Various studies (e.g., 
postmortem analysis, PET imaging studies, and analysis of 
the cerebrospinal fluid and serum/plasma of patients) have 
provided evidence for a role of microglial cells in suicide, 
which can be used for a new therapeutic target for suicide 
prevention [131]. Adolescence is a significant period for 

the development of neuropsychiatric diseases. During this 
period microglial synaptic pruning occurs in the PFC and 
contributes to pathological alterations that are evident in 
schizophrenia [132]. An increase in the number of micro-
glial cells leads to depression through the neuroinflam-
matory pathway. Activated microglia are also involved in 
post-stroke depression [133]. Additionally, a decrease in the 
number of microglial cells causes depression by inducing 
neuronal degeneration, leading to inhibition of neurogenesis 
in the hippocampus [134].

Most studies have demonstrated an association between 
suicidal behavior and alterations in IL-2, IL-6, IL-8, TNF-α 
and VEGF levels [135]. Elevation of IL-6 levels is one of 
the most prominent findings in patients exhibiting suicidal 
behavior. However, future research should focus on the asso-
ciation between cytokines, suicidal behavior, and depression 
[136, 137]. Moreover, the number of primed microglial cells 
is increased in the white matter of the dorsal anterior cin-
gulate cortex in depressed suicidal patients compared with 
healthy control subjects [138].

In an animal model of depression, prenatal stress may 
be linked to increased activity of microglial cells in the 
hippocampus and frontal cortex and depression-like distur-
bances [139, 140]. The hippocampus, especially the CA1 
region, is characterized by an elevated number of microglial 
cells, which are activated by stress [7, 141]. The adult micro-
glial transcription factor MafB is involved in the expression 
of the adult gene program during inflammatory responses 
under stress as demonstrated by experiments with knockout 
mice [142]. Another brain region that is affected by micro-
glial cell activation is the postnatal amygdala, which is 
involved in emotion, as maternal immune activation causes 
the activation of microglial cells in the amygdala [143].

The neuroprotective role of microglial cells has been 
extensively discussed [144–147]. For example, microglial 
cells exert neuroprotective effects through anti-inflamma-
tory responses in depression [148, 149] and schizophre-
nia [150]. Microglia also have neuroprotective effects 
after ischemia [151]. On one hand, microglial cells are 
responsible for maintaining neuronal structure and plas-
ticity via clearance of cellular debris, neurogenesis, anti-
inflammatory responses, and synaptic pruning [149]. On 
the other hand, neurons play a vital role in the functions of 
microglial cells by maintaining inflammatory gene produc-
tion, the oxidative stress response, and synaptic pruning 
[149, 152]. Therefore, if the balance between microglial 
cells and neurons is disturbed, neuropsychiatric disorders 
may result [149, 153–155]. Microglial cells have also been 
demonstrated to play a neurodegenerative role [156]. For 
example, a disturbance of the interplay between micro-
glial cells and cytokines may cause neurodegenerative pro-
cesses in neuropsychiatric diseases such as schizophrenia 
[34]. Peripheral blood mononuclear cells were combined 
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with neural progenitor cells and pluripotent stem cells 
to produce microglia-like cells, which express specific 
markers and function as microglial cells [157]. Microglial 
cells and monocytes interact with each other to regulate 
the expression of genes, cytokines, and surface markers 
through the blood–brain barrier and neuronal networks, 
and these interactions might be useful for the developing 
peripheral biomarkers for psychiatric disorders [157].

Prenatal immune challenge by poly(I:C) causes micro-
glial cell alterations in different structures such as micro-
glial clusters, including changes in morphology, the arbo-
rization index and the number of dark microglia in the 
dentate gyrus of the hippocampus, mainly in male mice. 
These changes are features of cellular stress [158]. Hin-
wood et al. [159] observed that microglia facilitate the 
effects of stress on neurons in the medial PFC. Stress 
exposure correlates with increased microglial activation 
in the PFC but not antigen presentation [159]. Similarly, 
microglia are responsible for the impact of stress on neu-
ronal branching in the PFC. Treatment with minocycline 
eliminates these effects [160]. In patients with depression, 
repeated stress exposure can lead to microglial inflamma-
tion or even suicidal behavior [161]. It has been shown 
that increased apoptosis causes a reduction in microglial 
cell number [26].

