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ABSTRACT: Radical S-adenosylmethionine (RaS) enzymes have
quickly advanced to one of the most abundant and versatile
enzyme superfamilies known. Their chemistry is predicated upon
reductive homolytic cleavage of a carbon−sulfur bond in cofactor
S-adenosylmethionine forming an oxidizing carbon-based radical,
which can initiate myriad radical transformations. An emerging
role for RaS enzymes is their involvement in the biosynthesis of
ribosomally synthesized and post-translationally modified peptides
(RiPPs), a natural product family that has become known as RaS-
RiPPs. These metabolites are especially prevalent in human and
mammalian microbiomes because the complex chemistry of RaS
enzymes gives rise to correspondingly complex natural products
with minimal cellular energy and genomic fingerprint, a feature that is advantageous in microbes with small, host-adapted genomes in
competitive environments. Herein, we review the discovery and characterization of RaS-RiPPs from the human microbiome with a
focus on streptococcal bacteria. We discuss the varied chemical modifications that RaS enzymes introduce onto their peptide
substrates and the diverse natural products that they give rise to. The majority of RaS-RiPPs remain to be discovered, providing an
intriguing avenue for future investigations at the intersection of metalloenzymology, chemical ecology, and the human microbiome.
KEYWORDS: natural products, RiPPs, radical SAM enzymes, mechanism, microbiome, streptococcus, sequence similarity network

■ INTRODUCTION
Natural products have been indispensable as starting points for
drug discovery and sources of inspiration across multiple
disciplines.1,2 Aside from structure elucidation, total synthesis,
and functional studies, natural product biosynthesis has long
emerged as a vibrant and active field.3−6 Especially intriguing
are biosynthetic steps that are carried out by metalloenzymes,
like those observed in the production of penicillin or
vancomycin.7−10 Traditionally, these enzymes were discovered
“accidentally” after the natural products were identified
through bioactivity-guided screening campaigns. Proceeding
in the direction of biological activity → natural product →
gene → enzyme is well-established and has provided numerous
fascinating enzyme-catalyzed reactions, even if it is indirect
with respect to enzyme discovery. Much less traveled is the
reverse process, enzyme → gene → natural product → activity.
Until recently, genomes and bioinformatic tools were not
readily available, and this process has, therefore, only become
possible thanks to major advances in DNA sequencing
technologies and computational approaches. Even with this
information, there are two significant challenges. Finding new
metalloenzymes is now easy in a given genome, but for new
enzyme families, the corresponding substrates are difficult to
intuit based on sequence information alone. Moreover, in the
context of natural products, most biosynthetic gene clusters are

silent or sparingly expressed, requiring alternative approaches
to access the encoded metabolites.11,12

Our natural product biosynthesis investigations have focused
on radical S-adenosylmethionine (RaS) metalloenzymes.13−15

In a short period of time, RaS enzymes have advanced to one
of the largest and biochemically most versatile enzyme
superfamily known.16,17 Underlying this versatile chemistry is
a common radical initiation reaction in which cofactor S-
adenosylmethionine (SAM), bound via its α-amino and
carboxylate groups to a [4Fe−4S]+ cluster, is reductively
cleaved to generate, in most cases, a 5′-deoxyadenosyl radical
(5′-dA•), which then starts turnover (Figure 1). Seminal early
discoveries by Knappe, Barker, and Frey laid the groundwork
and led to the characterization of pyruvate formate lyase (PFL)
and lysine-2,3-aminomutase (LAM) as enzymes that carried
out unusual reactions with the aid of iron and SAM.18−22 In
1984, Knappe and co-workers inferred a catalytic mechanism
for the PFL-activating enzyme that looks eerily close to the
reaction that we today know RaS enzymes to catalyze, even
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with an intermediate that approximates the structure of the
recently identified intermediate omega.20,23−25 Likewise, the
demonstration by Frey and colleagues that LAM uses an Fe−S
cluster and SAM to generate the 5′-dA•, the same
intermediate formed by adenosylcobalamin-dependent iso-
merases as previously proposed by Abeles and co-workers,
provided a beautiful example of convergent biochemical
evolution (Figure 1).21,26−33 These early findings were
followed by investigations into a broader set of RaS enzymes,
notably biotin synthase,34,35 lipoate synthase,36 anerobic
ribonucleotide reductase,37 and spore photoproduct lyase,38

