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A B S T R A C T

This work presents a hybrid thermography, computational, and Artificial Neural Networks (ANN) approach to
characterize beneath the surface defects in composites. Computational simulations are created to model ther-
mography experiments carried out on composite plates with controlled damage in the form of drilled holes. The
computational models are then extended to create hypothetical composite component geometries of plates and
pipes with embedded defects of varying sizes and shapes. The data from the computational simulations are fed to
artificial neural networks to train them to predict and characterize defect sizes and shapes. The predictions from
the neural networks are compared to the actual dimensions from the computational models. These predictions
show a high level of accuracy especially when quantifying thermal image information and using it to train the
neural network. This accuracy is around 10% and 19% for predicting defect depth in plates and pipes, respec-
tively. This hybrid approach has the advantage of not relying on experimental data (experiments were used only
for validation) and predicting damage shape and size. This suggests that the methodology used in this study
combining lock-in thermography experiments, computational simulations, and ANNs is a viable method for a
potential nondestructive testing (NDT) method for detecting embedded defects within composite pipes in real
applications. What makes this approach attractive is that it can be used with live thermal images that can be fed
directly into the ANN model.
1. Introduction

Composites are becoming more accessible due to technological ad-
vances in both materials and manufacturing processes. Due to their
attractive corrosion resistance and high strength to weight ratio char-
acteristics, they started being usedmore within the oil and gas industry in
pipeline applications. However, composites are prone to several failure
mechanisms such as fiber breaking, fiber de-bonding, delamination, and
thinning. These failure modes may further interact with one another and
significantly lower structural properties of the composite, which may
result in an internal flaws that have a high probability of being unde-
tected [1]. Infrared thermography presents itself as a viable
non-destructive method for detecting such types of damages due to its
non-contact requirements that can be performed in the field by
measuring locally generated infrared radiation. Thermography data of
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specimens with embedded defects depend on various parameters of the
defect through a complex relationship. These parameters include depth
and in-plane dimensions. Analyzing this complex relationship pushed for
a combination of methods including finite element (FE) analysis, exper-
imental tests, and advanced techniques such as Artificial Neural Net-
works (ANN) to determine how well thermography can assess defect
damage.

Al-Athel et al. [2] presented an extensive study using infrared ther-
mography to characterize the damage of carbon, glass, and mixed fiber
reinforced composite plates subjected to low-velocity impact. The results
show that thermography can detect damage locations with acceptable
accuracy, depending on the accuracy of the temperature readings.
Maierhofer et al. [3] conducted extensive thermography experiments on
CFRP structures and showed that varying the mode of measurement
between reflection and transmission provides different levels of accuracy
ly 2022
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:kathel@kfupm.edu.sa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2022.e10063&domain=pdf
www.sciencedirect.com/science/journal/24058440
http://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2022.e10063
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2022.e10063


K.S. Al-Athel et al. Heliyon 8 (2022) e10063
for assessing damage based on the location and profile of the defect. The
experiments were carried out on all samples in both reflection and
transmission modes for both sides of the test specimen, giving four sets of
data for each specimen. The results show that reflection mode is more
suited for detecting defects close to the surface with high sensitivity and
lateral resolution, while transmission mode is better suited for thicker
samples and deeper defects.

Ekanayake et al. [4] designed lock-in thermography experiments to
obtain depth information of defects. The design included two sets of
samples, a blind borehole set as surface defects and a water jet cut set as
embedded defects. In their work, defect depth was determined using a
best-fit algorithm that involves five parameters, which are thermal
diffusivity, excitation frequency, phase values, reflection properties, and
depth position. The results of their work show that the algorithms can
reliably determine defect depth less than 1.5 mm and diameter greater
than 12 mm.

Another example of a hybrid approach using experiments and FE
simulations was presented by Ghadermazi et al. [5] using designed step
phase thermography experiment. Their goal was to detect embedded
defects at depths that are out of the pulsed thermography range. The
experiments were simulated using FE in order to find optimum test pa-
rameters such as heating power and time step. Alomari et al. [6] also used
FE simulations to predict the damage in fiber reinforced polymer plates.
Experimental results from low-velocity impact tests were used to cali-
brate the model, which was then used to model various scenarios. Saeed
et al. [7] combined experimental data with computational simulations
and employed ANN to capture the intricate relationship between ther-
mography results and the damage within composites. This approach
proved viable, as the trained neural network was able to predict the
depth of the defects with a high level of accuracy. ANN, coupled with a
micro-mechanics RVE FE model, was also used to predict failure in CFRP
composites [8]. The RVE model consisted of three phases: the fiber, the
interface, and the matrix. Uniaxial and biaxial tests were used to calibrate
the interface strength in the model. The ANN model was trained to
predict the failure under different triaxial loading conditions. The failure
prediction comes in the form of identifying failure points in the RVE
model.

