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A B S T R A C T

The ongoing COVID-19 pandemic has created an unprecedented predicament for global supply chains (SCs).
Shipments of essential and life-saving products, ranging from pharmaceuticals, agriculture, and healthcare,
to manufacturing, have been significantly impacted or delayed, making the global SCs vulnerable. A better
understanding of the shipment risks can substantially reduce that nervousness. Thenceforth, this paper proposes
a few Deep Learning (DL) approaches to mitigate shipment risks by predicting "if a shipment can be exported
from one source to another", despite the restrictions imposed by the COVID-19 pandemic. The proposed DL
methodologies have four main stages: data capturing, de-noising or pre-processing, feature extraction, and
classification. The feature extraction stage depends on two main variants of DL models. The first variant
involves three recurrent neural networks (RNN) structures (i.e., long short-term memory (LSTM), Bidirectional
long short-term memory (BiLSTM), and gated recurrent unit (GRU)), and the second variant is the temporal
convolutional network (TCN). In terms of the classification stage, six different classifiers are applied to test the
entire methodology. These classifiers are SoftMax, random trees (RT), random forest (RF), k-nearest neighbor
(KNN), artificial neural network (ANN), and support vector machine (SVM). The performance of the proposed
DL models is evaluated based on an online dataset (taken as a case study). The numerical results show that one
of the proposed models (i.e., TCN) is about 100% accurate in predicting the risk of shipment to a particular
destination under COVID-19 restrictions. Unarguably, the aftermath of this work will help the decision-makers
to predict supply chain risks proactively to increase the resiliency of the SCs.
1. Introduction

A supply chain (SC) is a coordinated network of man, machine,
activities, resources, and technology involved in manufacturing and
delivering a product to end-users. It encompasses everything from the
delivery of raw materials or semi-finished products from the suppliers
to the manufacturer through the transformation and shipment of the
completed service or product to the end-user or customers (Khan,
Yu, Golpîra, Sharif, & Mardani, 2020). To ensure the smooth flow
of materials and products, management of supply chain operations is
important (Kohl, Henke, & Daus, 2021). In that regard, the decision-
makers have to plan various activities related to the acquisition and
movement of the raw materials and product shipment and the distri-
bution of the materials and products at the right place and at the right
time. However, due to the ongoing uncertain situations created by the
COVID-19 pandemic (e.g., border closure, lockdown, social distancing),
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the efficient flow of materials and all sorts of products, including
life-saving items, such as personal protective equipment, face masks,
oxygen supply, and ventilators have significantly impacted (Iyengar,
Bahl, Vaishya, & Vaish, 2020; Rowan & Laffey, 2020; Singh, Kumar,
Panchal, & Tiwari, 2021). Such predicaments may disrupt the move-
ment of products across multiple tiers. Therefore, having a better
understanding of those predicaments can unarguably help to manage
them. To run a business efficiently, it is very essential to deal with
supply chain risk (Dechprom & Jermsittiparsert, 2019; Ho, Zheng,
Yildiz, & Talluri, 2015; Tang, 2006) and disruption at the early stage
(i.e., the planning stage of SCs). To be better equipped with the ongoing
pandemic and to reduce the impact of overall supply chain disruptions,
the merit of proactively identifying risks is undeniable. The sooner
the decision-makers can identify or predict imminent supply chain
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risk, the better they can minimize the impact by designing a proper
mitigation plan (Singh et al., 2021). Both external (e.g., demand risk,
supply risk, environmental risks, business risks) and internal risks
(e.g., manufacturing risks, planning and control risks, mitigation and
contingency risks) should be identified at the rudimentary phase of
the risk identification and assessment plan (Shekarian & Mellat Parast,
2020). A range of methodologies can be applied to identify risks in
the supply chain risk management (SCRM) plan. These methodologies
can be divided into two main types, which are — the quantitative and
qualitative types. The qualitative types are those studies and theories
that are empirical and conceptual, while the quantitative types are the
approaches that are based on statistics, simulation, and mathematical
optimization (Pournader, Kach, & Talluri, 2020). Strategies that fall
in the supply chain risk identification and assessment plan (SCRI&AP)
are mostly either reactive or proactive, and both strategies aim to
reduce the risk as much as possible. However, at different times,
the reactive strategy is applied after the risk is materialized, while
the proactive strategy is applied to identify and determine the risks
before they happen (Chu, Park, & Kremer, 2020). Most existing studies
focus more on proactive techniques to facilitate efficient mitigation
and contingency plans. However, proactive strategies depend on the
capability of predicting the probability of occurrence of risks and
their potential impacts. Prediction approaches of SCRI&AP can be
categorized into six classes: (1) approaches that depend on mathe-
matical formulation (Escobar, Marin, & Lince, 2020; Tat, Heydari, &
Rabbani, 2020); (2) approaches that rely on network structures that
represent the problem in the form of states and transitions between
them (Hosseini & Ivanov, 2020); (3) approaches that are agent-based
and multi-agent communications (Perez, Henriet, Lang, & Philippe,
2020); (4) approaches that depend on the fuzzy logic and reasoning
methodology (Díaz-Curbelo, Espin Andrade, & Gento Municio, 2020);
(5) approaches that rely on machine learning (ML) and big data or
sometimes called data analytics (Brintrup et al., 2020; Liu, Chen,
& Liu, 2020; Sharma, Kamble, Gunasekaran, Kumar, Kumar, 2020);
and (6) approaches that depend on deep learning (DL) (Wichmann,
Brintrup, Baker, Woodall, & McFarlane, 2020). Among many predic-
tion approaches available in the literature, artificial intelligence (AI)
techniques have been considered widely as the most successful ap-
proaches (Ketchen & Craighead, 2020). Hence, proper implementation
of AI techniques can bolster proactive strategies to mitigate risks in
SCs (Ketchen & Craighead, 2020; Mollenkopf, Ozanne, & Stolze, 2020).

Artificial intelligence (AI) (Kraus, Feuerriegel, & Oztekin, 2020) has
shown great interest recently, which has led to the rapid growth of
science known as machine learning (ML). Deep learning (DL) is a class
of machine learning that uses multiple neural network layers to extract
high-level features from raw data input (Saxe, Nelli, & Summerfield,
2021; Wang, Zhao and Pourpanah, 2020). Fundamentally, three struc-
tures act as the backbone of a DL model: deep neural network (DNN),
conventional neural network (CNN), and recurrent neural network
(RNN) (LeCun, Bengio, & Hinton, 2015). The DNN is sometimes called
a dense neural network, and it depends on the artificial neural networks
(ANN), while the CNN structure deals with high-dimensional data and
local dependencies between them, and its parameters can be tuned
based on the number and width of the convolution filters. RNN is
based on long short-term memory (LSTM), and gated recurrent unit
(GRU) (Nguyen, Tran, Thomassey, & Hamad, 2021).

Due to the COVID-19 restrictions and their aftermath on the global
SC, such as border closures, exporting goods or emergency items from
one source to a destination is now highly uncertain. In this post-
pandemic time, the decision-makers often do not have prior knowledge
of whether the shipments (carrying both raw materials and finished
goods) will be delivered at the right time to the right body or not.
Unarguably, a delayed shipment will result in delayed production or
lost sales, which eventually will increase the overall supply chain costs.
Therefore, a proper prediction of shipment status (whether that will
2

be delayed or not due to COVID-19 restrictions) can reduce future
losses and aid in devising a better risk management plan. Although the
undeniable merit of ML and DL approaches, only 2% of the total studies
in SCRI&AP applied ML approaches for risk identification (Baryannis,
Validi, Dani, & Antoniou, 2019). Reportedly, a few of those existing AI-
based approaches are Artificial Neural Network (ANN), Support vector
machine (SVM), and decision trees. Whilst there exist many classifiers
that can be used for predicting (i.e., random forests (RF), random trees
(RT) k-nearest neighbors (KNN), SoftMax, logistic, and many others),
which can enhance the predicting accuracy. Moreover, nearly 1% of the
studies presented the DL approaches in risk identification. DL models
can be applied with different ML classifiers to provide accuracy or a
predicated result (Baryannis et al., 2019).

Based on these research gaps and the relevancy of DL/Ml models,
this paper proposes a DL methodology based on four main phases
to predict if the shipment can be exported from one city to another
city, and this was based on a data set collected online that holds
information about the shipment status during the COVID-19 restriction.
This kind of prediction can prevent potential risks and allows the
evaluation of economic impacts from commodity flow to and from
cities under quarantine orders. The first phase is acquiring the data,
and this is done by picking up an online data set: ‘‘US Supply chain
Information for COVID19’’. The second phase is the de-noising phase,
in which some unnecessary and incomplete data are removed, and
some data are reshaped to act as input for the next layers. The third
phase is extracting features from four different models that depend on
RNN and a combination of RNN and CNN. RNN models are the Long
short term memory (LSTM), Bi-directional long short term memory
(BiLSTM), and gated recurrent unit (GRU), while the combined model
relies on the temporal convolutional network (TCN). The fourth phase
is the classification phase which depends on six classifiers: ANN, SVM,
KNN, SoftMax, RT, and RF. Finally, different statistical measurements
are used to evaluate the performance of the proposed methodology.
Overall, the main contributions stemming from this work are four-fold:

(i) Proposal of a wide range of DL approaches based on RNN
models which are LSTM, BiLSTM, and GRU to predict shipment
delays/status (i.e., supply chain risks) in SCRI&AP.

(ii) Introducing a temporal convolutional network (TCN) by combin-
ing RNN and CNN models.

(iii) Identification of the most promising DL approach in terms of per-
formance while training among a few advanced DL approaches.

(iv) Performance demonstration of the selected classifiers on the
advanced DL networks while dealing with supply chain data.

The remaining parts of the study are arranged as follows: Sec-
tion 2 explains a few existing works on SCRI&AP with and without
DL approaches. Section 3 illustrates the proposed DL approaches with
all phases for shipment export prediction. Section 4 presents the ex-
perimental results with associated discussion. Section 4.1 highlights a
few managerial implications of this study, which is followed by the
conclusion in Section 5.

2. Literature review

Based on the research scope, this section highlights traditional
methods, ML approaches, and DL methodologies to predict risks and
disruptions in the SCRI&AP domain. A literature review summary is
also compiled at the bottom of this section.

2.1. Traditional methods to predict supply chain risks

Traditional methods to predict supply chain risks are mostly based
on stochastic programming, which stands on some stochastic parame-
ters to model a specific risk. The main core of this methodology is the
mathematical model. A study to cope with supply chain disruptions

was proposed by Khalilabadi, Zegordi, and Nikbakhsh (2020). That
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work is intended to substitute a vulnerable or risk-prone product in
case of a product shortage. The data were collected from livestock-
drug distribution companies in Iran. Their proposed model was based
on multi-stage stochastic integer programming and was solved by a
customized progressive hedging algorithm. Their results showed that
their proposed stochastic model could increase the profit of the com-
pany by 3.27%. To design a second-generation bio-diesel SC network
under risk, Babazadeh, Razmi, Pishvaee and Rabbani (2017) proposed
a probability programming model which was solved using a fused
solution based on flexible lexicographic and augmented 𝜖 constraint.
The proposed model was evaluated using data obtained from reliable
historical data and scientific reports of different cities in Iran. The
results were able to reduce the total costs of bio-diesel SC.

Recently, another study proposed by Sharma, Shishodia, Kamble,
Gunasekaran and Belhadi (2020) considered different risks that oc-
curred in the agricultural supply chains (ASCs) because of this pan-
demic. Their survey obtained supply, demand, financial, logistics, in-
frastructure, management, operation, policy, biological, and environ-
mental risks. A fuzzy linguistic quantifier order weighted aggregation
(FLQ-QWAO) strategy was implemented to mitigate the unprecedented
risks following COVID-19 in the field of ASCs. The data were obtained
from micro, small, medium, and multinational types of companies.
Results from the FLQ-QWAO concluded that most micro companies
would suffer from high financial risks, while the small enterprises will
suffer from the demand side, logistics and infrastructural, and even
financial risks. In the case of medium companies, most of them will suf-
fer from the demand side, policy and regulatory, financial, biological,
environmental, and weather-related risks, whereas, in the multinational
companies, the biggest risk that will influence their progress is the
logistics and infrastructure.