all of which exhibit a similar radical initiation process involving
the 5′-dA• (Figure 1). However, it was the visionary analysis
by Sofia et al. to which this special issue is dedicated, which
linked these enzymes as members of the new RaS enzyme
superfamily consisting of 645 members at the time.39 Since
then, the superfamily has grown exponentially to nearly one
million members, and it provides an exciting frontier of
metalloenzymology.

The work of Sofia et al. was a harbinger of the power of
bioinformatics. It predicted the involvement of RaS enzymes in
diverse physiological pathways from cofactor, DNA precursor,
and vitamin biosynthesis to secondary metabolism and
catabolic pathways. It also hinted at nature’s expansion of
the minimal RaS enzyme scaffold to include additional
domains. For example, the combination of vitamin B12
binding sites was described in some superfamily members as
well as other N-terminal or C-terminal extensions. What has
followed since the report by Sofia et al. are intense
investigations and application of numerous kinetic, spectro-
scopic, and structural studies to elucidate the detailed structure
of the metallocofactor, the mechanism of the radical initiation
step, detailed mechanisms of the reactions catalyzed in some
cases accompanied by high-resolution crystal structures, and a
steady stream of some of the most unusual transformations
known in biology.13−15,40−48

RaS enzymes participate in diverse pathways in all kingdoms
of life, and with only a fraction characterized to date, the reach
of this superfamily is all but guaranteed to grow in years to
come. Herein, we highlight the intersection of RaS
enzymology, the human microbiome, and the biosynthesis of

RiPP (ribosomally synthesized and post-translationally modi-
fied peptide) natural products,49−55 an area where we expect
RaS enzymes to play a prominent role in the future and where
we and others have discovered enzymatic reactions in the
direction enzyme → gene → natural product → function. We
provide a glossary of modifications catalyzed by RaS enzymes
onto their respective precursor peptides during RiPP biosyn-
thesis with an emphasis on oral microbiome streptococci,
which have provided a rich source of new transformations. The
biosynthetic gene clusters for this broader RiPP natural
product class, which is now known as RaS-RiPPs, can be
detected in nearly all bacterial phyla; we focus on those that are
encoded in bacteria associated with human and mammalian
microbiomes but note that several novel RaS enzyme-catalyzed
reactions�including methylation at unactivated positions,56 α-
thioether bond formation,57−60 γ-thioether bond formation,61

epimerization,62−64 tyramine excisions,65 decarboxylative car-
bon−carbon bond formation,66,67 cyclophane formation,68,69

and others70�have been identified in RiPP biosynthesis
outside of mammalian microbiomes (Figure 2). For most
RaS-RiPPs discovered, especially those from mammalian
microbiota, the detailed functions remain to be elucidated.
These natural products offer exciting avenues for further
research at the intersection of RiPPs, metalloenzymology, and
chemical ecology in the context of human microbiomes.

■ RiPP AND NRP NATURAL PRODUCTS
In the 2001 report, Sofia et al. noted “...many examples from
secondary metabolism pathways, such as antibiotic and
herbicide biosynthesis, are found, including spectinomycin,
subtilosin,...”. Just like the superfamily itself, the number of
enzymes involved in secondary metabolism has expanded
significantly since then. New approaches are therefore needed
to group these enzymes and create an organizing framework
with which reactions and mechanisms can be addressed.