Various thermal imaging techniques are becoming popular NDT tools
for inspecting damages and defects in various applications. Optical
bidirectional thermal wave radar imaging (BTWRI) was used to detect
defects beneath the surface in glass fiber reinforced polymers (GFRP) [9,
10]. Different algorithms were used to construct images of defected
laminates. The results show that the use of thermal imaging with a
proposed multi-characteristics method gave great probability of detec-
tion. A segmentation process can also be used with infrared cameras to
detect defects [11]. The segmented image can be used for analysis and to
detect damage, but algorithms have to be used to remove the noise from
the images. Puthiyaveettil et al. [12] used laser spot thermography to
detect surface crack in metals. The laser is used to excite the surface
under inspection. The spot gets heated higher the rest of the surface and
an infrared camera is used to record the thermal images for damage
detection. The results focused on the relation between the absorptivity of
the metal surface and the defect detection.

Another approach for using thermography with deep learning tech-
niques was proposed by Lui et al. using generative principal component
thermography (GPCT) [13] and generative kernel principal component
thermography (GKPCT) [14]. Both methods were used for damage
detection in CFRP composites with data augmentation to diversify the
thermograms used for deep learning. This approach proved to be very
successful in enhancing the defect detection and improving the visibility
of the defects. Khan et al. [15] also employed data augmentation to
enhance the delamination damage detection in CFRP composites by
extracting additional information during data augmentation. Their
approach utilized varying the loading conditions in a cantilever excita-
tion experiment. The variation of the loading conditions was done syn-
thetically without the need for additional experiments. The approach
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proved to be more robust in detecting the delamination in CFRP
composites.

The work presented in the literature shows that there is interest from
the structural health monitoring community in thermography as an NDT
technique, as well as in machine learning for damage detection. The work
in the literature either uses computational simulations to compare with
experimental thermography readings, or use ANN models to predict fail-
ure based on either experimental or computationally generated data. It is
clear from the literature that what is missing is a complete validated
methodology that one can use to predict the damage details in composite
materials, and not just damage existence, based on thermography reading
without the need to run additional experiments or simulations. In this
work, thermography experiments of composite plates are used to calibrate
and validate an FE model. The FE model is then used to populate an ANN
modelwithmany scenarios to predict size and depth of embedded defects.
The final product is a validated ANN model that can predict the damage
depth and size directly just based on thermography readings.

In this work, the thermography readings are used as a benchmark for
developing the FE and ANN models. The development of the FE model is
divided into three stages: create the FE model, calibrate using one set of
data points (sample 9 for example), and validate against the remaining
samples (samples 1–8). The calibration is repeated for different sets and
validated using the same procedure. The calibrated heat flux and film
coefficient values are then fixed for the remaining simulations. The
repetition of the calibration is to ensure that the FE model results in the
same behavior regardless of the data points used for the calibration. The
validated FE model is then extended to create hypothetical models with
embedded defects for plates and pipes. This extension is justified through
comparing simulation results of plates and pipes with embedded defects
of identical size and shape. This comparison study shows the effect of
specimen curvature on thermography simulation results. The hypothet-
ical models are a flat plate with a circular shaped embedded defect and a
pipe with a rectangular shaped embedded defect. Parametric studies on
the hypothetical models are carried out to analyze the effect of each
parameter on output results of temperature and thermal images. The
relationship between output results and input parameters is further
analyzed through ANN models. Figure 1 shows a flowchart summarizing
the methodology followed in this work.

The main type of defect investigated in this study is debonding, which
may be modeled as an embedded defect that is in a plane parallel to the
pipe surface. For this reason, the thicknesses used in this study are 1, 2,
and 3 layers. Thus, a defect that is aligned in the transverse direction is
not applicable for this study, but the approach can be modified to include
such damages.