2.2. ML methods to predict supply chain risks

Due to the rapid growth of AI, several studies have been apply-
ing ML concepts in predicting risks to devise a better SCRI&AP. The
common ML techniques that exist in the literature are ANN, Bayesian
learning, big data, and SVM. ANN was applied by Cai, Qian, Bai, and
Liu (2020) to examine the factors that affect the risk evaluation of SC. A
model was built based on the back-propagation neural network (BPNN).
BPNN has the merits of solving highly non-linear or complex problems.
This model was used to build a risk evaluation index system, which was
able to provide enterprises with an effective decision support system to
carry out the risk management of their SC. Notably, they claimed that
their proposed model also can act as a guide to financial institutions to
expand their business. Another study proposed by Rezaei, Shokouhyar,
and Zandieh (2019) applied an ANN for better classification of the
retailers based on their specified risk levels known by experts and
risk managers. The model was based on an unsupervised learning type
known as a self-organizing map (SOM). They had collected data from
a leading distributor of spare parts for all motor vehicles. The data
entered to the SOM was about 3292 records regarding that distributor’s
retailers and their purchases in the period from May2012–May2014.
Each record holds several features such as ‘‘type of retailer’’, ‘‘work
experience’’, ‘‘recency’’, ‘‘frequency’’, and ‘‘the returned product’’. Ob-
tained results from that model provided an informed guideline to
managers about any future disruption or risk level, which helped them
to formulate a risk mitigation method.

SVM is one of the most important classifiers as it is known for its
highest performance in prediction and forecasting over other classifiers.
A study proposed by Tang, Dong, and Shi (2019) for financial data
prediction based on a combination of piece-wise linear representation
(PLR) and weighted support vector machine (PLS-WSVM). Their ob-
jective was to predict the turning points whether if the stock market
falls or rises to a point or a for a long time. Twenty stock market data
were obtained to test their proposed method. Their results proved the
3

supremacy of PLS-WSVM against other ML models. Recently, Liu and
Huang (2020) proposed an ensemble SVM to solve the risk assessment
of the SC finance problem. The model was applied to the SC finan-
cial analysis of China’s listed companies. The data obtained from the
companies hold a large number of noisy examples. Therefore, a noise
filtering schema was implemented based on fuzzy clustering and prin-
cipal component analysis to reduce those noises and achieve optimal
clean data sets. Five different classifiers based on SVM were proposed
relying on cross-validation SVM (CSVM), particle swarm optimization
SVM (PSVM), ensemble cross-validation SVM (EN-CSVM), ensemble
particle swarm optimization SVM (EN-PSVM), and the ensemble Ad-
aBoost particle swarm optimization SVM (EN-AdaPSVM), whereas the
EN-AdaPSVM showed the highest performance.

2.3. DL methods to predict supply chain risks

A study was subjected by Xu, Ji, and Liu (2018) to develop a
deep learning model for dynamic demand forecasting for station-free
bike-sharing. The deep learning model was based on LSTM neural
network (LSTM-NN) to forecast the trip productions of bike-sharing and
attractions for various time intervals. The data were obtained from a
downtown area of Nanjing city. The performance of the LSTM-NN was
compared with different statistical models and different machine learn-
ing algorithms. The results showed that the LSTM-NN had a reasonable
and good forecasting accuracy surpassing the former methods. Mean-
while, Vo, He, Liu, and Xu (2019) built a deep responsible investment
portfolio (DRIP) model based on multivariate bidirectional long short
term memory (BiLSTM) combined with reinforcement learning to fore-
cast the stock for the reconstruction of the investment portfolio. Data on
financial, stock prices and ESG rating data were obtained from Yahoo
finance. The results of their proposed DRIP proved to have a better
financial performance compared to any LSTM, GRU, and standard BiL-
STM. Nikolopoulos, Punia, Schäfers, Tsinopoulos, and Vasilakis (2021)
proposed a DL model based on the LSTM architecture to predict the
growth rates of supply chains in the days of the COVID-19 pandemic.
Excess demand for products and services was predicted based on the
data obtained from google trends and governmental decisions regarding
the lockdown. Several techniques were applied for prediction based on
time-series, ML, and DL. Their results showed that the DL model based
on the LSTM proved to have the highest forecasting accuracy compared
to classical ML and time-series forecasting approaches.

2.4. Summary of literature review

Table 1 shows a summary of the related works in terms of the
SCRI&AP problems. Data, mechanism, algorithm, or the model applied,
and the results achieved from each related work are compiled in differ-
ent columns of that Table 1. Based on the literature review and Table 1,
there exist a set of gaps and limitations related to methodologies
applied in the SCRI&AP and the risks emanating from the COVID-
19 pandemic. On the one hand, the gaps related to the first type of
methodologies which are based on mathematical reasoning, single and
multi-agents, network structures, fuzzy logic, and hybrid, have a lot of
limitations. These methods cannot provide accurate decision-making in
case of risks. In addition to this, the former methods cannot handle a
huge amount of data sets and problems of big size. Moreover, the net-
work approaches do not concentrate on a set of uncertain risks, and the
agent-based method focuses on a small number of parameters, making
it hard to support many policies. In addition, the hybrid approaches
increase the computational complexity, and the reasoning approaches
in SCRI&AP are focused on only one type of reasoning, which is case-
based reasoning, even though there exist different types of reasoning
that can show higher performance in mitigating risks.

The limitation related to the second type of methodologies (i.e., ML)
is that only a limited number of classifiers are applied. The techniques
used are the ANN, Bayesian network, and SVM. Many different tech-
niques, such as decision tables, random forests, and many others, exist
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Table 1
Summary of the Literature Review.

Reference Problem Data Mechanism Algorithm Results

Khalilabadi et al.
(2020)

Predicting product
shortage risk

Drug distribution
company in Iran

Stochastic approach Multi-stage stochastic
integer programming +
progressive hedging
algorithm

Their model helped to
enhance the company
profit by nearly 3.27%

Babazadeh,
Razmi, Rabbani
and Pishvaee
(2017)

Model a
second-generation
Biodiesel SC network
under risk

Two main biodiesel
production in Iran
known as JCL and
UCO

Fuzzy logic approach Probabilistic fuzzy logic
programming method

Reduction in the total cost
of Biodiesel SC

Jabbarzadeh,
Fahimnia, and
Sabouhi (2018)

Random disruptions in
SC

Plastic pipe industry Hybrid approach Stochastic (bi-objective
optimization based on
fuzzy-means clustering)

Maximize the overall
sustainability performance
in disruptions

Haddadsisakht
and Ryan (2018)

Accommodation of
carbon tax with tax
rate uncertainty

Data obtained from
carbon factories,
warehouses, and
collection centers

Hybrid approach Hybrid robust stochastic
combined with
probabilistic scenario

Product flows adjustment
to tax rates shows a small
benefit

Qazi, Dickson,
Quigley, and
Gaudenzi (2018)

Capture the
interdependence
between risks

Global manufacturing
SC

Network approach BBN Prioritizing risks and
strategies

Blos, da Silva,
and Wee (2018)

Risks in the production
and delivery of goods
from a source to a
destination

Shipping goods from
China to Brazil

Agent approach Agent-based model Enabling the ability to
model, analyze, control,
and monitor the shipment
of goods

Paul (2015) Selection of supplier
during a set of risk
factors

Hypothetical data for
five different suppliers

Reasoning approach A rule-based fuzzy
inference engine

Helped to obtain the best
supplier

Cai et al. (2020) Risks and factors affect
the SC

Some Financial
enterprises

Machine learning BPNN Provide good references
for enterprise effective
decision system

Rezaei et al.
(2019)

Classification of the
retailers based on risk
levels

ISACO: a leading
distributor for motor
vehicles

Machine learning SOM Formulation of the risk
mitigation methods based
on the level of risks

Shang, Dunson,
and Song (2017)

Transport time risks in
air cargo SC

Leading forwarder on
routes served by
airlines

Machine learning Bayesian parametric
model

Assist the forwarder to
offer reasonable service
and price, enable fair
supplier evaluation

Ojha, Ghadge,
Tiwari, and
Bititci (2018)

Factors and occurrence
of risk propagation

Leading automotive
organization in India

Machine learning Bayes network Detection of the mean
service level at maximum
or minimum when
disruption occurs

Papadopoulos
et al. (2017)

Achieve resilience in
case of disasters

Data collected from
tweets, news,
Facebook, WordPress

Machine learning Big data model + (CFA) Concluded that Swift trust,
information sharing,
public–private partnership
are the important factors
for resilience SC

Tang et al.
(2019)

Prediction of financial
data

20 market stocks Machine learning (PLS-WSVM) Able to detect the turning
points if the market falls
or rises to a point for a
long time

Liu and Huang
(2020)

Risk assessment of SC
finance

Financial companies
from China

Machine learning CSVM, PSVM, EN-CSVM,
EN-PSVM, En-AdaPSVM

Enhancing the credit
assessment accuracy

Punia,
Nikolopoulos,
Singh, Madaan,
and Litsiou
(2020)

Forecasting
multi-channel retail
demand

Data obtained from a
multi-channel retailer

Deep learning RF
LSTM
LSTM + RF

Ranked the explanatory
variable according to the
relative importance

Xu et al. (2018) Dynamic demand for
station-free bike-sharing

Data obtained from
downtown area of
Nanjing city

Deep learning LSTM-NNs Forecast the gap between
inflow and outflow of
sharing bike trip so a
re-balance can be formed
during sharing bikes

(continued on next page)
that can better predict risk and increase the performance of risk classi-
fication. Finally, the third type of methodologies in the SCRI&AP is DL,
4

considered the most suitable one for risk prediction in SCRI&AP. DL
methods can deal with huge data and achieve high accuracy compared
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Table 1 (continued).
Reference Problem Data Mechanism Algorithm Results

Yu, Guo, Asian,
Wang, and Chen
(2019)

Practical flight delay
prediction

Real data of arrival
and departure flights
from PEK airport

Deep learning DBN + SVR An efficient handling of
large data to obtain main
factors of flight delays.

Vo et al. (2019) Reconstruction of the
investment portfolio

Data obtained from
Yahoo finance

Deep learning LSTM
GRU
BiLSTM
DRIP

Achieved competitive
financial performance and
social influence

Nikolopoulos
et al. (2021)

Predicting the growth
rates, demand for
products and services
during the COVID-19
pandemic

Data obtained from
google trends and
governmental decision
of the lockdown

DL with other
approaches

Time-series,
ML,
DL using LSTM

Helped the policy makers
and planners to make
better decisions during the
next pandemics

Sharma,
Shishodia et al.
(2020)

Risks occurred in the
agricultural SC during
COVID-19 pandemic

Data obtained from
20 companies from
their investment in
plants

Fuzzy logic approach FLQ-QWAO Efficient prediction of
different risks in all
companies whether micro,
small, medium, and
multi-national

Our proposed
method

Prediction of
shipments delivered
to different countries
during the COVID
pandemic

Data taken from US
supply chain
information for
COVID-19

Different DL models
with classifiers

LSTM,
BiLSTM,
GRU, TCN

TCN showed the highest
performance. The model
is capable of deciding
the types of shipments
that can be delivered
to other methods, especially ML. On the other hand, this pandemic
creates huge demand and supply issues for the SCM, transportation
challenges during nationwide lockdowns, international border closures
and supply shortages, panic buying, and stocking. Moreover, the trans-
portation of shipments from one country to another in this pandemic
is a critical issue. This pandemic has affected the transportation of
different types of shipping, such as oil shipping, container shipping,
and dry bulk shipping. Activities of transportation of shipments (such
as preparing shipping items and distributing at the right quantity, place,
and time) are significantly impacted. Therefore, better risk prediction
models such as DL must exist to deal with these risks.

3. Methodology

This section is dedicated to the methodology and implementation
phases. The deep learning models are implemented by using three re-
current neural networks (RNNs) and one convolutional neural network
(CNN). The RNNs are based on the stacked LSTM, stacked BiLSTM, and
the stacked gated recurrent unit, whereas the CNN applied was based
on the TCN. Then, six main classifiers were used to test the performance
of the deep learning models, and these classifiers are Softmax, RT, RF,
KNN, ANN, and SVM. Finally, depending on these deep learning models
and classifiers, we can predict whether a shipment will be exported to
the destination or not under this pandemic situation. Our methodology
consists of five main phases which are data acquisition or exploration,
pre-processing or filtering phase, feature extraction or selecting the
most important and potential features, and finally, the outcome step
is prediction and classification as shown in Fig. 1.