With an ability to install complex modifications in a single
step, RaS enzymes are ideal tailoring catalysts, especially in
RiPP biogenesis. The biosynthetic logic of RiPPs can be
contrasted to that of nonribosomal peptide (NRP) natural
products. NRPs are synthesized by large, modular assembly
line enzymes that build a peptide natural product via the

Figure 1. Radical initiation in adenosylcobalamin-dependent enzymes (left) and RaS enzymes (right). Both lead to formation of a 5′-dA• shown in
the center, which initiates catalysis. Note that the other two C−S bonds in SAM can be homolyzed as well in a subset of RaS enzymes.
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addition of one canonical or noncanonical amino acid at a
time.6,71 The minimal unit required to do so is referred to as a
module, and it consists of at least three domains, condensation
(C) domain, adenylation (A) domain, and peptidyl carrier
protein (PCP). Once synthesis of the peptide is complete, it is
cleaved from the assembly line by a thioesterase (TE) domain
to deliver the mature product. RiPP biogenesis, by contrast,
begins with the ribosomal synthesis of a multipartite precursor
peptide, consisting of a leader sequence, which is important for
enzyme recognition, a core region wherein modifications are
installed, and sometimes a follower sequence downstream of
the core peptide.49,72,73 After modifications are introduced in
the core, typically by a small number of tailoring enzymes, the
leader (and follower) is removed to deliver the mature RiPP.

■ STREPTIDE, A MICROBIOME RaS-RiPP
The examples of nosiheptide,74 bottromycin,56 subtilosin,75

and polytheonamide76 provided an early glimpse of the
unusual chemistry that RaS enzymes can catalyze during
RiPP biogenesis. In these cases, much like penicillin and
vancomycin, however, the natural products were discovered
first followed by the subsequent realization that RaS enzymes
played important roles in their biogenesis. Because the
substrate for the tailoring enzyme in RiPP biosynthetic
pathways is genetically encoded, we reasoned that new RaS
enzymes would be easier to characterize in RiPPs compared to
other natural product classes when proceeding in the direction

enzyme → gene → natural product → function. To avoid
working on silent biosynthetic gene clusters (BGCs), we
searched the literature for quorum sensing (QS)-regulated
RiPP BGCs with one or more RaS enzymes and came across a
cluster that we subsequently named str (for streptide) (Figure
3A).77 The cluster codes for a precursor peptide (StrA), a RaS

enzyme that had not been characterized (StrB), and a
combination peptidase/transporter (StrC); it is controlled by
an upstream quorum sensing element, identified and
characterized by the Monnet lab,77 suggesting that the mature
RiPP is synthesized at high cell densities. Indeed, the product
of the str cluster could be detected in culture supernatants;

Figure 2. Representative reactions by RaS enzymes catalyzed in RiPP
biosynthetic reactions. These transformations have been characterized
from bacteria outside of the human microbiome.

Figure 3. Characterization of streptide and its biosynthetic pathway.
(A) QS-regulated str BGC. The sequence of the precursor peptide,
the internal residues that form the core of streptide, and the two
residues to be cross-linked (red) are highlighted. (B) Streptide
biosynthetic pathway. See text for details. (C) Proposed mechanism
for Lys-Trp cross-link formation. Unmodified amino acids are shown
in gray spheres and labeled with one-letter codes. Active site and
auxiliary Fe−S clusters are shown in red and blue, respectively.
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however, the mass obtained by Ibrahim et al. did not match
any simple modification, and the structure of mature product
remained unknown. Upon isolation from large-scale produc-
tion cultures and extensive analysis of 1D/2D NMR spectra,
streptide was found to contain an unprecedented cross-link
between the unactivated β-methylene of a Lys side chain and
the C-7 indole of Trp (Figure 3B).78 The α-carbons were
found to be S-configured. Absolute configuration of the newly
generated chiral center was ultimately determined by de novo
total synthesis of the S- and R-diastereomers, with only the
latter showing a match with the authentic natural product.79

