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Abstract

The objective of the present study was to review the existing data on the mechanisms involved 

in the endocrine disrupting activity of mancozeb (MCZ) in its main targets, including thyroid 

and gonads, as well as other endocrine tissues that may be potentially affected by MCZ. 

MCZ exposure was shown to interfere with thyroid functioning through impairment of thyroid 

hormone synthesis due to inhibition of sodium-iodine symporter (NIS) and thyroid peroxidase 

(TPO) activity, as well as thyroglobulin expression. Direct thyrotoxic effect may also contribute 

to thyroid pathology upon MCZ exposure. Gonadal effects of MCZ involve inhibition of sex 

steroid synthesis due to inhibition of P450scc (CYP11A1), as well as 3β-HSD and 17β-HSD. 

In parallel with altered hormone synthesis, MCZ was shown to down-regulate androgen and 

estrogen receptor signaling. Taken together, these gonad-specific effects result in development 

of both male and female reproductive dysfunction. In parallel with clearly estimated targets for 

MCZ endocrine disturbing activity, namely thyroid and gonads, other endocrine tissues may be 

also involved. Specifically, the fungicide was shown to affect cortisol synthesis that may be 

mediated by modulation of CYP11B1 activity. Moreover, MCZ exposure was shown to interfere 

with PPARγ signaling, being a key regulator of adipogenesis. The existing data also propose that 
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endocrine-disrupting effects of MCZ exposure may be mediated by modulation of hypothalamus-

pituitary-target axis. It is proposed that MCZ neurotoxicity may at least partially affect central 

mechanisms of endocrine system functioning. However, further studies are required to unravel the 

mechanisms of MCZ endocrine disrupting activity and overall toxicity.

Kratak sadržaj
Ovo istraživanje je imalo za cilj da pruži pregled postojećih podataka o mehanizmima uključenim 

u delovanje mankozeba (MCZ) kao endokrinog ometača u ciljnim organima, u koja se ubrajaju 

štitna i polne žlezde, kao i u ostalim endokrinim tkivima na koja potencijalno može uticati MCZ. 

Pokazalo se da izloženost mankozebu remeti rad štitne žlezde tako što ometa sintezu tiroidnih 

hormona inhibirajući aktivnost natrijum-jodid simportera (NIS) i tiroidne perioksidaze (TPO), 

kao i ekspresiju tiroglobulina. Neposredno tirotoksično dejstvo takođe može doprineti razvoju 

tiroidne patologije pri izlaganju mankozebu. Delovanje mankozeba na polne žlezde uključuje 

inhibiciju sinteze polnih steroida usled inhibicije P450scc (CYP11A1), kao i 3β-HSD i 17β-HSD. 

Uporedo sa promenama u sintezi hormona, pokazalo se da MCZ snižava slanje signala androgenih 

i estrogenih receptora. Ovi efekti koji se odnose na polne žlezde zajedno dovode do pojave 

reproduktivne disfunkcije kako kod muškaraca, tako i kod žena. Pored jasno utvrđenih ciljnih 

organa na koja MCZ deluje kao endokrini ometač, mogu biti pogođena i druga endokrina 

tkiva. Konkretno, pokazalo se da ovaj fungicid utiče na sintezu kortizola, moguće posredstvom 

modulacije aktivnosti CYP11B1. Pored toga, utvrđeno je da izloženost mankozebu remeti signale 

PPARγ, koji su ključni regulator adipogeneze. Postojeći podaci takođe ukazuju na to da do 

posledica izloženosti mankozebu može doći posredstvom modulacije ose hipotalamus-hipofiza-

ciljni organ. Navodi se da je moguće da neurotoksičnost mankozeba makar delimično utiče na 

centralne mehanizme rada endokrinog sistema. Ipak, neophodna su dalja istraživanja kako bi 

se razjasnili ne samo mehanizmi delovanja mankozeba kao endokrinog ometača već i njegova 

toksičnost uopšte.
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Introduction

Mancozeb (MCZ) is a dithiocarbamate fungicide widely used since 1962 for crop protection 

against a wide spectrum of fungal pathogens (1). Close relatives of MCZ from the same 

group of fungicides include Maneb and Zineb containing Mn2+ and Zn2+ ions, respectively 

(Figure 1).

Environmental persistence of MCZ in soils was considered rather low (2), with half-life 

from 2 to 8 days in aerobic and anaerobic soils, respectively (3). However, MCZ-affected 

soils were characterized by an increase in the formation of ethylthiourea (ETU), the main 
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MCZ metabolite, for 30 days with a subsequent decline (4). Therefore, hazardous effects of 

MCZ exposure are expected to be observed at frequent use. At the same time, application of 

MCZ was shown to result in 20-fold increase in soil toxicity, with toxicity observed within 

more than 0.5 km from the application site (5). Although MCZ does not accumulate in 

plants, certain foods were shown to contain pesticide residues, thus posing significant health 

risks (6).

Although health hazards of mancozeb exposure are considered low in the case of safe 

occupational hygiene procedures (7), its wide use poses significant health hazards (8), 

especially in agricultural communities in developing countries (9).