3.1. Data acquisition

The data was collected from a public database available online
known as Kaggle (Chain, 2000), which is a common platform for
ML and a data science community. This database has tons of data
sets available online. The data set chosen is called ‘‘US Supply Chain
Information for COVID19’’ (Keller, 2020). This data set has shipments
that can be transferred from a source to a destination. In this data set,
4547661 shipments are classified into mining (except oil and gas),
food manufacturing, textile mills, paper, wood product manufacturing,
and many others as shown in the excel sheet about the North American
industry classification system that can be obtained from Keller (2020).
Each shipment has 20 red attributes that represent the details of the
5

shipment, such as the ‘‘shipment ID’’, ‘‘origin state’’, ‘‘origin metro’’,
‘‘concatenation of origin state and metro area’’, ‘‘destination state’’,
‘‘destination metro area’’, ‘‘concatenation of the destination metro and
state’’, ‘‘industry classification of shipper’’, ‘‘quarter in which the ship-
ment occurred’’, ‘‘code of the shipment’’, ‘‘mode of transportation of
the shipment’’, ‘‘shipment value’’, ‘‘weight’’, ‘‘great circle distance be-
tween the shipment origin and destination’’, ‘‘routed distance between
shipment origin and destination’’, ‘‘temperature-controlled shipment’’,
‘‘export entry’’, ‘‘export final destination’’ and this column represent
three main destinations which are Canada, Mexico and others’’, ‘‘haz-
ardous material if it flammable liquid, other hazmat or not hazmat at
all’’, and finally the ‘‘weight factor’’. Each row or shipment in the data
set has 20 columns as they represent its attributes.

3.2. Pre-processing

Our filtration process depends on two main steps. The first step
is the removal of the columns that represent the same attributes and
the unique identifiers’ columns. The selected columns that follow the
former criteria are removed. The eliminated columns are the ‘‘shipment
id’’, ‘‘concatenation of the original state and metro area’’, ‘‘concatena-
tion of the destination state and metro area’’. The remaining number
of columns now is 17 and this is the result of the first step. Then, the
second step starts by converting the text columns to numeric columns,
and this is done for 4 columns which are the ‘‘temperature-controlled
shipment’’, ‘‘export entry’’, ‘‘export final destination’’ and finally the
‘‘hazardous material’’. The embedded sequence layer was applied to
convert these columns from text to numeric columns. Finally, the
number of columns for each shipment that can be progressed to the
next step are the remaining 17 columns.

3.3. Feature extraction

This stage is one of the most important stages because the most
discriminant features are extracted using four main models based on
RNN and CNN. Three models were based on stacked LSTM, stacked
BiLSTM, stacked GRU layers. The last model is based on a temporal
neural network (TCN) that is formed based on a mix of RNN and CNN.
In this step, the features are extracted from the 16 columns selected
because the column of ‘‘export entry’’ will be predicted. These columns

represent the main attributes of the shipment.
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Fig. 1. The proposed methodology for predicting shipment data during the COVID restrictions.
3.3.1. RNN model based on the stacked LSTM
The first model proposed is based on the LSTM to train the 16

columns obtained from the pre-processing stages. The model is com-
posed of eight layers, and these layers are one sequence input layer,
two LSTM layers, two dropout layers, one fully connected layer, one
SoftMax layer, and one classification layer. Fig. 3 shows the layer-by-
layer description of the stacked LSTM. The layers of the model are
explained in detail as follows (see Fig. 2):

∙ Sequence Input Layer: This is the starting layer of the model.
This layer takes the input data obtained from the pre-processing step,
and the data acts as an input sequence to the network. In this layer, the
data are normalized automatically.

∙ LSTM function Layer: LSTM is one of the RNN types that per-
mits the network to keep long-term dependencies between the data
at a specific time based on various time steps proposed before. It is
considered to be a chain of repeated components of neural networks.
Each module consists of three main gates, and these gates are the input
gate, forget gate, and output gate. Each gate has sigmoid layers and
piece-wise multiple operations. The output of each sigmoid layer are
numbers that fall in range intervals from [0,1]. This interval represents
a portion of the input information. The LSTM works on the time-series
data based on RNN (Nguyen, Tran, Thomassey, & Hamad, 2020). The
LSTM begins by reading an input sequence of vectors known by 𝑥 =
{

𝑥1, 𝑥1, 𝑥1,…… .𝑥𝑡
}

, where 𝑥𝑡 ∈ 𝑅𝑚 and it express an m-dimensional
vector of readings for 𝑚 variables at a specific time-instance 𝑡. Since
that the LSTM can operate on a large time-series, its performance is
not always the same, but it depends on the input.

Based on the new information 𝑥𝑡 in the state 𝑡, the LSTM modules
operates in three main steps as follows. The first step, the LSTM module
decides what kind of old information that should be forgotten by
producing an output of a number in range from [0, 1]. The forgotten
information will be defined by 𝑓𝑡 with

𝑓𝑡 = 𝑠1(𝑊𝑓 .
[

ℎ𝑡−1, 𝑥𝑓
]

+ 𝑏𝑓 ) (1)

where, ℎ𝑡−1 is the output in-state 𝑡 − 1; 𝑊𝑓 and 𝑏𝑓 are known as the
weights and bias matrices of the forget gate, and 𝑠 is defined as the
logistic non-linearity. Then in the second step, 𝑥𝑡 is processed before
the storage in the cell state. The value 𝑖 is known as the input gate
6

𝑡

along with a vector of candidate values �̃�𝑡 that is generated by a tanh
layer at the same time known as:

𝑖𝑡 = 𝑠2(𝑊𝑖.
[

ℎ𝑡−1, 𝑥𝑖
]

+ 𝑏𝑖 ) (2)

�̃�𝑡 = tanh(𝑊𝑐 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 ) (3)

�̃�𝑡 is updated in a new cell state known by 𝐶𝑡 as follows:

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�1 (4)

where (𝑊𝑖, 𝑏𝑖) and (𝑊𝑐,𝑏𝑐 ) are known as the weight and the bias of
the input and the memory cell gates respectively. In the third step, the
output gate is represented by:

𝑜𝑡 = 𝑠3(𝑊𝑜.
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜 ) (5)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6)

𝑊𝑜 and 𝑏𝑜 are known as the weight and bias of the output layer,
and ℎ𝑡 represents a part of the cell state that is produced as output. The
cell state aims to run straight down the entire chain, and it maintains
the sequential information in the inner state, and it allows the LSTM
to persist the knowledge obtained from subsequent time steps (Tran,
Du Nguyen, & Thomassey, 2019).

∙ Dropout Layer: It is a layer that focuses on preventing the
over-fitting of the model and it was proposed by Srivastava, Hinton,
Krizhevsky, Sutskever, and Salakhutdinov (2014) and it is a very simple
and effective methodology. The data collected in most of the practices
performed are not pure; they sometimes hold some noisy data (Good-
fellow, Bengio, Courville, & Bengio, 2016). The proposed RNN models
can have some difficulty dealing with separating the normal data from
the noisy ones. In contrast, the RNN model learns on these noisy
data as normal ones, and this could allow the model to be over-fitted
and confused (Wang et al., 2020). The over-fitting model has high
accuracy on the training data, but a low accuracy on the test data
and other generalization applications. It is also important to know
that in most of the applications, the noisy data are less in quantity
and much less in occurrence than the normal data entered. This layer
quits a specific proportion of neurons in the network randomly. This
operation can reduce the probability of occurrence of noisy data and
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Fig. 2. Deep learning model based on the LSTM Layers.
its influence on the model. The mini-batch is trained in a different
network because the neurons are randomly discarded. This leads the
total training parameters of the model to become unchanged. The drop-
out layer works during the training stage only, and all the neurons of
the model still operate in the testing stage even the discarded one. After
applying the operation of the dropout, each unit of the neural network
in the training stage must require the addition of a probability process.
The equation of the feed-forward for the standard network based on a
drop out operation is defined as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘(𝑙)𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑚)

𝑦(𝑙)𝑖 = 𝑘(𝑙)𝑖 ∗ 𝑦(𝑙)𝑖
𝑡(𝑙+1)𝑗 =

∑𝑛
𝑖=1 𝑤

(𝑙)
𝑖,𝑗𝑦

(𝑙)
𝑖 + 𝑏(𝑙)

𝑦(𝑙+1)𝑖 = 𝑓 (𝑡(𝑙+1)𝑗 )

(7)

where 𝑘(𝑙)𝑖 is known as the Bernoulli random variables in a probabilistic
term known as 𝑚. When the 𝑘(𝑙)𝑖 is equal to 0, the neuron is discarded,
but if the 𝑘(𝑙)𝑖 is equal to 1 the neuron is trained. 𝑦(𝑙)𝑖 is known as the
input values of the 𝑖th neuron in the 𝑙th layer; 𝑦(𝑙+1)𝑖 is determined to
be the final output value of the 𝑗th neuron of the (l + 1) the layer; 𝑡(𝑙+1)𝑗
express the linear combined output value of the 𝑗th neuron of the (l +
1) the layer; 𝑤(𝑙)

𝑖,𝑗 and 𝑏(𝑙) are deemed to be the weight and the bias
values between the 𝑖th neurons of the 𝑙th layer and the 𝑗th neuron of
the (l + 1) the layer and 𝑓 is the activation function.

IW: Initial Weight, RW : Recurrent weight
∙ Fully connected Layer: This layer is always applied in the stage

of the classification in the conventional RNN. The main aim of the
7

fully connected layer is to extract the features of the output data of the
RNN and to connect the stages of the feature extraction with SoftMax
classifier (Lin, Chen, & Yan, 2013). A fully connected layer is usually
composed of 2–3 layers fully connected to the feed-forward neural
network. The final output of the feature map of the RNN is transformed
into a one-dimensional array by applying a flatten function. This one-
dimensional array is deemed to be the input of the full connection layer,
and the output of the full connection layer is a one-dimensional vector.
Each value in this vector is a quantitative value of n classifications.
Moreover, in the fully connected network, all the neurons between the
layers are interconnected with each other using the following equation:

𝑜 (𝑋) = 𝑓 (𝑊 .𝑋 + 𝐵) (8)

where 𝑓 (.) is known as the activation function, 𝑋 is the fully-connected
layer input, 𝑜 (𝑋) is the fully connected layer output, and 𝑊 and 𝐵
are known to be weights and biases of the fully connected network
respectively.

SoftMax function layer: The SoftMax function is an extension of
the logistic regression and it solves single and multi-class classification
problems (Jiang et al., 2018). The output result of the fully connected
layer is a form of a quantization matrix Known as {𝑍}𝑙𝑥𝑚 of 𝑙 rows
and 𝑚 columns. The 𝑙 is known as the 𝑙 samples, while the 𝑚 is
known as the 𝑚 quantized value that corresponds to 𝑚 categories.
{𝑍}𝑙𝑥𝑚 =

{

𝑍1,… . 𝑍𝑖,… .𝑍𝑙
} 𝑇 , 𝑌 𝑖 = (𝑦(1)𝑖 ,… . 𝑦(𝑗)𝑖 ,… .𝑦(𝑚)𝑖 ), where

𝑦(1)𝑖 represents that the 𝑖th sample belongs to the probability value
of the first-class category. The different element value in {𝑍} as
𝑙𝑥𝑚
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Table 2
Parameters of the RNN LSTM network layers.

Layer no. Layer name Parameters of each layer Activations Learnables

1 Sequence input layer Number of Inputs = 16 16 –

2 First LSTM layer Number of hidden units = 100
Output mode = ‘‘Sequence’’
State activation function = ‘‘tanh’’
Gate activation function = ‘‘Sigmoid’’

150 IW = 600 × 16
RW = 600 × 150
Bias = 600 × 1

3 First drop out layer Drop out Quantity = 0.3 150

4 Second LSTM layer Number of hidden units = 200
Output mode = ‘‘Last’’
State activation function = ‘‘tanh’’
Gate activation function = ‘‘Sigmoid’’

200 IW = 800 × 150
RW = 800 × 200
Bias = 800 × 1

5 Second drop out layer Drop Out Quantity = 0.2 200 W = 2 × 200
Bias = 2 × 1

6 Fully connected layer Output size = 2 2 –

7 SoftMax Layer Number of Outputs = 1 2 –

8 Classification layer Loss function = ‘‘Cross Entropy’’ – –
variant magnitudes do not conform to the probability distribution. This
problem can be solved by applying the SoftMax function to normalize
the calculation. The output value starts to conforms to the probability
distribution after the SoftMax normalization. If the training input sam-
ple is 𝑥 and the corresponding label is 𝑦 , the sample 𝑥 is forecasted
o be the probability of category 𝑗 that is defined as 𝑃 (𝑦 = 𝑗|𝑥).
Classification Layer: It is the final layer of the first model. The

layer calculates the loss function, and it is performed by a match opera-
tion between the forecasted result and the target label. The most widely
used loss functions are the mean square error (MSE) (Köksoy, 2006)
and the cross-entropy function (CE) (Ho & Wookey, 2019). CE function
is applied because the input data belongs to a binary classification
category of two classes only. The cost function of CE is evaluated
using the following equation as follows: This is the final layer, and
it computes the loss function, and it is calculated by matching the
normalized prediction result with the targeted actual label. The most
commonly used loss functions are the mean square error (MSE) and
the cross-entropy (CE). In this method, the CE is applied because the
input data belong to a classification binary value. The CE cost function
is obtained using the following equation:

𝑈 (𝑤) = − 1
𝑘
[

𝑙
∑

𝑖=1

𝑚
∑

𝑗=1
𝐼{𝑦𝑖 =𝑗} 𝑙𝑜𝑔 𝑒𝑥

𝑇
𝑖 .𝑤𝑗

∑𝑛
𝑖=1 𝑒

𝑥𝑇𝑖 .𝑤𝑙
] (9)

where 𝑖 is the 𝑖th training sample, 𝑗 is the 𝑗th category, 𝐼 is the logical
ndication function. if the value of {𝑦𝑖 = 𝑗} is true, then I = 1 otherwise

I = 0. 𝑦𝑖 is the actual label of 𝑖th sample. 𝑒𝑥
𝑇
𝑖 .𝑤𝑗

∑𝑛
𝑖=1 𝑒

𝑥𝑇𝑖 .𝑤𝑙
is the probability

value calculation function normalized, and it represents the probability
value of the 𝑖th sample belongs to the 𝑗th category, and 𝑈 (𝑤) is the
CE loss function. The parameters of each layer in the LSTM model are
defined in Table 2. This table shows the number of layers, the name of
each layer, and the main parameters of each layer.