Biochemical, mechanistic, and structural investigations have
provided additional insights into the unusual Lys-Trp cross-
linking reaction. StrB is a member of the SPASM-domain RaS
enzymes, named after enzymes that are involved in the
maturation of subtilosin A, pyrroloquinoline quinone,
anaerobic sulfatase, and mycofactocin. These enzymes contain
a C-terminal extension capable of binding two “auxiliary” Fe−S
clusters.46,80−83 The reaction of StrB was recapitulated in vitro,
revealing installation of the Lys-Trp carbon−carbon linkage in
a single step with the same regio- and stereochemistry as
detected in streptide and in an auxiliary Fe−S cluster-

dependent manner.78 The RaS enzymes SuiB and AgaB from
orthologous str clusters in Streptococcus suis and Streptococcus
agalactiae, respectively, were shown to contain two auxiliary
Fe−S clusters and catalyze similar modifications onto
precursor peptides that contained the Lys and Trp residue in
a K-DGD-W motif, like streptide.84,85 A crystal structure of
SuiB visualized the three key domains of the enzyme, the
orientation of the two auxiliary clusters relative to the active
site Fe−S cluster, and the ligation environment of each, while
also providing clues regarding substrate recognition.86 Several
mechanisms were considered, and the current working model
is shown (Figure 3C). In support of this mechanism is, among
other observations, (i) loss of the Lys2 β-2H when side-chain-
deuterated Lys is incorporated into the substrate, (ii)
formation of 5′-2H-5′-dA with this substrate, (iii) retention
of the Lys2 α-1H, and, most importantly, (iv) recent direct
observation of the Lys-cross-linked tryptophan radical
intermediate by freeze-quench electron paramagnetic reso-
nance (EPR) spectroscopy.87 Together, studies on the str
cluster have revealed a new natural product chemotype, a novel
reaction for the RaS enzyme superfamily, and an intriguing
mechanism involving the Lys-Trp radical intermediate.

Figure 4. Sequence similarity network of RaS-RiPPs from streptococci associated with mammalian microbiomes.88 The network was generated
with an E value of 2, a fraction value of 1, and an alignment cutoff score of 1. Each node represents a unique RaS-RiPP BGC, and the lines
connecting them indicate significant sequence similarity in the precursor peptide. Subfamilies for which the mature product has been identified
from the original host are labeled with the natural product name; others are labeled with a conserved amino acid motif within the precursor.
Enzymatic products are shown for examined subfamilies with the modification introduced by the RaS enzyme indicated in red. These modifications
are installed by TqqB (TQQ subfamily), WgkB (tryglysin), StrB, AgaB, and SuiB (streptide), GggB (streptosactin), RrrB (RRR), QmpB (QMP),
and NxxcB (NxxC).
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■ RaS-RiPPs NETWORK IN STREPTOCOCCI
How widespread are str-like clusters in streptococcal genomes?
To answer this question, Bushin et al. conducted a co-
occurrence-based bioinformatic search for all instances of RaS
enzymes adjacent to the shp/rgg QS operon, which code for a
short hydrophobic peptide (shp) as the autoinducer and the
cognate transcriptional regulator (rgg) (see Figure 3A).88 From
a total of ∼10,750 RaS enzymes in streptococci, ∼600 were
identified that are encoded in RiPP BGCs and controlled by a
QS operon. When arranged into a sequence similarity network
(SSN), wherein related precursor peptides within the ∼600
BGCs are grouped together via a user-defined similarity
threshold using the EFI-EST database,89,90 16 distinct
subfamilies of RaS-RiPPs emerged (Figure 4). These have
been named based on conserved motifs in the precursor
peptide sequence. Some BGCs appear to be species-specific
signals like the TQQ cluster that is encoded only in S. suis
strains.88 Others are encoded in numerous streptococci, like
streptide, suggesting they may form a common interspecies
“language”. The network provides a useful organizing theme
for genome-guided discovery of new RaS enzymes, proceeding
in the direction enzyme → natural product → function.

The str, aga, and sui BGCs, which encode RaS enzymes that
introduce Lys-Trp linkages, colocated to the streptide
subfamily in the network, suggesting distinct chemical
reactions may be catalyzed by RaS enzymes in each of the
remaining 15 subfamilies. This has turned out to be the case
after examination of six additional subfamilies thus far. The
RaS enzyme in the tryglysin cluster (WgkB) carries out a
complex modification, in which Trp and Lys residues, arranged
in a WGK motif, are connected with two carbon−carbon
bonds between the indole C-5 and C-6 and the Lys α-C and δ-
C, respectively, giving rise to a unique tetrahydrobenzindole
moiety (Figure 4).88 Single cross-links are not observed,
suggesting both modifications are introduced in one turnover
or that the enzyme has enhanced affinity and/or specificity for
the singly cross-linked product(s).