2. Thermography experiments

2.1. Sample preparations

Lock in thermography experiments were carried out on nine com-
posite samples made of unidirectional E glass and epoxy resin as the fiber
and reinforcement, respectively, with controlled damage in the form of
drilled holes. The plates were custom manufactured and the raw mate-
rials were purchased from Hatcon Composite System for wet lay-ups
applications. The epoxy types used were LR385 and LR386 with hard-
eners LH385 and LH386.

The glass fiber used was BMS9-3-7781 type H3 class 7. The nine
samples were manufactured using 20 layers of 1000 mm � 1000mm
sheets with a [0�/90�] ply orientation. The sheets were then cut into
smaller sheets of 90 mm � 90 mm. The fiber weight was 59.63 g with an
epoxy content of 50% per weight. The defects were produced using
computer numerical control (CNC) machine-drilled holes of various sizes
(1, 2, and 3 mm) at various depths (25%, 50%, and 75%) of plate
thickness. A schematic diagram of the composite plates showing all
variations in hole size and diameter is shown in Figure 2. Table 1 lists
index numbers and dimensions for the nine samples.



Figure 1. Flowchart of methodology used in the hybrid thermography, computational, ANN damage prediction model.
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2.2. Experimental setup

The experimental setup of the lock in thermography is shown in
Figure 3. Composite plates were heated using four halogen lamps rated at
500 W each in a contained aluminum hood. The lamps contained within
the aluminum hood help in focusing the energy on the composite plate.
The experiments were carried out in transmission mode where the non-
defected side of the composite sample is heated (from the back of the
hood as shown in Figure 3), while the infrared camera takes the readings
of the defected side from the front as shown in Figure 3. FLIR GF320
thermal camera was used in this setup. The camera has a spectral range of
4–8 μm, a resolution of 240 � 320 pixels, and a thermal sensitivity of
50mK. This camera has an accuracy of �1 �C for the temperature range
between 0 �C and 100 �C and �2% for temperatures greater than 100 �C.
The optical axis of the camera was perpendicular to the surface of the
tested composite plate. The lock-in thermography tests were done for 20
min for each case.

2.3. Thermography results

The main goal of the experiments is to correlate between the damage
size and temperature profiles. A maximum and minimum temperature
measurement is taken at 1 min time intervals for a period of 20 min. The
maximum temperature location is found to be at center of the defect
while the minimum temperature is found to be in sound regions around
3

the defect. Minimum andmaximum temperatures versus time profiles are
shown in Figures 4 and 5, respectively.

In the experiments, heat flows through the non-defected side until it
reaches a defect. The defect acts as a thermal resistor that impedes heat
flow, and this causes temperature to be greater at defect regions
compared with sound regions. Therefore, it is expected that temperatures
increase with increasing defect size, which is observed in these experi-
ments validating the integrity of the experimental setup and approach.

3. Computational model

The FE model of the composite plates was developed using ANSYS to
simulate the experiments carried out on the nine 20 layer composite
samples. The objective is to validate the model against the maximum and
minimumtemperatures since these are available at 1min intervals andcan
be extracted from the FEmodel. In this analysis, sample 9, the platewith 3
mm hole diameter and 75% plate thickness depth, is used for calibration.
In calibration,material properties are defined based on the range of values
reported in the literature, while boundary conditions and loads are
defined based on the thermography experiments. The heat flux and film
coefficient were varied in order to obtain optimum experimental data
match for temperatures at 1 min intervals for sample 9. Once the model is
calibrated by varying heat flux and film coefficient values, the model is
validated against samples 6 and 8, which have different hole diameter but
same depth, and the same hole diameter but different depth as sample 9,



Table 1. Indexing and dimensions for the nine composite samples.

Sample
No.

Thickness
(mm)

Drill Dia.
(mm)

Drill
Depth (%)

Drill Depth
(mm)

Layer
Thickness
(mm)

1 5.19 1 0.25 1.3 0.260

2 5.28 2 0.25 1.32 0.264

3 5.32 3 0.25 1.33 0.266

4 5.3 1 0.5 2.65 0.265

5 5.25 2 0.5 2.63 0.263

6 5.28 3 0.5 2.64 0.264

7 5.24 1 0.75 3.93 0.262

8 5.3 2 0.75 3.98 0.265

9 5.35 3 0.75 4.01 0.268

Figure 2. Schematic diagram of composite plates and holes dimensions.
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respectively. The procedure is then repeated for the sample 1 to ensure the
heat flux and film coefficient values are within the same range of values.
The FE model developed in ANSYS used elements SOLID278 and
Figure 3. Side and front view of the th
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SURF152,which are 8 noded brick and 3D thermal elements, respectively,
for the analysis.