3.3.2. RNN model based on the stacked BiLSTM
The second model proposed is based on the BiLSTM and it is

composed of eight layers:
∙ Bi-directional LSTM function Layer: The neural network model

adopted is based on the BiLSTM. BiLSTM depends on the LSTM and
the bidirectional current network (Zhang, Zhang, Zhao, & Lian, 2020).
The model consists of one sequence input layer, two BiLSTM layers,
two dropout layers, one fully connected layer, one SoftMax layer, and
one classification layer. The only difference between this model and the
previous one is replacing two LSTM layers with another two BiLSTM
layers. Fig. 4 shows the description of the layers based on the BiLSTM
model and it is shown as follows: The main objective of the LSTM is
to overcome the vanishing gradient problem of the RNN, and it also
8

depends on the memory cell to express the past timestamp. In this layer,
the BiLSTM is used instead of the LSTM as the bidirectional can provide
a better understanding of the time series data in two main directions.
The previous time-series data can impact the current forecasting, while
the future time series data will also impact the current forecasting to
a certain extent. The process of learning features from the previous
and future data can provide more accurate forecasting. Moreover, the
trained parameters used for the BiLSTM layer in the training process
can be used in forecasting (Hao, Long, & Yang, 2019).

It is called bi-directional because the information recorded in the
last forward vector the LSTM is improved from front to back, and
the information recorded in the last backward vector, the LSTM is
improved from back to front. The fusion between these records together
can complete the information. In addition to this, more accurate results
can be predicted based on the obtained information, and it can cause
less forecasting error than the one-way LSTM. Table 3 shows the
parameters of the BiLSTM model. The difference between this model
and the previous model in parameters is that the number of hidden
neurons applied in the first LSTM layer is 100 and the second LSTM
layer is 200, while in this model the notion is to increase the number
of hidden neurons in the bi-directional LSTM layers for more training
on the past and future data. Therefore, the parameters of hidden units
in the bi-directional layers are set to 300 neurons.

3.3.3. RNN model based on the stacked GRU
The third model proposed is based on the deep gated recurrent

unit (GRU) layers and it is the same as the previous models in that
this model consists of eight layers, and the LSTM and BiLSTM are
replaced by two GRU layers. The main reason for introducing the GRU
is that, it has proved as more efficient than the basic RNN, LSTM, and
BiLSTM in all tasks except in the field of the language modeling (Basiri,
Nemati, Abdar, Cambria, & Acharya, 2021). The GRU controls the
flow of information like the LSTM unit, but without the need for any
memory unit. It only exposes the hidden content without any control.
Moreover, GRU is new and its performance is on par with LSTM, and it
is computationally more efficient and has a less complex structure. In
addition to this, GRU trains faster and performs better than the LSTM
on less training data. GRU is simple and easy to maintain, and the
process of adding new gates in case of additional input to the network
is a simple process for GRU (Jiao, Wang, & Qiu, 2020). Fig. 5 shows
the full of the third model that is based on GRU layers.

∙ GRU function Layer: This layer is a type of the feedback recurrent
neural network (RNN) with a memory unit. The hidden layer is a gated
recurrent unit, and it is deemed to be an enhancement on the hidden
layer of the traditional RNN. The GRU consist of two main gates which
are the update gate, reset gate and a temporary output. The function of
the gate in the GRU is the process of information gathering and screen-

ing, and this is performed by the multiplication of the corresponding
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Table 3
Parameters of the stacked BiLSTM network layers.

Layer no. Layer name Parameters of each layer Activations Learnables

1 Sequence input layer Number of Inputs = 16 16 –

2 First BiLSTM layer Number of hidden units = 300
Output mode = ‘‘Sequence’’
State activation function = ‘‘tanh’’
Gate activation function = ‘‘Sigmoid’’

300 IW = 1200 × 16
RW = 1200 × 150
Bias = 1200 × 1

3 First drop out layer Drop out Quantity = 0.3 300 –

4 Second BiLSTM layer Number of hidden units = 300
Output mode = ‘‘Last’’
State activation function = ‘‘tanh’’
Gate activation function = ‘‘Sigmoid’’

300 IW = 1200 × 300
RW = 1200 × 150
Bias = 1200 × 1

5 Second drop out layer Drop Out Quantity = 0.2 300 W = 2 × 300
Bias = 2 × 1

6 Fully connected layer Output size = 2 2 –

7 SoftMax Layer Number of Outputs = 1 2 –

8 Classification layer Loss function = ‘‘Cross Entropy’’ – –
Fig. 3. Deep learning model based on the BiLSTM layers.
elements in gate vector 𝑍𝑡∕𝑟𝑡. ℎ̃𝑡∕ℎ𝑡−1 has the information vector, and
the information in ℎ̃𝑡 or ℎ𝑡−1 is selected, therefore if the element in
𝑍𝑡∕𝑟𝑡 is 1, the corresponding element in ℎ̃𝑡∕ℎ𝑡−1 is selected, otherwise
the corresponding element in and ℎ̃𝑡∕ℎ𝑡−1 is discarded. 𝑍𝑡 and 𝑟𝑡 are
the gate vectors and they represent the outputs of the reset and update
gates at instant time 𝑡 respectively. ℎ̃𝑡 and ℎ𝑡 are deemed to be the
information vectors and they express the temporary output and the
hidden layer output at instant time 𝑡 respectively. The feed forward
9

operation of the GRU is defined as follows:

𝑟𝑡 = 𝑠(𝑊𝑟
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑟) (10)

𝑧𝑡 = 𝑠(𝑊𝑧
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑧) (11)

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊
[

𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏ℎ̃) (12)

ℎ = 𝑧 ∗ ℎ̃ + (1 − 𝑧 ) ∗ ℎ (13)
𝑡−1 𝑡 𝑡 𝑡 𝑡−1
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Fig. 4. Deep learning model based on the GRU layers.
𝑥𝑡 is the input of the network at instant time 𝑡, while 𝑊𝑟, 𝑊𝑧 and
𝑊 , is known to be the weight matrices of the reset, update, and
temporary output respectively, and the 𝑏𝑟, 𝑏𝑧, and 𝑏ℎ̃ formulate the
biases corresponding to these weights. GRU has tons of advantages as
it can avoid the phenomenon of gradient explosion and disappearance,
and it can solve the problem of long-term dependence as well as
realize a truly infinite loop compared to LSTM. Table 4 shows the main
parameters of the GRU model, and these parameters involve the values
that are introduced to the GRU layer and other layers in the model.

3.3.4. TCN deep learning model
The last and the fourth implemented model was based on a tem-

porary convolutional network (TCN). The TCN model has proved its
advantages against any conventional approaches such as the CNN
and RNN. TCN was applied in many different applications such as
improving traffic prediction, sound event localization and detection,
probabilistic forecasting, and many other applications (Chen, Kang,
Chen, & Wang, 2020), and the TCN proved the highest accuracy
performance in those applications. TCN was first proposed by Lea,
Vidal, Reiter, and Hager (2016) with the aim of segmentation of video-
based actions. TCN consists of two main steps based on conventional
processes. The first step is to compute the low-level features using
CNN that encodes spatial–temporal information, and the second step
is to input these low-level features into a classifier that captures the
high-level temporal information usually using RNN or CNN.

TCN provides a unified approach to capture all two levels of infor-
mation hierarchically. The overall architecture of the proposed TCN is
10
manifested in Fig. 5(a). The proposed TCN models sequential features
from the input data and map them to probability distributions of bases
appearing at each time point. The proposed model is formed of 4
stacked residual blocks, two fully connected layers, a RELU activation
function, and a SoftMax layer as shown in Fig. 5(a) (Bai, Kolter, &
Koltun, 2018). The residual block has two main stacked dilated casual
convolutional layers, except the first block has three dilated casual
layers. The weight normalization is performed on each dilated casual
layer followed by a gate linear unit as an activation function. The main
notion of the TCN can be simplified to stacking a group of dilated casual
convolution layers of the same length as illustrated in Fig. 5(c).

∙ Dilated casual convolutional Layer: TCN can take a series of
any length of input and then can produce output as the same length.
For a given input sequence 𝑋 = [𝑥1, 𝑥2,…… 𝑥𝑇 ] and a filter 𝑓 ∶
{0,… ., 𝑘 − 1} → 𝑅, the dilated casual convolution operation 𝐶 on the
𝑖th point of 𝑋 is defined by:

𝐶
(

𝑥𝑖
)

=
𝑘−1
∑

𝑎=0
𝑓 (𝑎).𝑥𝑖−𝑎.𝑑 (14)

where 𝑑 is the dilation factor and 𝑘 is the filter size. The output result
of the dilated casual convolution layer is expressed by 𝐻 = 𝐶

(

𝑥𝑖
)

. For
the first layer, 𝑋 manifests the input sequence, while for a higher layer
it represents the output of the former layer. Each dilation layer has a
dilation factor and this factor increases exponentially by 2. The index
is the number of the layers. The TCN stacks residual blocks to form
a deeper structure, rather than simply stacking layers. Each residual
block consists of two stacked dilated casual convolutional layers. The
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Table 4
Parameters of the stacked GRU network layers.

Layer
No.

Layer name Parameters of each layer Activations Learnables

1 Sequence input layer Number of Inputs = 16 16 –

2 First GRU layer Number of hidden units = 150
Output mode = ‘‘Sequence’’
State activation function = ‘‘tanh’’
Gate activation function = ‘‘Sigmoid’’

150 IW = 450 × 16
RW = 450 × 150
Bias = 450 × 1

3 First drop out layer Drop out Quantity = 0.2 150 –

4 Second GRU layer Number of hidden units = 300
Output mode = ‘‘Last’’
State activation function = ‘‘tanh’’
Gate activation function = ‘‘Sigmoid’’
Reset Gate Mode = ‘‘After- Multiplication’’

300 IW = 900 × 150
RW = 900 × 300
Bias = 900 × 1

5 Second drop out layer Drop Out Quantity = 0.2 300 W = 2 × 300
Bias = 2 × 1

6 Fully connected layer Output size = 2 2 –

7 SoftMax layer Number of Outputs = 1 2 –

8 Classification layer Loss function = ‘‘Cross Entropy’’ – –
Fig. 5. (a) Overall TCN model (b) Structure of residual block (c) Structure of dilated casual convolutional layer.
word ‘‘casual’’ means that the activation obtained for a specific time
step cannot depend on the activation from future time steps. Each of
the two stacked dilated layers has the same dilation factor (𝑑), filter
size (𝑘), and some filters (𝑛).