Assessment of NxxcB, the tailoring RaS enzyme in the NxxC
subfamily, revealed the first β-thioether linkage introduced by a
RaS enzyme (Figure 4).91 Shortly thereafter, additional
examples of β-thioether and novel γ-thioether connections
were identified, introduced by the RaS enzymes PapB and
CteB/BeiB, respectively.61,92,93 α-Thioether linkages, known as
sactionine bridges, were already known and were first identified
in subtilosin, where they are introduced by the sactisynthase
AlbA.57 β-Thioethers are a hallmark of lanthipeptides, but in
this compound family, they are introduced heterolytically via
ATP-dependent formation of a dehydroalanine or dehydrobu-
tyrine, followed by conjugate addition by Cys onto the
acceptor.72,73 Because Ser and Thr are dehydrated to form the
Michael acceptor, lanthipeptide β-thioethers occur at Ser/Thr
acceptor residues. As NxxcB employs a radical mechanism, the
acceptor can in theory be any amino acid with a β-carbon. In
the native NxxcB substrate, the β-thioether acceptor is Asn,
though the enzyme also tolerates Ala, Gln, and Asp at this
position.91 A working model has emerged for the mechanism
of NxxcB based on preliminary studies. Much like the pathway
proposed for sactisynthases,57,60 NxxcB activates the Cys-thiol
via chelation to an auxiliary Fe−S cluster, which can be
observed by altered UV−vis absorption properties upon
incubation of NxxcB with its substrate NxxcA.91 Following
radical initiation, 5′-dA• is proposed to abstract the β-H of

Asn, which then reacts with the Fe−S-activated Cys-thiol to
generate the C−S bond concomitant with reduction of the
auxiliary Fe−S cluster. In contrast to the observed flexibility at
the acceptor residue, NxxcB does not accept Ser or Thr in
place of Cys. The basis for this strict requirement is not yet
known; similar results have been observed with sactisyn-
thases.60

In addition to the tryglysin and NxxC subfamilies, the first
ether modification was observed with TqqB, the RaS enzyme
in the largest TQQ subfamily in the streptococcal RaS-RiPPs
network.94 TqqB links adjacent Thr-Gln residues within the
TQQ sequence via an aliphatic ether connection, thereby
introducing a backbone morpholine modification into the
peptide (Figure 4). Here again, the enzyme exhibited some
degree of promiscuity at the acceptor residue with Ala, Asn,
and N-Me-Gln yielding turnover similar to that of Gln in wild-
type TqqA. However, TqqB did not react with Cys and only
marginally with Ser when these were substituted for Thr. Initial
studies with TqqB suggest a mechanism akin to that of the
sactisynthases and NxxcB, with an auxiliary Fe−S cluster
activating the Thr side chain alcohol for C−O bond formation.

The RaS enzyme (RrrB) in the RRR subfamily modifies a
41mer precursor peptide, the synthesis of which proved
difficult.95 Therefore, a heterologous approach was employed
in which rrrA and rrrB were coexpressed in Escherichia coli, the
former with an N-terminal hexa-His maltose binding protein
purification tag and a protease cleavage sequence between the
tag and the precursor. Upon expression, the modified peptide
was purified using the tag, proteolyzed, and analyzed by NMR
spectroscopy, revealing formation of an Arg-Tyr cross-link at
the C-terminus of the peptide forming a 16-membered ring
macrocycle.95 The key cross-link occurs between the γ-C of
Arg and the ortho-position (relative to phenolic-OH) of a
tyrosine−phenol (Figure 4). RrrB was shown to accept
significantly shorter RrrA substrates that are truncated at the
N-terminus, making biochemical and mechanistic studies
possible in the future.