3.1. Material properties

Material properties that are required for solving the 3D FE transient
heat transfer problem are specific heat, density, and orthotropic thermal
conductivity. The density is calculated based on epoxy making up to 50%
of composite weight. Table 2 lists the material properties used in this
work. The densities of unidirectional Epoxy E-Glass and resin are aver-
aged to be 1595 kg/m3. In-plane and through thickness thermal con-
ductivities are typical for composites where the thermal conductivity is
greater in the in-plane directions than through the thickness. These
values are close to values used for in-plane and through thickness thermal
conductivities and specific heat reported in the literature [16].

3.2. FE discretization and BCs

Simulating the lock-in thermography experiment on composite plates
requires a transient heat transfer model in 3D as the effect of hole depth
ermal imaging experimental setup.



Figure 4. Minimum temperature at 1 min intervals.

Figure 5. Maximum temperature at 1 min intervals.

Table 2. Material properties of epoxy E-Glass and resin.

E-Glass Epoxy Density 2000 kg/m3

Resin Density 1.19 g/cm3

In-plane Thermal Conductivity 5 W/m
�
C

Through-thickness Thermal Conductivity 0.5 W/m
�
C

Specific heat 800 J/kgoC
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on planar temperature is studied. Due to symmetry, only a quarter plate is
modeled with uniform heating conditions. Furthermore, ply layup is [0/
90�] which makes test specimens symmetric at fiber level. SOLID278 are
used for all the elements except for the surface of the plate, where the
heat flux is applied, SURF152 elements are used. Figure 6 shows the FE
model of the plate quarter model, along with the temperature profile of
the defected surface for the simulation of sample 9.

The plate is initially at room temperature; thus, all nodes are set to 22
�C. The applied load is defined by applying a heat flux to the sound side of
composite. The defected side has a natural convection with a defined film
coefficient and a bulk temperature of 22 �C.
5

3.3. Model calibration and validation

ANSYS Workbench parametric design study was used to vary heat
flux and film convection coefficient and observe the effects on minimum
and maximum temperatures. Two random design points were chosen for
the calibration to make sure the calibrated values are indifferent to the
reference point. DP1 is based on sample 9, while DP2 is based on Sample
1 but with different calibrated values. Table 3 lists the calibrated values
of the heat flux, the film coefficient, and the resulting temperature dif-
ference compared with the experimental data.

Figure 7 compares the simulated maximum and minimum tempera-
tures with the experimental data at 1 min intervals for DP1. This high
level of accuracy between computational and experimental results gives
confidence in the heat flux and film coefficient combination. Calibrating
the heat flux and film coefficient for different cases validates the model
and procedure as long as the calibrated values are proven to be indif-
ferent of the plate hole size and depth. In addition, calibration using a
different combination resulted in values that are very close. To ensure the
validity of the heat flux and film coefficient combination, the same
combination is used for the remaining eight samples for each design



Figure 6. 20-layers composite plate FE model (left) with temperature profile of defected surface (right).

Figure 7. Comparison between experimental and simulated temperatures for DP1.

Table 3. Summary of calibrated values for max. and min temperature at 20 min.

Design Point Heat Flux W/m̂2 Film Coefficient W/m̂2 �C Computational Temp (�C) Experimental Temp (�C) Percent Difference Max Temp Sample

DP1 1750 27.5 Max. 97.461 99.60 2.15 9

Min. 83.308 85.50 2.56

DP2 1750 26 Max. 92.377 92.40 0.02 1

Min. 87.528 87.90 0.42
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point. Figure 8 shows the average percent difference between the
experimental and simulated maximum temperature values over time.
Both combinations in Table 3 give results with reasonable accuracy, with
slight edge for DP1. It is important to note that the relatively large error
in the first 3 min is due to the load being applied as a heat flux in the
simulation where in the experiment the heat is applied through radiation.

4. Computational parametric study on a plate and a pipe with
various defects

The validated computational model provides an opportunity to create
hypothetical models of thermography setups and use their results
6

without the need for experiments. The computational model is used to
simulate cases with composite plates and pipes. Then use the data to
enrich an artificial neural network (ANN) model that can predict the
composite damage in terms of depth and size. The ANN model is sup-
posed to allow the lock-in reflective thermography simulations fully
characterize an embedded defect. This mode is more realistic for com-
posite pipes in the field as it is more appropriate to measure the tem-
perature on the pipe surface.