∙ Weight normalization layer: A weight normalization layer (Sali-
mans & Kingma, 2016) is applied for each dilated casual convolutional
layer. It is a substitute way to the batch normalization methodology.
The main notion of the WN is to separate the direction of the weight
away from their norm, therefore, this will enhance the case of the op-
timization problem. The weights have to be normalized and multiplied
by a specific learning scaled parameter. The equation of the weight
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normalization layer is defined as follows:

𝑜𝑗 = 𝑦𝑗
𝑊𝑗 ∗ 𝑥

|

|

|

|

𝑊𝑗
|

|

|

|𝐹 + 𝜖
+ ß𝑗 (15)

𝑥 is defined as the input of WN, 𝑜 is the output, 𝑦𝑗 is known as the
scale, ß𝑗 represents the bias, and 𝜖 is a small constant value used for
numerical stability, while 𝑊 represent the layer weight, |

|

|

|

𝑊𝑗
|

|

|

|𝐹 is
defined as the Frobenius norm of the weights for output channel 𝑗 and
finally * determines the convolution. Moreover, when the weights 𝑊 is
near to orthogonal and the input is normalized, then for each layer 𝑙 the
total layer dimension is 𝐷 = 𝐷 then |

|𝑜 |

| = ‖𝑥‖ , and this means
𝑙 𝑙+1 |

|

𝑗 |
|

2 𝐹
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Table 5
Parameters of the TCN network layers.

Layers parameters Values assigned experimentally

Number of blocks 4

Number of filters 175

Filter size 3

Drop out factor 0.05

Number of input
channels

16

Blocks

Block 1 Conv1: Weights =
3 × 16 × 175
Conv1: Bias = 175 × 1
Stride = 1
Dilation Factor = 1
Padding = [2; 0]

Conv2: Weights =
3 × 175 × 175
Conv2: Bias =
175 × 1
Stride = 1
Dilation Factor = 1
Padding = [2; 0]

Conv3: Weights =
3 × 175 × 175
Conv3: Bias =
175 × 1
Stride = 1
Dilation Factor = 1
Padding = [2; 0]

Block 2 Conv1: Weights = 3 × 175 × 175
Conv1: Bias = 175 × 1
Stride = 1
Dilation Factor = 2
Padding = [4; 0]

Conv1: Weights = 3 × 175 × 175
Conv1: Bias = 175 × 1
Stride = 1
Dilation Factor = 2
Padding = [4; 0]

Block 3 Conv1: Weights = 3 × 175 × 175
Conv1: Bias = 175 × 1
Stride = 1
Dilation Factor = 4
Padding = [8; 0]

Conv1: Weights = 3 × 175 × 175
Conv1: Bias = 175 × 1
Stride = 1
Dilation Factor = 4
Padding = [8; 0]

Block 4 Conv1: Weights = 3 × 175 × 175
Conv1: Bias = 175 × 1
Stride = 1
Dilation Factor = 8
Padding = [16; 0]

Conv1: Weights = 3 × 175 × 175
Conv1: Bias = 175 × 1
Stride = 1
Dilation Factor = 8
Padding = [16; 0]

Optional 1 × 1
convolutional layer

Weights: 1 × 16 × 175
Bias = 175 × 1

Fully connected layer Weights: 2 × 175
Bias = 2 × 1
that WN will propagate the normalization through the convolutional
layers.

∙ Gated linear unit (GLU): They are preserved to be feed-forward
etworks as they are composed of many different layers of geometric
ated mixing units and it acts as an activation function. Each unit in a
pecific layer produces a combination of the forecasting obtained from
he previous layer, and the final layer consists of only a single neuron
hat explains the output of the full network. The main advantages of
his layer are that the main information is spread to every single neuron
n which each gating function will work on. The gating function is
ixed, and each neuron tries to forecast the same target with an attached
oss per-neuron, and finally, all the learning phases happen during each
euron (Dauphin, Fan, Auli, & Grangier, 2017). The equation of the
LU is 𝐻 ⊗ 𝑠(𝐻), where ⊗ is known as the piece-wise multiplication.

The GLU allows the selection of what features is more essential in
forecasting the correct export shipment.

Next, a residual connection is performed to activate the output
produced from the second convolutional layer, and the input of the
block is followed by a RELU activation function. The input to each block
is added to the output of the block. A 1-by-1 convolution is applied
on the input when the number of channels between the input and the
output does not match, and a final activation function is applied. The
same is performed for the remaining residual blocks. Finally, two fully
connected layers are applied after the last residual block and a SoftMax
function transforms the output of the last fully connected layer into a
matrix of probabilities. Table 5 represents the parameters used in each
layer during the training phase in terms of the number of blocks, filters,
input channels. The filter size and the dropout factor are also specified.
The number of block layers is presented as experimental, and block
weights, bias, strides, dilation factor, and padding are determined.
Finally, the parameters of the fully connected layer and the optional
1 × 1 convolutional layers are illustrated.
12
3.4. Classification

3.4.1. ML classifiers
Six main ML classifiers are applied on the features obtained from

proposed deep learning models. In most of the deep learning method-
ologies applied for classification are based on convolutional and fully
connected layers. Among them, the most widely used classifier is
firstly the SoftMax classifier. The notion of this classifier is to learn as
much from the lower level parameters (Jiang et al., 2018). Secondly,
support vector machine (SVM) is deemed to be a conventional two-
class model. It has several merits in solving small samples, multi-class,
high-dimensional pattern recognition. It has the ability to solve non-
linear multi-classification problems by transforming linear indivisible
into linear divisible problems using soft interval maximization method-
ologies (Vapnik, 2013). Thirdly, Artificial neural networks (ANN) is
a classifier that is composed of various neurons to convert the input
vector to an output vector. The main functionality of the ANN is
that each neuron takes an input, and then it applies an activation
function on it (Haykin & Network, 2004). The output produced from
the activation act as an input to the next layer. Moreover, the network
can be designed in two main forms which are the feed-forward or
feedback networks. The main connection between one neuron and the
other is the weight, and this weight is updated and used on the features
from one neuron to another (Haykin et al., 2009). The weights are
used in the training phase so that they can classify vectors based on
sufficient neurons found in the hidden layer. The classification function
of the ANN begins with the summation of the multiplication of weight
summed by the bias of the neuron. If the addition is positive, the output
values of the neuron fire, otherwise it does not fire. The neural network

was applied widely in pattern classification tasks.
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Table 6
Parameters of each classifier applied on the methodologies.

Classifiers Parameters

SoftMax Loss function = ‘‘Cross Entropy Function’’

Support vector machine
(SVM)

Batch Size = 100, Calibrators = ‘‘Logistic’’
Epsilon = 1 × 1012, Kernel Function = ‘‘Polynomial’’

Artificial neural
network (ANN)

Learning Rate = 0.3, Momentum = 0.2
Training Time = 1000, Validation Threshold = 20

Random trees (RT) Batch Size = 100, Max Depth = 0
Seed = 1, MinVarienceProp = 0.001

Random Forest (RF) Batch Size = 100, Max Depth = 0
Seed = 1, MinVarienceProp = 0.001
Number of iterations = 300, Number of features = 0

k-nearest neighbor
(KNN)

KNN = 1, Batch Size = 100
Nearest neighbor (NN) Search Algorithm = ‘‘Linear
NN Search’’
Distance function = ‘‘Euclidian distance’’

Fourthly, random trees (RT) or sometimes called perfect random
ree ensemble (PERT) are random tree classifiers, which can fit the
raining data perfectly (Cutler & Zhao, 2001). The main construction of
he trainer is based on firstly placing all the features in the root mode.
hen, each non-terminal node is splitted randomly at each step of
he construction of the tree (Jagannathan, Pillaipakkamnatt, & Wright,
009). This process is performed by choosing two features from the
ode until these two belong to different classes. If all the features in
he data did not come from the same class, then this node is considered
o be terminal. The next step is to randomly choose a feature in order
o split. The operation of the split is repeated until a definitive split is
eached. Fifthly, random forest (RF) is a classifier that is composed of
combination of the random tree classifiers. Each classifier is obtained
y applying a random feature that is sampled separately from the input
eatures. Each tree in the forest adjusts a new vote for the recent pop-
lar class to classify the input features (Breiman, 1999). This classifier
sed randomly selected features or a combination of them at each node
o build the tree. One of the methods that are used in generating the
raining set is the bagging method. Every time the tree is grown to

depth on a new training data based on a combination of features.
hese grown trees to the maximum are not pruned. This is the main
dvantage of the random forest over the decision tree methods (Pal,
005). Finally, k-nearest neighbor (KNN) is one of the simplest and
ostly used for classification tasks. It operates by obtaining the main
istance between two samples and this can be in the form of Euclidean,
anhattan, city block and Chebyshev distances. Finally, the decision

ule that explains the maximum similarity in the KNN represent which
lass does this sample belong to. The main distance applied using KNN
s the Euclidean distance. Table 6 shows the main parameters used by
ach classifier.

. Experimental results

This section represents the results of the four proposed DL fea-
ure extraction methods on the six classifiers verified. The whole ex-
eriments were carried out on a laptop with Intel Core i7-8565U
1.80 GHz 1.99 GHz, 12 GB RAM, and NVIDIA GeForce GTX 310M
GB graphics card. The deep learning models and classifiers were

eveloped using MATLAB Software. The total number of shipments
n the dataset is 4 547 661. 2 048 577 out of 4 547 661 shipments are
elected to verify the performance of the proposed models in forecast-
ng and predication. The main aim is to determine if the shipment is
oing to be exported or not based on the information provided with
ach shipment and this will be with a great benefit in the COVID-19
andemic. The selected shipments are divided into 50% training, 25%
alidation, and 25% for test. This division leads to creation of 1 048 576
n the training set, while 500 001 shipments in each of the validation
13
and the test sets. The experiment is verified using the stacked LSTM,
stacked BiLSTM, stacked GRU, and TCN models. The performance is
illustrated based on the training options of the model, various statistical
performance measurements, receiver operating characteristic (ROC),
and the confusion matrices. Finally, each DL model is verified using
six machine learning classifiers.

4.1. Performance measurements and main findings

To validate and to demonstrate the supremacy of one DL model
among others, this paper has considered different performance mea-
sures. These measurements depend mainly on statistical calculations
and probabilities. They are: true positive (TP), false positive (FP),
true negative (TN), false negative (FN), precision (P), accuracy (A),
sensitivity (SEN), specificity (SPEC), false-positive rate (FPR), False
negative rate (FNR), F-measure (F1), Error (E), Matthews correlation
coefficient (MCC) and Cohen’s kappa coefficient (K) (Ratner, 2017).

Each of these measurements is explained in terms of definition,
purpose, and formula. These measurements show how the DL methods
vary in performance and accuracy. The four main terms that describe
the entire process of the correctly classified or the incorrectly classified
instances are the TP, TN, FP, and FN. All the measurements provided
are explained as follows:
TP: It represents the number of shipments that will not be exported due
to uncertainties and the proposed system predicted it correctly.
TN: It represents the number of shipments that will be exported and
the proposed system predicted it correctly.
FP: It represents the number of shipments that will not be exported and
the proposed system predicted it as exported.
FN: It represents the number of shipments that will be exported and the
proposed system predicted it as not exported.

Precision (P) is defined as the number of correctly classified in-
stances of the shipment not exported over the summation of the cor-
rectly and incorrectly not exported shipments. It is expressed in terms
of TP and FP by:

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(16)

ccuracy is estimated as the percentages of the correctly classified
nstances (here, shipments not exported or shipments exported) overall
he total numbers of test instances and it is represented as follows:

= 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(17)

The sensitivity (SEN), detection rate, sometimes called the recall refers
to the capability of the system to positively detect the shipments that
are not exported based on a condition. It is defined using the following
formula: -

𝑆𝐸𝑁 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(18)

The specificity (SPEC), detection rate, sometimes called the recall refers
to the ability of the system to correctly determine the absence of the
number of shipments that are exported and it is defined as follows:

𝑆𝑃𝐸𝐶 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(19)

wo important terms that are useful in building decisions and taking
ction are the false positive rate (FPR) or sometimes known as the
all-out ratio and the false-negative rate (FNR) or sometimes called
he miss-out ratio. FPR is represented as the main ratio between the
bsence of shipments exported wrongly classified as shipments not
xported over the total number of shipments that are exported, but
he FNR is defined as the ratio between the number of the wrongly
lassified instance as shipments exported over the total number of
hipments that are not exported. Both FPR and FNR are defined using
he following equations:

𝑃𝑅 = 𝐹𝑃 (20)

𝐹𝑃 + 𝑇𝑁



Expert Systems With Applications 211 (2023) 118604M.M. Bassiouni et al.