Finally, the RaS enzymes from the GGG (streptosactin) and
QMP subfamilies, termed GggB and QmpB, respectively, have
been characterized as well and shown to introduce two
sactionine bridges onto the corresponding precursor peptides
GggA and QmpA (Figure 4).96,97 However, as opposed to
Type 1 sactipeptides, which incorporate nested macrocycles,
wherein the most upstream (N-terminal) Cys residue reacts
with the most downstream (C-terminal) acceptor, GggB and
QmpB introduce a distinct “bicycle” topology of unnested
macrocycles where the Cys donors and acceptors alternate
along the core peptide. These are referred to as type 2
sactipeptides.

Additional RaS enzymes from the RaS-RiPPs network are
currently being investigated. The studies thus far have
expanded the chemical repertoire of RaS enzymes and
demonstrate the advantages of this enzyme-first discovery
approach.

■ NOVEL RaS-RiPPs FROM STREPTOCOCCI
The RaS-RiPP network is not just a source of new enzymatic
chemistry. Each BGC codes for a natural product, and, other
than streptide, the mature RiPPs from two other clusters have
been reported. Knowledge of the reaction carried out by WgkB
enabled identification of the mature product in culture
supernatants of Streptococcus ferus. Termed tryglysin A, the
product consists of the unusual tetrahydrobenzindole mod-

ACS Bio & Med Chem Au pubs.acs.org/biomedchemau Review

https://doi.org/10.1021/acsbiomedchemau.2c00004
ACS Bio Med Chem Au 2022, 2, 328−339

332

pubs.acs.org/biomedchemau?ref=pdf
https://doi.org/10.1021/acsbiomedchemau.2c00004?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


ification between the Trp and Lys side chains on a 7mer
peptide backbone (Figure 5).98 Tryglysin B is the suspected
product of the wgk BGC from S. mutans. Bioactivity assays with
tryglysin A have revealed surprisingly potent and specific
antimicrobial activity. Tryglysin A inhibits the growth of
Streptococcus pneumonia, the causative agent of bacterial
pneumonia, with a minimal inhibitory concentration of <100
nM. It is similar in potency to the clinically used antibiotic
ciprofloxacin. However, whereas ciprofloxacin is broad
spectrum and kills commensal and pathogenic bacteria alike,
tryglysin does not affect another 15 streptococci tested nor
other commensal bacteria. It does exhibit strong and
bacteriostatic growth inhibition against the producing strain,
an observation that remains to be explained.

The product of the ggg gene cluster has been identified as
well from culture supernatants of Streptococcus thermophilus.
Termed streptosactin, it consists of a 14mer peptide with a pair
of 4-residue sactionine macrocycles (Figure 5).96 It is
produced at picomolar titers, and its presence was therefore
confirmed using a standard generated heterologously in E. coli.
When screened against a panel of bacteria, including over a
dozen streptococci, streptosactin exhibited growth-inhibitory
activity only toward the producing host and its closest relatives.
The biosynthesis of streptosactin is linked to the expression of
early competence genes. In Streptococcus pneumoniae, fratricidal
agents are produced in this growth phase, a process by which
competent cells kill noncompetent sibling cells possibly as a
means of increasing genetic diversity.99,100 The timing of
production of streptosactin, its potent self-killing activity, and
other phenotypes observed have led to the proposal that
streptosactin may act as a fratricidal agent in S. thermophilus.

■ RaS-RiPPs FROM THE HUMAN MICROBIOME
The preceding paragraphs have focused on the reactions
catalyzed by RaS enzymes involved in RiPP biosynthesis in
mammalian microbiome streptococci. RaS-RiPPs, however, go
far beyond streptococci. As the corresponding BGCs typically
consist of a small number of genes and have a minimal