The parametric study is carried out on two sets of models, plates and
pipes, where the embedded defect parameters and other geometrical
dimensions are varied. Other model variables such as ply thickness
(0.2675 mm), ply layup (45o/-45o), heat flux (1750 W/m2), film



Figure 8. Average % difference between the calibrated DPs and the remaining samples.

Table 4. Composite plate parametric study parameters.

Values Units

Defect Diameter 1 2 3 4 Mm

Defect Thickness 1 2 3 Layers

Defect Depth Minimum of 1 layer to a maximum of
plate thickness - 2 layers (Top and bottom)

Layers

Plate Thickness 10 15 20 Layers
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coefficient (27.5 W/m2 oC) and initial temperature (22 �C) are held
constant in order to isolate the effects of damage size to thermography
results.

4.1. Plates with circular embedded defects

The first set consists of plates with circular shaped embedded defects
where the varied parameters are defect diameter “Dia”, defect thickness
Figure 9. Section view of composite plate
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“T”, defect depth “D”, and plate thickness. Figure 9 shows a section view
illustrating these parameters. Table 4 summarizes the parameters varied
in the plate parametric study .

Table 4 lists all possible combinations but not all are simulated,
instead only a sample large enough to compare the effects of each
parameter on output results is created for this parametric study. A sample
size of 81 cases, which includes varying each parameter while holding all
others constant, is used. The results generated from the computational
with circular shaped embedded defect.



Figure 10. Sample temperature gradient and steady state thermal image for plate samples.
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simulations are temperature gradients and thermal images. Typical
recorded results are shown in Figure 10.
4.2. Pipes with rectangular embedded defects

The second set consists of pipes with rectangular shaped embedded
defects. First however, it is necessary to justify extending from plates
with circular shaped embedded defects to pipes with rectangular shaped
embedded defects. This is done by comparing the temperature gradient
results of a group of pipes with varying diameter (40, 50, and 120 mm) to
a plate where all specimens have an identical embedded defect. The
defect is circular shaped with a 2 mm diameter with a single layer for
both depth and thickness. The temperature gradients for these pipes are
plotted in Figure 11 along with a plate with the same size defect. The
temperature gradients converge for pipes of diameter 50 mm and greater
for this defect. This indicates that the curvature of the pipe is no longer a
factor if the diameter is greater than 50 mm for this case. Furthermore,
the converged temperature gradient for the pipe differs from the plate
temperature gradient by a small factor. An appropriate multiplication
factor may be analyzed as necessary on an as required basis. It is evident
that there is a limitation for small diameter pipes as curvature plays a
larger role in affecting temperature gradients.
Figure 11. Temperature gradients for pipes
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This justifies extending from experimental and computational models
that successfully simulate the experimental results of plates to compu-
tational models of pipes that are more common in the field. The pa-
rameters that are varied in this study are geometrical dimensions of the
rectangular shaped embedded defect and the number of composite
layers. The geometrical dimensions that fully define a rectangular shaped
embedded defect are the two in-plane dimensions (width and length),
thickness, and depth. The width represents the distance of the defect in
the direction of the z axis while the length represents the distance of the
defect along the pipe circumference, and these are identified as “W” and
“C”, respectively. The depth is designated as the distance from the heat
flux side to the start of the defect and marked as “D”, while thickness is
marked as “T”. Figure 12 shows a section view of the pipe with
geometrical definitions, along with the sides where heat flux and con-
vection are applied. Table 5 summarizes the parameters varied in the
pipe parametric study.

As was done for the plate cases, a sufficient sample size, 77 in this
case, was chosen so that it is large enough to include the effects of varying
each parameter while holding the rest constant. The temperature gradi-
ents and thermal images are obtained from each simulation. Figure 13
shows a typical set of results for a pipe.
and plate with same size circular defect.



Figure 12. Section view of pipe with rectangular shaped embedded defect.

Table 5. Composite pipe parametric study parameters.

Values Units

Defect Distance Along Z
Axis, Width, “W”

1 2 3 4 mm

Defect Circumferential
Length “C”

1 2 3 mm

Defect Thickness “T” 1 2 3 Layers

Defect Depth “D” Minimum of 1 layer to a maximum of
(plate thickness - 2 layers). Each integer
layer depth between minimum
and maximum.