F
o
s
c
𝑁
f

𝑘

w
e
a

4

n
j
V
m
f
e
v
n
t
e
r
R
g
f
T
t
D
‘
i
t
t
t
R
i
c
t
t
a

f

t
r
i
w
t
t
s
t
t
b
w
b
f
r
t
l
e
p
r
i
a
b
I
a
r
t
a
T

I
t
t
T
w
m

𝐹𝑁𝑅 = 𝐹𝑁
𝐹𝑁 + 𝑇𝑃

(21)

F-measure or sometimes called F1-score depends on the precision and
recall of its main calculations. It is defined using the following formula:

𝐹1 = 2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅

(22)

Another simple known measurement is called the Error (E), and it is
defined as:

𝐸 = 1 − 𝐴 (23)

Mathews correlation coefficient (MCC) is used to define the value of
classification. To calculate the value of this coefficient; TP, TN, FN,
and FP are used. This measurement can be also used even if the classes
vary in size. It is also defined as the correlation between the target and
the predicted values obtained from the classification methods. MCC is
defined using the following equation:

𝑀𝐶𝐶 = 𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(24)

inally, the last measurement used is Cohen’s kappa coefficient (K)
r sometimes known as Kappa statistic (Donner & Klar, 1996). It is a
tatistical measurement that determines the agreement for a qualitative
lass. This measurement indicates the prediction of each classifier to

features in C classes that are mutually exclusive as shown in the
ollowing equation:

=
𝑃𝑅(𝑎) ∗ 𝑃𝑅(𝑒)

1 − 𝑃𝑅(𝑒)
(25)

here 𝑃𝑅(𝑎) is the probability of an instance agreement among differ-
nt classifiers, and the 𝑃𝑅(𝑒) is a probability that describes the instance
greement probability.

.2. Training options for the proposed DL models

In the DL methodologies, parameters need to be adjusted to the
etwork during the training phases. These parameters must be ad-
usted carefully and sometimes based on the trial and error methods.
arious parameters are adjusted such as network solver optimizer,
ini-batch size, initially learn rate, learning rate (schedule, period,

actor), maximum (epochs and iterations), number of iterations in each
poch, L2 regularization, gradient (decay factor, function, threshold
alue), validation frequency, verbose, and the verbose frequency. The
etwork solver is a solver for training the DL network. There are
hree main types of solver optimizers which are: adaptive moment
stimation (adam), stochastic gradient descent momentum (SGDM),
oot mean square propagation (RMSProp). Adam is an update to the
MSProp optimizer as it combines the best properties of the adaptive
radient algorithm (AdaGrad) and RMSProp algorithms. Adam is much
aster than SGD and it can handle sparse gradients on noisy problems.
herefore, Adam is used in the four DL models. A parameter related to
he Adam solver is known as gradient decay factor is adjusted for the
L models with different values from 0 to 1. The next parameter is the

‘mini-batch size’’ and it is considered to be the amount of data included
n each sub-epoch weight and it defines the number of samples to work
hrough before updating the internal model parameters. In the RNNs,
he mini-batch size is larger, because, in the RNN model, it is required
o make larger gradient steps. After all, with larger batch sizes in the
NN models, they can converge faster and give better performance by

mproving the effectiveness of the optimization steps leading to a rapid
onvergence of the model parameters. On the contrary, it is necessary
o provide a small mini-batch size for the TCN model because it leads
o a small number of iterations for the training algorithm and higher
ccuracy is achieved in the overall performance.

The next parameter is the initial learning rate. The learning is de-
ined with average values for the model to achieve an average training
14
ime and optimal results. If the learning rate is high, the training might
each a sub-optimal result and it will not converge. If the learning rate
s too low, the training will take a long time to converge. It is defined
ith a value of 0.001 for all the RNN models, while in the TCN model

he learning rate is defined with 0.1. Another common parameter is
he learning rate schedule. There are two options for the learning rate
chedule which are ‘‘none’’ or ‘‘piece-wise’’. The first option means that
he learning rate keeps constant during the whole training stage, while
he second option means that the training is updated every learning rate
y a certain factor. The first option was applied for the RNN models,
hile the second option was applied for the TCN model, as it showed
etter accuracy performance in the classification. In addition to this,
or the TCN there are two related parameters which are the learning
ate drop factor and learning rate drop period. The drop period is
he number of epochs used for dropping the learning rate. The global
earning rate is multiplied by the drop factor every time number of
pochs passes and it is defined by the drop factor. Therefore, the drop
eriod and factor are assigned as 0.9 and multiplied by the learning
ate every 5 epochs. The next parameters are the number of epochs,
terations, and the maximum number of iterations. Each epoch holds

set of iterations and the multiplication of the number of iterations
y the number of epochs produces the maximum number of iterations.
n the RNN models, it can be seen that a large number of iterations
re performed to obtain a normal convergence, while the TCN model,
elies on a small number of iterations achieving a high convergence in
he validation accuracy. The next parameter is the ‘‘L2 regularization’’
nd it is a term for the weights as it is sometimes called weight decay.
his parameter is used to reduce over-fitting.

Another important parameter is the ‘‘gradient threshold method’’.
n the RNN models, the gradient method is known as l2norm, and if
he l2norm of the gradient is larger than the gradient threshold, then
he gradient is scaled so that the l2norm equals the gradient threshold.
he gradient threshold in the RNN models is infinity so that the l2norm
ill never be greater than the infinity. In the TCN model, the gradient
ethod is the global-l2norm and it is defined by L and if L is greater

than the gradient threshold, then all the gradients are scaled by a
factor of gradient threshold divided by L. An important parameter is the
validation frequency its value represents after how many iterations a
validation accuracy will be computed. Finally, there exist two optional
parameters which are the verbose and verbose frequency. If the verbose
parameter is assigned to 1, the training process will be plotted. Other-
wise, it will not. The verbose frequency shows the number of iterations
between printing to the command window.

Tables 7 and 8 show the training parameters for the RNN models
and the TCN model. The tables clarify the values tested for the model
and the last values that showed the highest validation accuracy. The
performance of the proposed DL models is illustrated in the following
sections. Each DL model is evaluated using three main measures. The
first measure depends on the calculation of various statistical variables
based on the validation and test data of shipments. The second measure
relies on the receiver operator characteristic (ROC) of the model on
six main classifiers. Finally, the last measure is the computation of the
confusion matrices to verify the final results of the DL models.

4.3. Performance of the stacked LSTM model

It is essential to evaluate the performance of the stacked LSTM
model based on the computation of the validation accuracy obtained
from the model. Fig. 6 shows the training and loss curves obtained
from the Stacked LSTM model based on the parameters mentioned
in Table 7. In addition to this, the validation accuracy of the pro-
posed Stacked LSTM model is identified with an accuracy value of
96.23%. It can be seen that several training parameters and their
values are defined clearly in the Fig. 6 such as learning rate, epochs,
iterations, maximum iterations, and their values are 0.001, 15, 38 836,

and 582 540 respectively.
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Table 7
Parameters of the training options for the proposed RNN Models.

Training parameters Values tested before reaching the final model Stacked LSTM model Stacked BiLSTM model Stacked GRU model

Optimizer Sgdm, Adam, Rmsprop Adam Adam Adam
Gradient decay factor 0.5, 0.7, 0.9, 0.95 0.99 0.95 0.7 0.95
Mini batch size 1, 8, 16, 32, 64 64 16 32
Initial learning rate 0.01, 0.001, 0.0001 0.001 0.001 0.001
learning rate schedule ‘‘Constant’’, ‘‘Piece wise’’ ‘‘Constant’’ ‘‘Constant’’ ‘‘Constant’’
Max epochs 10, 15, 20, 25, 30 15 10 15
Iterations per epochs 38 836 38 836 38 836 38 836
Total number of iterations 388 360,582 540,776 720, 970 900,1 165 080 582 540 388 360 582 540
L2 Regularization 0.1, 0.01, 0.001, 0.0001 0.001 0.1 0.0001
Gradient threshold method ‘‘l2-norm’’, ‘‘global-l2norm’’ ‘‘l2-norm’’ ‘‘l2-norm’’ ‘‘l2-norm’’
Gradient threshold value 1, 2, 3, 4, 5, Inf Inf Inf Inf
Validation frequency 50 000, 101 059, 150 000 101 059 101 059 101 059
Table 8
Parameters of the training options for the proposed TCN Model.

Training parameters Values tested before reaching the final model TCN Model

Optimizer Sgdm, Adam, Rmsprop Adam
Gradient decay factor 0.5, 0.7, 0.9, 0.95, 0.99 0.99
Mini batch size 1, 8, 16, 32, 64 1
Initial learning rate 0.01, 0.001, 0.0001 0.1
Learning rate schedule ‘‘Constant’’, ‘‘Piece wise’’ ‘‘Piecewise’’
Learning rate drop period 2, 5, 7, 9 5
Learning rate drop factor 0.2, 0.4, 0.5, 0.7 0.9 0.9
Max epochs 100, 200, 300, 400, 500 400
Iterations per epochs 1 1
Total number of iterations 100, 200, 300, 400, 500 400
L2 Regularization 0.1, 0.01, 0.001, 0.0001 0.0001
Gradient threshold method ‘‘l2-norm’’, ‘‘global-l2norm’’ ‘‘global-l2norm’’
Gradient threshold value 1, 2, 3, 4, 5, Inf 1
Validation frequency 20, 50, 70 100 70
Fig. 6. Training and loss curves of the stacked LSTM model for shipments prediction.
Tables 9 and 10 show the performance measurements calculated
for the stacked LSTM methodology using six main ML classifiers on
the validation and the testing sets. The rows of the table represent
the classifiers, while the columns of the table present the performance
measurements illustrated. These measurements are calculated to assist
the SC in determining the average number of correct shipments to be
exported in the ‘‘TP’’ column and the average number of the correct
shipments that should not be exported in the ‘‘TN’’ column. The FN
and FP represent the average number of incorrectly classified shipments
15
based on the performance of each classifier. It can be observed that
KNN and SVM had the highest performance measurements with the
same accuracy values, whereas SoftMax and RT had the lowest accu-
racy performance using stacked LSTM methodology on the validation
and test sets. It can be seen that all the classifiers have a nearly equal
average SEN and FNR. Finally, it can be realized that the maximum
accuracy achieved using stacked LSTM on the validation and the test
sets are 0.9545 and 0.9538 respectively.
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Table 9
The results of the stacked LSTM model on the validation data in terms of various statistical performance measurements.

Classifiers TP FP FN TN SEN SPEC P A FPR FNR F1 MCC K

Softmax 469 437 10 262 16 104 4198 0.966 0.290 0.978 0.947 0.709 0.033 0.972 0.218 0.215
RT 468 528 11 171 15 895 4407 0.967 0.282 0.976 0.945 0.717 0.032 0.971 0.220 0.218
RF 473 440 6259 16 539 3763 0.966 0.375 0.986 0.954 0.624 0.033 0.976 0.242 0.227
KNN 473 290 6409 16 340 3962 0.966 0.382 0.986 0.954 0.617 0.033 0.976 0.251 0.237
ANN 479 263 436 17 740 2562 0.964 0.854 0.999 0.963 0.145 0.035 0.981 0.320 0.211
SVM 473 290 6409 16 340 3962 0.966 0.382 0.986 0.954 0.617 0.033 0.976 0.251 0.237
Table 10
The results of the stacked LSTM model on the test data in terms of various statistical performance measurements.

Classifiers TP FP FN TN SEN SPEC P A FPR FNR F1 MCC K

Softmax 469 162 10 355 16 306 4178 0.966 0.287 0.978 0.946 0.712 0.033 0.972 0.215 0.211
RT 468 277 11 240 16 173 4311 0.966 0.277 0.976 0.945 0.722 0.033 0.054 0.213 0.211
RF 473 194 6323 16 794 3690 0.986 0.180 0.967 0.953 0.819 0.013 0.976 0.236 0.221
KNN 473 015 6502 16 584 3900 0.966 0.374 0.986 0.953 0.625 0.033 0.976 0.245 0.231
ANN 479 110 407 18 079 2405 0.963 0.855 0.9991 0.963 0.144 0.036 0.9810 0.308 0.198
SVM 473 015 6502 16 584 3900 0.9661 0.374 0.986 0.953 0.625 0.033 0.976 0.245 0.231
Fig. 7. ROC of the stacked LSTM model using various classifiers on the shipments test data prediction.
Another important figure to illustrate the performance of a clas-
sification model at all various classification thresholds is the receive
operator characteristic (ROC). ROC has two main parameters which are
the true positive rate (TPR) and False positive Rate (FPR). Fig. 7a shows
the ROC curves of the Stacked-LSTM model on the test data. The 𝑥-axis
represents the FPR and the 𝑦-axis represents the TPR. The figure has 6
main ROC curves. The blue line with plus markers represents the ROC
curve of the Softmax Model, while the magenta line with a black circle
marker shows the ROC curve of the RT. In addition to this, the green
and the yellow lines with square and diamond markers represent the
ROC of RF and KNN respectively. Finally, the red and the cyan lines
with pentagon and hexagon markers represent the ANN and SVM ROC
curves. The value assigned to each ML model in the legend represents
the area under the curve (AUC). On one hand, it can be manifested
from the ROC figure that the classifiers based on the stacked LSTM
model that showed the lowest AUC are RT, SVM, and Softmax on the
test data. On the other hand, it can be seen that the classifiers based
on the stacked LSTM model that showed the highest (AUC) on the test
data are ANN, and SVM.