In the CNS, the kynurenine (KYN) pathway is affected 
by astrocytes, microglial cells, and macrophages. KYN can 
be converted to kynurenic acid or quinolinic acid [162–164]. 
Abnormal KYN levels are implicated in neurodevelopmental 
disorders through the proliferation, specification, and dif-
ferentiation of radial glial cells [165] and the pathophysiol-
ogy of schizophrenia and affective disorders [166–171]. By 
exploring the inflammatory process and hence the kynure-
nine pathway, novel therapeutic targets and biomarkers for 
suicidal depressed patients [172] and patients with schizo-
phrenia [173] might be developed. For example, Steiner 
et al. [174] reported an increase in the level of quinolinic 
acid, which is produced by microglial cells, in subregions of 
the anterior cingulate gyrus in depressed patients. Further-
more, investigations by Busse et al. [59, 175] revealed that 
quinolinic acid levels are decreased in the hippocampus of 
suicidal depressed patients compared with healthy control 
subjects and in patients with paranoid schizophrenia com-
pared with patients with residual schizophrenia [176].

Early postnatal lipopolysaccharide (LPS) administra-
tion in a rat animal model of early immune stimulation 
causes a reduction in hippocampal volume, activation of 
the KYN pathway of tryptophan metabolism, astrogliosis, 
and a decrease in tyrosine hydroxylase levels in the sub-
stantia nigra demonstrating a link between early immune 
stimulation and neuropsychiatric disorders [177]. LPS-
induced maternal immune activation causes an increase in 
cytokine levels in the fetal brain, which results in elevation 

of microglial activation, astrogliosis and cytoarchitectural 
changes in the postnatal amygdala [143].

The effects of antidepressants, 
antipsychotics, and electroconvulsive 
therapy (ECT) on microglial cells

The long-term influences of antidepressants and antipsychot-
ics on microglial cells in various brain regions should not be 
ignored, as they might offer new options for drug treatment. 
Therefore, we will discuss the effects of antidepressants, 
antipsychotics, and electroconvulsive therapy on microglial 
cells. Typical and atypical antipsychotics suppress micro-
glial activity by inhibiting the secretion of cytokines [178]. 
Specific interleukins (Il-10, IL-10, and TGF-α) are state 
markers and increase during acute phases of schizophrenia, 
but are normalized with antipsychotic medication. Both 
IL-12, IL-2, interferon- α, and TNF-α are characterized as 
trait markers and continue to be high during acute phases 
independent of antipsychotic medication [179]. Typical 
and atypical antipsychotics influence the intracellular Ca2+ 
mobilization and signaling in the endoplasmic reticulum 
(ER) of microglial cells in different ways. Thus, these pro-
cesses might be targets for antipsychotic therapy [180].

Specifically, inhibitors of microglial activity such as 
minocycline are regarded as potential antipsychotic drugs 
[181–183]. Riazi et  al. [184] showed that minocycline 
decreased the effects of inflammation and abolished the 
effects of peripheral inflammation in the hippocampi of rats. 
For example, minocycline selectively inhibits the expression 
of M1-polarized microglia in vivo and in vitro in amyo-
trophic lateral sclerosis (ALS) [185].

Cotel et al. [186] reported that chronic antipsychotic use 
increases microglial activation and proliferation in the rat 
brain. Cotel et al. [186] revealed that antipsychotic treatment 
not only reduced the gray matter volume in the hippocam-
pus, anterior cingulate cortex, corpus striatum, and second-
ary somatosensory cortex but also increased the density 
of microglial cells in the hippocampus and somatosensory 
cortex but surprisingly not in the anterior cingulate cortex. 
The reason why the microglial density was not increased in 
the anterior cingulate cortex by chronic antipsychotic use 
requires further research. In rat experiments, clozapine was 
shown to increase microglial activation in the striatum and 
hippocampus, mainly the CA2 and CA3 regions [187]. In 
contrast, antipsychotics inhibit the release of proinflamma-
tory cytokines and NO by microglial cells [188, 189]. In 
summary, microglial activity plays a role in the pathophysi-
ology of schizophrenia and anti-inflammatory drugs such 
as minocycline might be useful for targeting the increased 
microglial activation in schizophrenia and thus be new treat-
ment options [190, 191]. Regulation of microglial activation 
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site-specifically and function-specifically might be a novel 
target for the development of new drugs for patients with 
schizophrenia [192, 193].