Layers

Outer Diameter 40 30 mm

Pipe Thickness 10 Layers
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5. Defects prediction ANN models

The data in this study consists of three parameters, which are tem-
perature gradients, dimensions of red regions in the steady state ther-
mogram, and defect thickness. The temperature gradients and steady
state thermogram are generated by the computational FE models for the
flat plate and pipe. The temperature gradient is the difference between
maximum and minimum temperatures of the side available for inspec-
tion, which is the front side for the flat plate and the outer diameter for
the pipe. The red region of the steady state thermal image indicates the
area of highest temperature of the same face. This red region takes on a
circular shape for the flat plate and multiple shapes such as circles, di-
amonds, and other polygons for the pipe. Dimensions of these red regions
are measured using MATLAB image processing to make up the second
Figure 13. Sample temperature gradient and st

9

parameter of the data collection process. The third and final parameter of
data collection in this study is the defect thickness. The defect thickness is
assumed to be known. This is a realistic scenario as the inspector carrying
out thermography can search for a defect thickness of a specific value
while carrying out thermography inspection.

The neural networks are created and configured using MATLAB
Neural Network Toolkit through the “fitnet” command call. The two
arguments of the “fitnet” function are number of hidden layers and
training function. The optimum number of hidden layers, representing
the number of neurons between the input and output, is set as 10 as it
gives accurate results while keeping computation running times prac-
tical. A training function based on the Levenberg-Marquardt optim-iza-
tion is used in this study to update weight and bias states. The neural
networks are trained by accepting the inputs listed in Table 6. The first
eady state thermal image for pipe samples.



Table 6. ANN training network inputs.

Input Description

net Network

X Network inputs

T Network targets (default ¼ zeros)

Xi Initial input delay conditions (default ¼ zeros)

Ai Initial layer delay conditions (default ¼ zeros)

EW Error weights
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three arguments to the train function are specified, while the remaining
are left as default. The first argument is the network created in this work.
The second and third arguments, which are network inputs and network
targets, are the results from the computational FE models. The output of
the train function is a new network and a training record.

The input to a neural network is an M x N matrix where M is the
number of known or measurable values per sample while N is the number
of samples. M is composed of outputs from the computational simulations
of lock-in thermography and geometric data that is known to the
inspector. The computational simulation outputs are temperature gra-
dients at specified time intervals and measurements made on the red
region of the steady state thermal image. The geometric data that is
known to the inspector and would be able to be measured and selected as
a minimum. This geometrical data is the number of composite layers and
defect thickness for the plates and pipe in addition to the outer diameter
for the pipe. The temperature gradient or the difference between mini-
mum and maximum temperatures of the measured side are obtained at
100 different time intervals. These time intervals are every second for the
first minute, every 15 s for the second minute, and every 30 s for the
remaining minutes up to 20 min. Thus, there are 60 values from the first
minute, 4 values from the first to the secondminute, and 36 values for the
Figure 14. ANN for predicting defect dep
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remaining amount of time up to 20 min. These sum up to 100 tempera-
ture gradient measurements.

The dimensions of the red region differ between the flat plate and the
pipe, where the red region is a circular shape for the flat plate but takes
on multiple shapes for the pipe. For the case of the plate one dimension
defines the circle which is the diameter. For the case of the pipe, three
parameters are used which are horizontal and vertical dimensions of the
red region, and shape type. The number of composite layers is known by
the inspector and would be mentioned in documentation of component
being inspected. The defect thickness, which is assumed to be a known
value in this study, is also treated as an input.

Thus, the value for M in this study is 103 for the plate. This is
composed of 100 temperature gradients, the defect thickness, the
diameter of the red circle, and the total number of plate layers. On the
other hand, the value for M is 105 for the pipe. This is composed of 100
temperature gradients, the defect thickness, and the three parameters
obtained from the red region of the steady state thermogram. As
mentioned previously, a neural network is created for each sample using
the remaining samples to train the network. Therefore, the value for N is
the total number of samples minus one. A total of 81 plate samples and 77
pipe samples with varying embedded defect size were simulated.