The confusion matrix is a specific table layout that permits the
visualization of the performance of a certain methodology, and it is
sometimes called the heat map or the error matrix. The confusion
matrix is obtained on the highest performance classifiers using the
four proposed DL methodologies. It can be seen from the results that
ANN with stacked LSTM had shown the highest classification accuracy.
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Fig. 10(a, b, c, d, e, and f) represent the confusion matrix for the stacked
LSTM based on Softmax, RT, RF, KNN, ANN, and SVM respectively,
and each row of the matrix illustrates the instance in the predicated
classes. Therefore, the 𝑦-axis is called the output class, and the 𝑥-axis is
called the target class. The green orders represent the average correctly
classified instances, while the red indicates the average incorrectly
classified instances. For example, the first row for the confusion matrix
in Fig. 8(a) has three cells and a number beside it on the 𝑦-axis. The
number beside the 𝑦-axis is the class number, while the first cell is
colored in green and has two main values; the first value is an integer,
and the other one is a percentage. The integer values represent the
number of the correctly classified instances from exported shipments
class which means that 4178 shipments from 20 425 are classified
correctly, and this is defined as the value of the TP. The percentage
value is 0.8% which means that 0.8% of the test data are classified
correctly. To illustrate, 4178 is divided over 500 001 to obtain the
8.35%percentage. The second cell in the first row has a red color
which means that the integer value which is 16 306 is the number of
incorrectly classified instances from the not exported shipments and are
classified to be shipment exported. The percentage under the 16 306
value in the cell is deduced by dividing 16 306 over 500 001 to obtain
3.3%. The last cell in the first row has two main percentages, one with a
green color and the other one with a red color. The green one represents
the SEN and the red percentage express the average FNR.

The second row in the first sub-figure has also three main cells. The
first cell has two main values, the first is an integer and the second one
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Fig. 8. Confusion matrix of the stacked LSTM model using various classifiers on the shipments test data prediction.
is a percentage. The integer value is the number of the shipments that
were exported and incorrectly classified as not exported, whereas the
percentage value is the integer value divided over the test set. The same
is for the second cell in the second row. The third cell in the second
row has two values, the first one is the SPEC and the second one is the
FPR. The last row in the confusion matrix has also three main cells:
the first percentage in the first cell is the average precision, the second
percentage in that same cell is the average false discovery rate. The
false discovery rate is a measurement that is calculated by dividing the
average FP over the summation of the average FP and TP. The values
of the second cell two percentages, the first percentage are the average
negative predictive value, and it is the division of the average TN over
the summation of average TN and FN, while the second percentage is
the average false omission rate, and it is calculated by the division of
the average FN over the summation of average FN and average TN.
The last cell in the last row has two percentages; the first percentage is
the summation of the percentages in the green areas, while the second
percentage is the summation of the percentages in the red areas.

4.4. Performance of the stacked BiLSTM model

In this subsection, the same experiment is performed using a stacked
BiLSTM model. The aim is to illustrate if the stacked BiLSTM model
can improve the performance of the results obtained from the stacked-
LSTM. To visualize the performance of the stacked BiLSTM the same
performance measurements described above are calculated and the
roc and the confusion matrices are computed. Fig. 9 represents the
training and the loss curves of the stacked BiLSTM model. The blue line
represents the training, while the red line represents the loss curves,
whereas, the black line describes the calculated validation accuracy
and loss during the training progress. It can be visualized also from the
figure that the number of epochs is equal to 10 which is less than that
of the stacked LSTM and the total number of iterations are 388 360.

Tables 11 and 12 represent the performance of the stacked-BiLSTM
using six classifiers based on various statistical measurements on the
validation and test data sets. It can be manifested from the table that
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stacked BiSLTM based on SVM had the highest classification perfor-
mance, while stacked BiLSTM based on Softmax followed by RT has
the lowest classification results, whereas, the stacked Bi LSTM based
on RF, KNN, and ANN had the same accuracy performance on both
sets.

Fig. 10 shows the roc curves of the stacked BiLSTM model based
on the six classifiers. It can be visualized that stacked Bi LSTM SVM
had the highest AUC value, while the stacked BiLSTM based on ANN
had the lowest AUC value. In comparison with AUC, it is be seen
that the stacked BiLSTM model had higher values for AUC than the
stacked LSTM based on the same classifiers. Fig. 11(a,b,c,d,e, and f)
represent the confusion matrices of stacked BiLSTM based on Softmax,
RT, RF, KNN, ANN, and SVM. Then, based on the confusion matrices
the performance of the stacked BiLSTM is higher than stacked LSTM
using all the classifiers.

4.5. Performance of the stacked GRU model

A deep model based on gated recurrent unit layers is applied to
verify its performance on the shipments of the test and the validation
sets. GRU layers are considered to be faster than LSTM because they
use two gates which are then reset and the forget, while LSTM uses
three gates which are the input, forget, and output. This makes GRU
faster and less expensive. It also uses fewer training parameters and
memory. Therefore, the same experiment is applied on the stacked GRU
model to visualize the achieved accuracy and to compare between the
stacked GRU model and the stacked LSTM and BiLSTM models. Fig. 12
shows the validation accuracy obtained from the stacked GRU model
after training based on 15 epochs forming about 582 540 iterations. It
can be seen that the validation accuracy obtained from the stacked GRU
model is slightly lower than the stacked LSTM and the stacked BiLSTM
models.

On one hand, in Table 13 it can be seen that the results of the
stacked GRU based on KNN and SVM showed the highest performance,
while the stacked GRU based on ANN and Softmax showed an average
performance, whereas, the stacked GRU based on RT and RF showed
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Fig. 9. Training and loss curves of the stacked BiLSTM model for shipments prediction.
Table 11
The results of the stacked-BiLSTM model on the validation data in terms of various statistical performance measurements.

Softmax 476 955 2562 16 987 3497 0.965 0.577 0.994 0.960 0.422 0.034 0.979 0.299 0.249
RT 476 428 3089 16 334 4150 0.966 0.573 0.993 0.9611 0.426 0.033 0.980 0.325 0.284
RF 478 230 1287 17 045 3439 0.965 0.727 0.997 0.963 0.272 0.034 0.981 0.338 0.261
KNN 479 397 120 17 966 2518 0.963 0.954 0.999 0.963 0.045 0.036 0.981 0.335 0.210
ANN 479 419 98 18 113 2371 0.963 0.960 0.999 0.963 0.039 0.036 0.981 0.326 0.199
SVM 479 318 199 17 242 3241 0.965 0.942 0.999 0.965 0.057 0.034 0.982 0.378 0.262
Table 12
The results of the stacked-BiLSTM model on the test data in terms of various statistical performance measurements.

Classifiers TP FP FN TN SEN SPEC P A FPR FNR F1 MCC K

Softmax 477 224 2475 16 633 3669 0.966 0.597 0.994 0.961 0.402 0.033 0.980 0.314 0.263
RT 476 707 2992 16 062 4240 0.967 0.586 0.993 0.961 0.413 0.032 0.980 0.334 0.292
RF 478 484 1215 16 704 3598 0.966 0.747 0.997 0.964 0.252 0.033 0.981 0.353 0.275
KNN 479 578 121 17 665 2637 0.964 0.956 0.999 0.964 0.043 0.035 0.981 0.345 0.221
ANN 479 604 95 17 810 2492 0.964 0.963 0.999 0.964 0.036 0.035 0.981 0.337 0.210
SVM 479 503 196 16 947 3355 0.965 0.944 0.999 0.965 0.055 0.034 0.982 0.387 0.272
Table 13
The results of the stacked-GRU model on the validation data in terms of various statistical performance measurements.

Classifiers TP FP FN TN SEN SPEC P A FPR FNR F1 MCC K

Softmax 468 261 1438 17 747 2555 0.963 0.639 0.996 0.960 0.360 0.036 0.979 0.272 0.199
RT 474 314 5385 16 379 3923 0.966 0.451 0.990 0.957 0.548 0.033 0.978 0.274 0.245
RF 474 993 4706 16 436 3866 0.966 0.451 0.990 0.957 0.548 0.033 0.978 0.274 0.249
KNN 479 602 97 18 017 2285 0.963 0.959 0.999 0.963 0.040 0.036 0.981 0.322 0.194
ANN 481 349 864 17 788 2514 0.964 0.744 0.998 0.962 0.025 0.035 0.980 0.294 0.203
SVM 479 644 55 18 188 2114 0.963 0.974 0.999 0.963 0.025 0.036 0.981 0.312 0.181
the same and the lowest statistical results performance on the valida-
tion data. On the other hand, in Table 13 it can be seen that the results
of the stacked GRU based on KNN showed the highest performance,
while the stacked GRU based on ANN and SVM showed the same
performance and the stacked GRU based on RT and RF showed the same
performance, while the stacked GRU model based on Softmax showed
the lowest statistical results performance on the test data.

Fig. 13 shows the roc curves of the stacked GRU model based on
Softmax, RT, RF, KNN, ANN, and SVM classifiers. It can be visualized
that stacked GRU based on RF had the highest AUC value, while the
stacked GRU based on RT had the lowest AUC value. Fig. 14(a,b,c,d,e,
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and f) represent the confusion matrices of stacked GRU based on
Softmax, RT, RF, KNN, ANN, and SVM. Then, based on the confusion
matrices the performance of the stacked GRU is higher than stacked
LSTM using all the classifiers and slightly lower than the Stacked
BiLSTM (see Table 14).

4.6. Performance of the TCN model

TCN model has experimented on the shipments data for enhancing
the performance of the results obtained from the stacked LSTM, GRU,
and BiLSTM models. It can be found from the former results that the



Expert Systems With Applications 211 (2023) 118604M.M. Bassiouni et al.
Fig. 10. ROC of the stacked BiLSTM model using various classifiers on the shipments test data prediction.
Fig. 11. Confusion matrix of the stacked BiLSTM model using various classifiers on the shipments test data prediction.
Table 14
The results of the stacked-GRU model on the test data in terms of various statistical performance measurements.

Classifiers TP FP FN TN SEN SPEC P A FPR FNR F1 MCC K

Softmax 478 199 1318 18 075 2409 0.963 0.646 0.997 0.961 0.353 0.035 0.980 0.264 0.188
RT 473 995 5522 16 680 3804 0.9659 0.439 0.990 0.956 0.560 0.034 0.977 0.264 0.235
RF 474 770 4747 16 757 3727 0.965 0.439 0.990 0.956 0.560 0.034 0.977 0.264 0.239
KNN 479 435 82 18 347 2137 0.963 0.963 0.998 0.963 0.036 0.036 0.981 0.310 0.181
ANN 478 693 824 18 090 2394 0.963 0.743 0.998 0.962 0.256 0.036 0.980 0.285 0.193
SVM 479 469 48 18 518 1966 0.962 0.976 0.999 0.962 0.023 0.037 0.981 0.300 0.168
performance of the three RNN architectures is nearly similar to each
other in performance with a slight difference between them. Also, it
is seen that the three RNN models fail to predict a large number of
19
shipments that can be exported and this is due to the small number of
shipments that can be exported compared to the shipment that cannot
be exported.
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Fig. 12. Training and loss curves of the stacked GRU model for shipments prediction.
Fig. 13. ROC of the stacked GRU model using various classifiers on the shipments test data prediction.
Table 15
The results of the TCN model on the validation data in terms of various statistical performance measurements.