genomic footprint, they are over-represented in bacteria with
small, host-adapted genomes, including Ruminococcus and
Enterococcus to name some.101 Indeed, several other RiPPs
have been found from members of mammalian microbiomes.
The sactipeptide ruminococcin C1 is the first sactipeptide
identified from the human microbiome (Figure 5).102 It was
purified from the cecal contents of rats that were
monoassociated with the human gut symbiont Ruminococcus
gnavus E1. Biochemical studies showed that it contains four
sactionine bridges forming a double hairpin structure, a novel
topology for sactipeptides. NMR studies in conjunction with
CYANA-based calculations suggested that ruminococcin C1
contains S-configured α-carbons at each of the four cross-
linked sites.103 Two SPASM-domain containing RaS enzymes
with a total of three [4Fe−4S] clusters, MC1 and MC2, were
shown to processively install the four α-thioether bonds to
form the double hairpin.104,105 Interestingly, production of
active ruminococcin C1 requires an additional proteolytic
cleavage by host-derived trypsin, making this metabolite a
symbiotic product of R. gnavus and human host cells (Figure
5).102,106 Ruminococcin C1 shows potent antibiotic activity
against Staphylococcus aureus, Enterococcus faecalis, and notably
Clostridium difficile, Clostridium perfringens, and Clostridium
botulinum with MIC values in the 0.4−12.5 μM range.102 No
toxicity was observed against eukaryotic cells, suggesting
ruminococcin C1 may serve as an appealing candidate for
drug development.

Another RaS-RiPP produced by members of human
microbiota is pyrroloquinoline quinone (PQQ) (Figure 5). It
is a redox-active cofactor for bacterial methanol, methylamine,
or glucose dehydrogenases and is found in many Gram-
negative bacteria, including the opportunistic pathogen
Klebsiella pneumoniae.107−109 The dehydrogenases use PQQ
to oxidize these substrates forming reduced PQQH2 in the
process. The electrons then enter the electron transport chain,
allowing the host to derive energy from these substrates.
Though devoid of peptide bonds, PQQ is indeed a RiPP
synthesized according to RiPP biosynthetic logic. Early isotope

Figure 5. Structures of mature RaS-RiPPs isolated from original hosts that reside in human or mammalian microbiomes. Pyrroloquinoline quinone
(PQQ) has been identified from K. pneumoniae, tryglysin A from S. ferus, streptosactin from S. thermophilus along with streptide (see Figure 3), and
ruminococcin C1 from Ruminococcus gnavus. Tryglysin B is the predicted product from S. mutans. Epipeptide has been isolated from the soil-
dwelling Bacillus subtilis; its BGC can be observed in the human microbiome. Bonds installed by RaS enzymes are shown in red. PQQ has been
color-coded to emphasize its amino acid origins from Glu (green) and Tyr (blue).
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labeling studies suggested it was derived from Glu and
Tyr.110−113 Then, in an early demonstration of heterologous
expression of an entire BGC, the pqq operon from
Acinetobacter cacoaceticus and K. pneumoniae was expressed in
E. coli, thereby identifying all genes required for synthesis of
PQQ.114,115 Although the required genes were identified, PQQ
biosynthesis remained largely unknown until recent reports by
the Klinman lab showed that PqqE, in a strict RiPP recognition
element (RRE)-dependent fashion via protein PqqD,116

installs a C−C linkage between the Glu γ-carbon and the
ortho-position of the tyrosine side chain within the precursor
peptide, PqqA.117 Structural and spectroscopic studies showed
unusual auxiliary cluster ligation in the Methylobacterium
extorquens PqqE with AuxI and AuxII consisting of a [2Fe−
2S] cluster ligated by 4 Cys residues and a [4Fe−4S] cluster
ligated by 3 Cys and 1 Asp residues, respectively.118 The
unusual ligation environment has been proposed to modulate
the redox potential of these Fe−S clusters, making them more
oxygen-tolerant. Reactions of several other pqq tailoring
enzymes have been demonstrated, as well,119−123 leading to
further insights into the biosynthetic pathway of this unusual
cofactor.