The network targets are the known outputs that are used to train
neural networks. In this study the network targets are the defect details of
all samples except the one being tested as they are assumed to be known.
The network targets are divided into training, testing, and validation sets
with ratios 0.7, 0.15, and 0.15, respectively. The targets are fed to the
train function in matrix form. This matrix is P x N size where P is the
number of outputs predicted per sample and N is the number of samples.
The value for P differs between the flat plate and pipe, where P is 2 for the
flat plate and 3 for the pipe. The three dimensions that define the circular
shaped embedded defect within the flat plates are defect thickness, defect
depth, and defect diameter, indicated as T, D, and Dia in Figure 9. Since
th and defect diameter in flat plates.



Figure 15. Bar Charts of predicted depths and actual depths for flat plates indices 1–39.
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defect thickness is taken as a known value, the two target dimensions for
the neural network for the plates are defect depth and defect diameter.
For the pipe, four dimensions define the rectangular shaped embedded
defect. These are defect thickness, defect length along z axis, defect
length along pipe circumference, and defect depth. These dimensions are
marked as T, W, C, and D in Figure 12.
5.1. ANN for plates with circular shaped embedded defect

Figure 14 shows inputs and outputs of the ANN for predicting defect
depth and defect diameter for the flat plates with circular shaped
embedded defects. It is noted that the inputs, which are temperature
gradients at selected time intervals, defect thickness, diameter of red
circle in steady state thermal image (Dhot), and number of composite
Figure 16. Bar Charts of predicted depths and
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layers, are known. The defect depth and defect diameter outputs are
unknown.

The neural networks are trained to characterize defect size and shape
using output data from the thermography simulations. The predicted
parameters for the flat plates with circular shaped embedded defects are
defect diameter and defect depth. A total of ten neural networks were
created for each sample using data from the remaining samples as
training data, and the average of the ten neural network predictions was
taken. These predicted values were then compared to the actual values
from the computational models. Two sets of neural networks were
created for the sake of gauging the increased benefit of using thermal
image data as feed training data into the ANN. One set uses only tem-
perature gradient data while the second set uses temperature and thermal
image data. The prediction results of the ANN models for depth and
diameter are shown in Figures 15 and 16. The neural networks that were
actual depths for flat plates indices 40–81.



Figure 17. ANN for predicting defect in plane dimensions and depth in pipes.

Figure 18. Shape classification for steady state thermal image of pipes.
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Figure 19. Bar Charts of predicted depths and actual depths for pipes indices 1–37.
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trained with temperature and Dhot data are much more accurate than
neural networks that were trained with only temperature data. Almost all
the samples had a very accurate prediction of the depth of the defect.

5.2. ANN for pipes with rectangular shaped embedded defect

Figure 17 shows the ANN for predicting defect details of the
rectangular shaped embedded defect within a pipe. The inputs in this
case are temperature gradients at selected time intervals, defect
thickness, thermal image information, number of composite layers,
and pipe diameter. The thermal images of the pipes are not as uniform
as they were for the plates, thus information from these images is
quantified and fed into the ANN model. These thermal images are
quantified by classifying them based on the hot region shape as shown
in Figure 18.

The predicted parameters for the pipes with rectangular shaped
embedded defects are defect depth, defect length along z axis, and defect
Figure 20. Bar Charts of predicted depths an
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length along circumferential axis. Neural networks were created for each
sample using data from the remaining samples as training data, and the
average of neural network predictions was taken. These predicted values
were then compared to the actual values of the computational model.
Figure 19 and Figure 20 show the defect depth prediction results from the
ANN model. As in the case of plates, the neural networks that were
trained with temperature gradients and thermal image information were
more accurate than neural networks that were trained only with tem-
perature gradients.

5.3. ANN results and discussion

The ANN model proved to be highly accurate for predicting defect
depths and defect diameters for flat plates with circular shaped embedded
defects. Table 7 summarizes the average percent difference for both defect
depth and defect diameter for all 81 samples. The results show that even if
only the temperature gradient is considered, the average error in depth
d actual depths for pipes indices 38–77.



Table 7. Average % difference for defect depth and diameter of all 81 plate
samples.

Parameter Neural Network Inputs Average Percent Difference (%)

Defect Depth Temperature and Dhot 9.5

Defect Depth Temperature 27.6

Defect Diameter Temperature and Dhot 4.4

Defect Diameter Temperature 9.3

Table 8. Average % difference for defect depth, width, and length of all 77 pipe
samples.