Classifiers TP FP FN TN SEN SPEC P A FPR FNR F1 MCC K

Softmax 478 931 768 17 008 3294 0.965 0.810 0.998 0.964 0.189 0.034 0.981 0.353 0.260
RT 479 662 37 54 20 248 0.999 0.998 0.999 0.999 0.001 0.000 0.999 0.997 0.997
RF 479 699 0 0 20 302 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1
KNN 479 699 0 0 20 302 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1
ANN 468 794 10 905 1271 19 031 0.997 0.635 0.977 0.975 0.364 0.002 0.987 0.750 0.745
SVM 479 699 0 8104 12 198 0.983 1.000 1.000 0.983 0.000 0.016 0.991 0.768 0.742
Therefore, TCN overcomes all the former problems and can deal
with the unbalanced number of classes. Fig. 15 shows the training
performance based on TCN. It can be seen that it had the highest
validation accuracy compared to the RNN models. It is also visualized
that TCN uses a small number of epochs and iterations compared to the
RNN models.
20
Tables 15 and 16 represent the TCN model performance on the
validation and the test data. It can be manifested that TCN based on
RF and KNN showed a perfect performance on the validation set, and
the TCN model based on RT, RF, and KNN presented the maximum
classification accuracy on the test data. It can be identified from the
tables that the TCN based on the Softmax had a similar performance
equivalent to that of the RNN models on the validation and the test
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Fig. 14. Confusion matrix of the stacked GRU model using various classifiers on the shipments test data prediction.
Fig. 15. Training and loss curves of the TCN model for shipments prediction.
data. Fig. 16 presents the roc curves of the TCN model relying on the
test data. It can be seen that the highest AUC achieved was based on the
TCN depending on RT, RF, and KNN classifiers. The lowest AUC was
reached using TCN based on Softmax, ANN, and SVM. Fig. 17(a,b,c,d,e,
and f) represent the confusion matrices of stacked TCN based on
Softmax, RT, RF, KNN, ANN, and SVM. Then, it can be found that
21
the performance of the TCN model is higher than the stacked LSTM,
BiLSTM, and GRU in the prediction of the shipments. Finally, all these
measurements, plots, and graphs are designed and analyzed to assist the
practitioners to build statistical percentages to support SCRI&AP, which
will help in taking decisions related to the export of the shipments
during this pandemic of COVID.
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Table 16
The results of the TCN model on the test data in terms of various statistical performance measurements.

Classifiers TP FP FN TN SEN SPEC P A FPR FNR F1 MCC K

Softmax 478 726 791 17 223 3261 0.965 0.804 0.998 0.963 0.195 0.034 0.981 0.348 0.255
RT 479 517 0 0 20 484 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1
RF 479 517 0 0 20 484 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1
KNN 479 517 0 0 20 484 1.0000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1
ANN 479 517 0 8179 12 305 0.983 1.000 1.000 0.983 0.000 0.016 0.991 0.768 0.742
SVM 479 473 44 59 20 425 0.998 0.997 0.999 0.997 0.002 0.000 0.999 0.997 0.997
Fig. 16. ROC of the TCN model using various classifiers on the shipments test data prediction.
Fig. 17. ROC of the TCN model using various classifiers on the shipments test data prediction.
4.7. Overall performance

It is essential to visualize the performance of the proposed DL mod-
els together to determine the efficiency of the models compared to each
22
other. Fig. 18(a, b, c, and d) manifest the average sensitivity, specificity,
precision, and accuracy of the proposed DL methodologies using six
classifiers. Each sub-figure consists of bars that present the level of
the performance and how they are compared with other classifiers.
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Fig. 18. Representation for the average sensitivity, specificity, precision and accuracy for the four proposed DL methodologies on the proposed experiment.
Fig. 19. Visual representation of the average TP, TN, FP and FN measurements for shipments exported based on the DL methods.
The red and the white bars describe the performance of the stacked
LSTM and stacked BiLSTM DL models respectively, while the green and
the black bars represent the performance of the stacked GRU and TCN
models respectively. The 𝑥-axis represents the six classifiers and the 𝑦-
axis represents the percentage values. On one hand, Fig. 18(a, b, and d)
represent the accuracy, sensitivity, and specificity measurements, and
the 𝑦-axis is determined with minimum and maximum values from 0.9
to 1 to have a better visualization of the performance. In the first sub-
figure it can be visualized that the values of accuracy are nearly equal
with all the DL models using all the classifiers. It can also be visualized
in sub-figure b that the three RNN models had a sensitivity value
that did not exceed 0.97, while the TCN model reached the maximum
23
sensitivity using RT, RF, and KNN. Meanwhile, in sub-figure (c), the
values of the 𝑦-axis are range from 0 to 1, for better visualization of
the specificity performance. In sub-figure d, it can be seen that the RNN
models had a high precision competing with the TCN model. It can be
from Fig. 18 that the stacked LSTM showed the lowest performance,
while the TCN showed the highest performance based on the presented
bar sub-figures.

Fig. 19(a,b,c, and d) shows a visual representation of the perfor-
mance of the TP, FP, TN, and FN measurements calculated from the
six classifiers on the four proposed DL methods. Each sub-figure has
the number of shipments on the 𝑦-axis and the classifiers on the 𝑥-
axis. The yellow curve represents the performance of the stacked LSTM
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Fig. 20. (a) represents the radar plot for the proposed DL models based on the six classifiers (b) describes the box plot for the classifiers values obtained from the DL models.
and the blue curve expresses the performance of the stacked BiLSTM,
while the black and the red curves illustrate the performance of the
stacked GRU and the TCN model respectively. In Fig. 19(a), the TCN
model showed the highest average TP over all other classifiers, while
the stacked LSTM model showed low average TP performance using
SoftMax and RT classifiers. The stacked LSTM, stacked BiLSTM, and
the TCN had an equivalent TP performance using KNN, ANN, and SVM
classifiers. It can be seen that the stacked LSTM cannot compete with
other models in the TP except using the ANN classifier. In Fig. 19(b), it
can be manifested that the TCN model showed zero average FP value
using RF, KNN, and SVM classifiers, while the stacked BiLSTM and the
stacked GRU showed an equivalent FP using KNN and SVM. However,
the FP performance using LSTM was the worst using Softmax, RT, RF,
KNN, and SVM. In Fig. 19(c), it is visualized that TCN has the highest
TN values using classifiers starting from RT, RF, KNN, ANN, and SVM.
It can be seen that there is a big gap in the TN performance using
TCN than any other proposed DL methodologies. This can prove that
the TCN is superior in performance. Finally, in Fig. 19(d), it can be
seen that the TCN has the lowest average FN values over other DL
methodologies.

For better visualization two different diagrams are added which are
the spider plot and the box plots. The spider plot presents a visual tool
that can be used to organize the data logically. It can be used as a tool
that organizes different concepts relying on color, space, and images.
Fig. 20(a) is a spider plot in the form of a hexagon shape that illustrates
the performance of the deep learning models. It can be manifested that
the TCN is higher in performance than other RNN models especially
using RT, RF, KNN, and SVM. Fig. 20(b) presents the ranges of the
classifiers’ accuracies in terms of the proposed DL models in the form
of a box plot. The box plot represents each classifier in a form of a box
with lower and upper bounds presenting the range and the medium of
the accuracy values obtained from this classifier.

Finally, the same experiment was developed using the 16 attributes
based on the ML classifiers only and without using any of the proposed
deep learning models. The results showed an average accuracy of
76.32%, 80.54%, 83.42%, 82.10%, 85.23% and 84.56% using Softmax,
RT, RF, ANN, KNN, and SVM respectively.

4.8. Result summary

This paper presents a novel case study based on several DL method-
ologies to predict whether the shipments can be exported or not during
the COVID-19 pandemic. Following the lack of case studies in the
application of deep learning approaches in supply chain management,
the main aim is to shed light on the development and application of
DL methodologies in the analysis of supply chain data. Banking on
the results depicted in earlier tables, the stacked LSTM, stacked BiL-
STM, and stacked GRU approaches showed an acceptable performance,
the stacked BiLSTM was higher inaccuracy with a small number of
decimals concerning the stacked LSTM and stacked GRU, while the
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TCN model showed superior performance than others. This proves that
the combination of RNN and CNN layers led to a great enhancement
in the performance. Finally, the last stage is the classification stage,
where classifiers were used to classify the test data and a set of
performance measurements were used to evaluate the performance to
obtain a final accuracy value. The performance is illustrated in the
result tables, curves, bars, and confusion charts. It can be deduced from
the classification stage that the highest performance classifiers were
the RT, RF, KNN, and SVM. In comparison with ML classifiers without
any DL approaches, it can be seen that the DL models improved the
prediction accuracy by 14.46%. The results show the strength and the
robustness of DL models. This also proves that the automatic feature
extraction provided by the DL models assisted the ML classifiers to
produce an accurate forecasting result. It also can be seen based on
the accuracies obtained from the ML approaches that they misclassified
a huge number of shipments even if they exported or not, while the
application of the RNN models which are based on LSTM, BiLSTM, GRU
improved the classification performance of the number of shipments
that are not exported and achieved accuracies higher than that of
the ML approaches. Finally, the proposed TCN model that is based
on a combination of RNN and CNN enhanced the performance of
both classes of shipments even when dealing with a small number of
shipments on one of the two classes.

4.9. Complexity

The complexity of the proposed methods is defined based on two
metrics. The first metric is the time during the training, and the second
metric is the complexity of each DL methodology in terms of Big O
notation. The training time required for the stacked LSTM, stacked
BiLSTM, stacked GRU are approximately 322 min and 51 s, 274 min
and 7 s, 645 min and 18 s respectively, while the training time required
for the TCN is only 52 min and 15 s for each trial training. The
computational complexity of a simple single-recurrent layer such as the
stacked LSTM or GRU is linear depending on the length of the input
sequence. It is also linear during the training and inference time, taking
into account that the internal steps of the LSTM and GRU are based on
the multiplication by constant operation. Therefore, the complexity of
the LSTM or GRU is O(N), where 𝑁 is the length of the sequence. In the
case of the BiLSTM, the complexity will be O (2N) because two LSTMs
are trained instead of one on the input sequence. The complexity of the
TCN model depends on the residual blocks, and the main core of the
residual block is the dilated causal convolutional layer. The complexity
of the dilated convolution layer is O(N). TCN is considered to be a high
paralleled, and this gives an advantage to this model in which it can be
accelerated by technologies such as parallel computing. The main merit
that led TCN to become better in the time complexity is that it took a
small number of epochs to converge and its parallelization has led to a
small amount of computational time, in contrast with the RNNs.
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5. Conclusion and discussion

The benefit of the TCN model is the ability to predict and forecast
the shipments to be exported with high accuracy and in a reasonable
computational time. TCN is preserved to be the next revolution for
the time-series data. It proved that it outperforms the classical CNN
and RNNs for time-series tasks. It performs well in the prediction tasks
with time series. The computations of the TCN are performed layer-
wise. In other words, every time step, the computations are updated
simultaneously instead of updating sequentially like the RNNs. The
convolutions performed are computed across time, and the predic-
tion obtained is a function of a fixed-length period. In addition to
this, fourteen performance measurements are used to evaluate the
model’s performance. The measurements obtained can assist company
owners in making smart decisions before exporting their products
because these measurements are based on probabilistic calculations.
The aftermath of this work will be laid an excellent platform for
practitioners to predict better if a shipment will be exported or not,
given the uncertainties imposed by the COVID-19 pandemic. Thanks
to the digital revolution, particularly with the emergence of Industry
4.0 and 5.0, industries can archive all supply chain data in a single
platform. Before implementing these proposed DL methodologies, one
common assumption was the company’s data-richness. If a company
has a sufficient data management strategy and a platform to retrieve
historical data, implementing these proposed DL methodologies will not
be difficult. Since DL models are data-focused and software-oriented,
implementation of such models may also prerequisite sufficient parallel
computing resources.

Nevertheless, this work can still be enhanced in many different
ways. The amount of shipments chosen in this paper for training is
1 048 576, 500 001 for the test, and 500 001 for the validation. It can
be tried to extend or increase the number of shipments in the testing
phase. The TCN layers can be changed by replacing the dilated casual
convolutional layer with other convolutional layers, applying different
normalization layers, increasing the number of residual blocks, and
adding drop-out or spatial drop-out layers. The gated linear unit can
be replaced with LSTM or other RNN layers. These changes in the TCN
layers can lead to the existence of a few new versions of TCN. Different
types of classifiers can also be applied, such as the decision tables
and sparse representation classifier (SRC), rather than the conventional
and traditional classifiers. The training can be optimized using heuris-
tic or meta-heuristic techniques. Hybridization between different DL
approaches for better performance can be another legit consideration.

This work presents four DL methodologies to predict whether a
shipment will be exported from a source to a destination or not,
which is very useful during the COVID-19 pandemic. The presented DL
methods comprise various supporting classifiers such as SoftMax, RT,
RF, KNN, ANN, and SVM. The prime aim of this work is to shed light
on the development of DL and ML concepts in the context of supply
chain risk identification and assessment plan. The proposed approach
involves capturing data, filtering the attributes, extracting features, and
then classifying them by using a different classifier. Results have shown
a significant improvement in predicting if a shipment is to be exported
or not compared to many other existing ML approaches. The high-
est accuracies obtained based on the stacked LSTM, stacked BiLSTM,
stacked GRU, and the stacked TCN are 96.3%, 96.50%,96.30%, and
100.0%, respectively. It can be concluded that the TCN has signifi-
cantly improved performance over other DL methods. In regards to
computational complexity, the proposed TCN model also outperforms
others.
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