Lastly, epipeptides form a class of RaS-RiPPs that were
identified in Bacillus subtilis 168 (Figure 5).62 While their
production has not yet been demonstrated from human
microbiota, we highlight them here as epipeptide BGCs are
abundant in human microbiome firmicutes, notably Staph-
ylococcus, Corynebacterium, Streptococcus, and Enterococcus.62 In
the B. subtilis epipeptide, the RaS enzyme YydG epimerizes
two residues forming D-Val and D-Ile in the mature 17mer
product. Epimerization occurs via abstraction of the α-H
followed by H atom donation by a key Cys residue that is
proposed to form a transient cysteinyl radical. This radical is
then proposed to be re-reduced by an external reductant
mediated by an auxiliary Fe−S cluster. Epipetide permeabilizes
the membrane leading to dissipation of the proton motive
force and activation of the cell envelope stress response via the
LiaRS two-component system.124 It is thought to act as either a

cannibalism-related antimicrobial peptide, like sporulation
delaying protein (SDP) and the sporulation killing factor
(SKF),125,126 or a fratricidal agent. Interestingly, like
streptosactin and tryglysin, epipeptide primarily targets the
producing cell. The significance of such toxins in the human
microbiome remains to be determined.

■ UNCHARACTERIZED RaS-RiPPs IN THE HUMAN
MICROBIOME

Although only a small number of RaS-RiPPs have been
identified from human microbiota, simple genome gazing
reveals many potential ones. We highlight three such BGCs
(Figure 6). The first occurs in Parabacteroidetes and contains
an upstream two-component regulatory system, a 61mer
precursor peptide, a RaS enzyme, a TonB-dependent receptor,
a peptidase-domain-containing ABC transporter, and two
nucleotidyltransferase genes. Another is observed in Clostridia,
notably in Clostridium perfringens, and consists of a simple RaS-
RiPP architecture with a 55mer precursor peptide, a RaS
enzyme, and a transporter. Finally, a third uncharacterized
cluster can be seen in Clostridium sporogenes with a similarly
simple architecture.

How common are RaS-RiPP BGCs in human microbiomes
and what might the entire universe of RaS-RiPPs look like?
Several SSNs have been generated for RaS-RiPP subclasses,
such as the sactipeptides using RODEO,61 epipeptides,62 QS-
regulated streptococcal RaS-RiPPs,88 and for other RaS
enzyme subclasses, such as the Gly• enzymes.127,128 However,
a map for the entire genomic landscape of RaS-RiPPs has not
yet been developed because of lack of unifying genomic
features, difficulty in identifying precursor peptides with
current methods, and the computational resources necessary
for working with the very large RaS enzyme superfamily. For
these reasons, it has been much easier to identify members of
already known families rather than entirely new ones.
However, an all-encompassing network would be highly
valuable and provide an organizing framework for future
research into microbiome RaS-RiPPs while at the same time

Figure 6. Select uncharacterized RaS-RiPP BGCs in the human microbiome. Shown are gene clusters from Parabacteroides distasonis (top),
Clostridium perfringens (middle), and Clostridium sporogenes (bottom). Genes are color-coded and labeled. The precursor peptide sequence is
shown in each case. Note that BGCs homologous to these are not found in streptococci; they are, therefore, not observed in the SSN in Figure 4.
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facilitating natural product discovery in the direction enzyme
→ gene → natural product → function.

■ CONCLUSIONS
It is well-established that bacteria communicate with a
chemical language consisting of small molecules.129 The
molecules represent “words”, and through their effect on
neighboring organisms, they convey “meaning”. In the
competitive context of animal microbiomes, the ability to
generate complex molecules for communication and competi-
tion with minimal genomic footprint and cellular energy is
highly advantageous. For these reasons, RiPPs are over-
represented in the human microbiome, where most strains
have diminished genomes and compete with hundreds of other
species for nutrients.101,130,131 Among this class of natural
products, the RaS-RiPPs are especially intriguing for the
unusual chemistry that the RaS enzymes catalyze leading to
structurally novel metabolites. The report by Sofia et al.,
insights into the biosynthesis of RiPP natural products, the
genome sequencing revolution, and advances in our under-
standing of the complexity of microbiomes have all generated
an exciting forefront of research at the confluence of RaS
enzymology and RiPP natural products in the context of
human and animal microbiomes. We anticipate that many
more RaS-RiPPs will be discovered from human microbiota,
unveiling yet new chemistry catalyzed by RaS enzymes and,
importantly, providing insights into the functions of these
RiPPs and their roles in human health and disease.
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