For example, studying single-cell screening from blood 
serum taken from drug-naïve patients with schizophrenia the 
phenotypic modification of microglial cell signaling in vitro 
was demonstrated [193]. Overactivated epitopes in blood 
sera of patients with schizophrenia can be ameliorated by 
microglial proinflammatory activation inhibitors such as 
minocycline to improve negative symptoms in schizophrenia 
[194]. Antagonists of the ATP-gated P2X7 receptor, which 
is a microglial receptor found in the CNS, might be used 
as monotherapies or adjunct therapies for the treatment of 
schizophrenia, bipolar disorder or depression [194]. Acti-
vated microglia can be used as biomarkers for predicting the 
course in bipolar disorder and pharmacological responses 
[195]. Stertz et  al. [196] argued that the inflammatory 
changes that occur in bipolar disorder patients are associated 
with disease progression rather than causative. Additionally, 
the selective serotonin reuptake inhibitor (SSRI) fluoxetine 
protects neurons against the neurotoxic effects of microglial 
cells [197]. SSRIs increase TNF-α levels, and when used at 
low concentrations for a long period of time, SSRIs have 
slight proinflammatory effect [198]. In contrast, Horikawa 
et al. [199] reported that SSRIs inhibit the production of 
NO and TNF-α in microglial cells. Additionally, the SSRI 
fluoxetine and its metabolite norfluoxetine reduce the viabil-
ity of microglia and increase the expression of the apoptotic 
marker cleaved-caspase 3 in microglial cells [200]. Depres-
sion is also considered a microglial disease and drugs that 
either suppress or stimulate microglial cells are regarded 
as novel drugs in the treatment of depression [147]. Vari-
ous antidepressants and antipsychotics overturn microglial 
activation. Antidepressants inhibit the release of proinflam-
matory cytokines from activated microglial cells [201]. The 
antidepressant drug venlafaxine can partially protect the via-
bility of microglial cells [202]. Antidepressants cause micro-
glial cell disturbances in the dorsal raphe nucleus [104]. A 
positive correlation between antidepressants and microglial 
density in non-suicidal depressed patients in the dorsal raphe 
nucleus has been reported [104] (Figs. 1 and 2).

Glutamate has neurotoxic effects on activated microglial 
cells [203]. For example, an inhibition of glutamine syn-
thetase increases the activity of activated microglial cells 
[204]. However, a general blockade of microglial cells as 
a therapeutic intervention might have risky effects, since 
glutamate and activated microglial cells are involved in den-
dritic apoptosis. An excessive synaptic pruning during late 
adolescence and early adulthood might cause severe negative 
symptoms and a cognitive decline in patients with schizo-
phrenia [205, 206].

Additionally, the use of induced microglial cells 
(iMG) from the peripheral blood [207] and the use of 

human-induced pluripotent stem cells for microglial cell 
culture methods [208] might represent novel directions 
for psychopharmacological screening or schizophrenia 
modeling. Cannabis and cannabidiol reduce the oligoden-
drocyte, astrocyte, and microglial activity in schizophrenia 
[209, 210]. For example, activated cannabinoid type -2 
(CB2) receptors located on microglial cells decrease the 
effects of activated microglial cells such as neuroinflam-
mation and synaptic pruning [211]. ECT either reduces 
microglial cell density in the hippocampus [212] or acti-
vates microglial cells [213]. It has been demonstrated that 
microglial cell activation in the hippocampus is inhibited 
by ECT in a rat model [214].

Fig. 1   Microglial reaction in the DRN (caudal subdivision) in sui-
cidal depressed patient as shown by HLA-DR antigen, scale bar 
50 µm

Fig. 2   Microglial reaction in the DRN (caudal subdivision) in non-
suicidal depressed patient as shown by HLA-DR antigen, scale bar 
50 µm
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Evolutionary role of microglial cells 
in neuropsychiatric disorders

Microglia probably arose during the Cambrian period 
(500–540 Ma ago) with the propagation of multicellular 
animals. Microglia have been evolutionarily conserved in 
both invertebrates and vertebrates [215–217]. It has been 
argued that early microglia contributed to the protection 
of the CNS in emerging vertebrates, and informed axonal 
coverage, thus increasing action potential transmission and 
speed and thereby improving CNS efficiency [218].