Parameter Neural Network Inputs Average Percent
Difference (%)

Defect Depth Temperature and Thermal Image
Information

18.7

Defect Depth Temperature 25.3

Defect Width Temperature and Thermal Image
Information

24.1

Defect Width Temperature 29.6

Defect Length Temperature and Thermal Image
Information

24.8

Defect Length Temperature 29.6
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and diameter would give reasonable results in many cases. Using both
temperature gradient and Dhot increases the accuracy tremendously for
both defect depth as diameter.

The neural networks for predicting dimensions of the rectangular
shaped embedded defect within the pipes are not as accurate those
predicting dimensions of circular shaped embedded defects within flat
plates. This is probably due to the added complexity of geometry and
extra parameters. Table 8 summarizes the average percent difference for
defect depth, defect length, and defect width for all 77 samples.

There are several important implications from this study’s accurate
results. First, the thermal image provides more useful information than
just qualitative data regarding defects underneath the surface. The ther-
mal image information may be quantified using image processing tech-
niques to create quantitative data. This image data and temperature
gradient values may then be fed to an ANN model to train it to predict
embedded defect details. As shown in this study, this image data greatly
improves the accuracy of ANN predictions from 27.6% to 9.5% difference
for predicting defect depth and from 9.3% to 4.4% for predicting defect
diameter. Furthermore, these results prove that lock-in thermography
may be used with a high level of confidence to predict and characterize
embedded defects within composites. It is true that this setup is idealized
where the geometry is a flat plate and the embedded defect is perfectly
round. However, these results show that this approach involving experi-
mental results of lock-in thermography, computationalmodels simulating
the experiments, and training ANNs with data from the computational
models to characterize defects is highly effective. This same proven
approach may be extrapolated to include different geometries and diff-
erent embedded defect shapes with confidence.

The ANNs did not characterize the embedded defects within the pipes
as accurately as they did for the embedded defects within the plates.
However, the majority overestimate the damage, which is a good from
safety point of view. Further, the accuracy of the ANN results for the
pipes is improved by quantifying image information and using it to train
the neural networks. This improvement in accuracy also occurred in the
ANN predictions for the embedded defects within the plates. This proves
that the thermal images hold important information that may be used
with great success. This information must be quantified using image
processing techniques in order to truly gain its benefits. These results
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make a strong case for thermography as a reliable inspection method for
composite pipes in the field. Finally, it is of importance to note that the
experimental data was for a flat plate. If experimental data of pipes were
used to calibrate the model, it would lead to much more accurate ANN
predictions for the composite pipes with embedded defects.

6. Conclusion

This work presented an ANN model based on thermography-based FE
models to detect the damage details (geometry, size, etc.) in composite
materials. The FEmodelwas validated against experimental thermograms,
before being used to develop data of hypothetically embedded defects in
composite plates and pipes used to train an ANN model. The results from
the ANNmodel show a high level of accuracy for the plates when using the
temperature and diameter of the hot zone, resulting in 4.5 and 9.5 error in
the damage diameter and depth, respectively. The ANN model gave
acceptable level of accuracy for the pipes, considering the model was
calibrated based on a flat plate experimental data, with errors of 18.7,
24.1, and 24.8 in the damage depth, width, and length, respec-tively.

The shape of the embedded defect in plates have a more ideal shape
than the in the case of pipes where the embedded defect is circular rather
than rectangular. This results in a more uniform heat flow phenomenon
in the plate samples compared with the pipes. This greater uniformity in
heat flow is directly reflected in the thermography simulation results
such as temperature gradient plots versus time and steady state thermal
images. For example, the steady state thermal images for the plates show
circles of varying diameter, while the steady state thermal images for the
pipes show several image types that are classified into seven categories.
Thus, it is easy to devise a quantifying value to distinguish between the
steady state thermal images of the plates, while it is more difficult to do
the same for the pipes.

From an application point of view, ANN coupled with thermal im-
aging can be used as a live NDT to monitor the health of composite
structures. Any industrial operation could develop and validate a simu-
lation model, then develop the ANN model based on the known param-
eters and properties of the composite pipes used in their operations. For
inspection, an engineer or a technician could use live thermal imaging to
gather data, which can be inserted directly into the ANNmodel to predict
if there are any hidden defects. This would save time and would provide
information that could be used to assess if the defect is at a critical stage
in which it needs to be fixed or if it still can withstand operating pressure.
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