It is worth noting that human neuronal density is much 
lower than that of chimpanzees and other apes and pri-
mates [219]. This means a greater volume of glial cells, 
likely also microglia in proportion to neurons. Such an 
arrangement allows for greater role of glial cells in pro-
cessing of information in the human brain. It has been 
shown that working memory is different in humans than 
in chimpanzees. In humans, there is evidence that genes 
of abnormal spindle-like microcephaly-associated pro-
tein (APSM), neuronal cell adhesion molecule (NRCAM) 
and sialic acid-binding Ig like lectin 11 (SIGLEC11) are 
involved in neural proliferation, promotion of neural con-
nections, and glial expression, respectively [220, 221]. 
There is a difference in ASPM and SIGLEC-11 in the 
human lineage expression compared to chimpanzee line-
age. SIGLEC-11 is a human-specific microglial gene that 
is not found in other primates [222]. A study by Wang 
et al. [223] using human brain tissue demonstrated that 
human SIGLEC-11 ectopically expressed by a lentiviral 
vector system in cultured murine microglial cells interacts 
with polysialic acid (PSA) residues on neurons, reduces 
LPS-induced gene transcription of proinflammatory 
mediators, impairs phagocytosis and alleviates microglial 
neurotoxicity.

The pathogen host defence (PATHOS-D) theory sug-
gests that the immune responses that occur in MDD are 
proinflammatory and that specific risk alleles for MDD 
generate a proinflammatory response, which is a driving 
force in human evolution [224]. Divergence from micro-
glial stability due to inflammatory conditions that trigger 
microglial activity (e.g. infections, neurodegenerative dis-
eases, stress, brain trauma) are risk factors for depression 
[147].

It should be noted that during the last 2 million years 
there have been notable changes in the neurohormonal 
regulation of the human brain due to self-amplifying 
feedback processes that contributed not only to the size 
and capacity of the modern human brain but also to its 
susceptibility to psychopathologies. H. erectus (1–8 Ma) 
exhibited a marked increase in physical activity levels 

(PALs) and total energy expenditure (TEE) compared to 
australopithecine and the great ape lineages [225, 226]. 
Selective processes enhanced aerobic mechanisms and 
modified the thermoregulatory response (i.e., hairless-
ness in humans facilitated evaporative sweating and 
increased UV exposure) [227, 228] to optimize the bod-
ies of archaic hominins for persistent hunting in hot envi-
ronments, thereby increasing the production of growth 
factors, such as BDNF [229, 230]. Selection for charac-
teristics important for persistent hunting and endurance 
is biased towards muscle composition changes and the 
development of more efficient energy systems involving 
peroxisome proliferator-activated receptor γ coactivator 
(PGC-1α) and myocyte enhancer factor-2 (MEF2) gene 
regulation, which stimulate BDNF factor activity [227]. 
In archaic hominins, BDNF informed brain evolution 
in cortical and subcortical areas [231, 232]. BDNF also 
contributes to neurogenesis in the hippocampus, memory 
and learning. Synaptic plasticity is associated with pre-
natal brain development [233, 234] and neuroprotection, 
and ~ 80% of synaptic plasticity is dependent on exercise 
[235]. Furthermore, BDNF mediates microglial prolif-
eration, promotes microglia and astrocyte activation 
and has potential to increase neuroinflammation [233]. 
It can be speculated that changes in thermoregulatory 
processes that were crucial for increasing the PALs of 
Homo erectus onwards may have come at an evolutionary 
cost, altering the expression of BDNF dependent micro-
glia and consequentially that of proinflammatory CNS 
markers implicated in neuropsychiatric disorders [232]. 
Thus, there is evidence for a role of microglial cells in 
the evolution of neuropsychiatric disorders. Therefore, 
this view suggests that evolutionary psychiatry may 
become a novel and distinct area of research and doc-
trine in the field of biological psychiatry [236]. Due to 
the mismatch between prehistoric and modern environ-
ments, humans are becoming susceptible to inflammatory 
markers due to chronic stress. Evolutionary psychiatry 
offers an explanatory model for understanding modern 
psychiatric disorders and their evolutionary antecedents. 
Psychiatry has reached a critical point where it needs to 
develop therapeutic methods that integrate evolutionary 
thinking. This will be especially important in the advent 
of novel biotechnologies that may alter psychoneuroen-
docrinological mechanisms in ways that are beyond our 
current understanding.
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