It is considered that MCZ toxicity is widely attributed to toxic effects of its metabolite, 

ethylthiourea (Figure 2). Correspondingly, urinary ETU levels were found to correlate 

significantly with spraying mancozeb (10). However, certain studies demonstrate that 

adverse effects of MCZ exposure may be ETU-independent (11).

In human and experimental studies, MCZ was reported to have adverse effects on the 

immune system (12), gastrointestinal tract (13, 14), cardiovascular system (15), as well 

as carcinogenic effects (16). An increasing body of data has demonstrated profound 

reproductive, developmental, and thyroid-related toxicity of MCZ (17–19). Moreover, it has 

been shown that the thyroid and gonadal endocrine-disrupting effects upon MCZ exposure 

manifest without overt hepatotoxicity, indicative of endocrine system as a primary target for 

MCZ adverse effects (20).

Concomitantly, the mechanisms of MCZ toxicity in general, and its adverse effects on the 

endocrine system in particular, have yet to be fully characterized. Therefore, the objective 

of the present study was to review the existing data on the mechanisms involved in the 

endocrine disrupting activity of MCZ in its main targets, including the thyroid and gonads, 

as well as other endocrine tissues that may be potentially affected.

Thyroid

MCZ was shown to accumulate to a significant extent in the thyroid following exposure 

(16), thus predisposing to a wide spectrum of thyroid-associated pathologies. Particularly, 

lifetime exposure to MCZ was found to be positively associated with circulating higher 

T3 levels (17), although another study revealed an association between exposure rates and 

both hypo- and hyperthyroidism (18). However, no significant association between MCZ 

exposure and thyroid cancer was observed in farmers using fungicide (19). Examination 

of MCZ-exposed workers revealed significant increase in iodine excretion in association 

with exposure rates, indicative of thyroid-disrupting effects of MCZ and its metabolite 

ethylenthiourea (19).

Experimental studies have also shown a significant effect of MCZ on thyroid functioning, as 

evidenced by reduced T3 and T4 levels, although increased TSH concentrations in response 

to low T4 levels may be indicative of an adequate negative feedback mechanism. Reductions 

in thyroid hormone production were also associated with thyroid gland morphology, 

characterized by epithelial damage, altered stroma, and impaired follicle shape in birds 
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(25). In pregnant rat dams, MCZ exposure also resulted in a dose-dependent decrease in T4 

levels, although offspring T4 levels and thyroid weight were unaffected (26). However, in 

another study, maternal MCZ exposure resulted in morphological alterations in the thyroid, 

characterized by a high number of columnar vacuolated cells, indicative of higher secretory 

activity of the gland in rats (27). Taken together, these findings are indicative of altered 

thyroid hormone secretion upon MCZ exposure.

The underlying mechanisms of impaired thyroid functioning may involve the interference 

of MCZ with thyroid hormone synthesis, including inhibition of thyroid peroxidase (TPO) 

activity in vivo (28), which was also supported by molecular docking analysis (29). The 

inhibition of TPO would be expected to result in altered oxidation rate of iodine and 

its organification. In addition, MCZ was shown to compete with T3 for binding thyroid 

hormone receptor (30). Sodium-iodide transporter (NIS) may be also considered as the 

potential target for MCZ (31), thus reducing iodine availability for thyrocytes and thyroid 

hormone synthesis.

Other studies demonstrate that the MCZ metabolite ETU is responsible for its thyroid-

disrupting activity. Specifically, comparative analysis demonstrated that both mancozeb and 

especially ETU were considered as thyroid disruptors, reducing intrafollicular T4-content in 

zebrafish eleutheroembryos by 50% and nearly to zero values, respectively (32).

ETU is known to be a potent TPO inhibitor with IC50 of 0.791 μM (33), thus affecting a key 

step in thyroid hormone biosynthesis. Despite indications on the potential impact of ETU on 

NIS activity (34), a recent study failed to corroborate a selective inhibition of the transporter 

by ETU (31).

ETU-induced thyroid hormone imbalance may be also mediated by its direct thyrotoxic 

effects. In particular, in vitro transcriptomic analysis and in vivo study in ETU-exposed 

mice demonstrated significant thyrotoxicity of ETU that was associated with a significant 

reduction in thyroid thyroglobulin and Bcl2 mRNA expression levels, altogether resulting in 

a decrease in free T4 levels (35).

Despite its thyroid-targeted effects, the most recent analysis failed to show a significant 

relationship between ETU exposure rates and thyroid cancer, contrary to the reported 

carcinogenic effect of MCZ (36). However, in banana plantation workers, blood ETU levels 

were found to be significantly associated with thyroid nodule size (37).

Testes

Experimental studies demonstrated a significant association between mancozeb exposure 

and reduced testosterone levels, due to toxic impact on testes and especially testosterone-

producing Leydig cells, as well as mechanisms of testosterone biosynthesis. Specifically, 

oral exposure to MCZ also resulted in a significant alteration of testicular morphology, with 

Sertoli cells (38) and Leydig cells (39) degeneration in rodents being the most prevalent. 

Moreover, a significant reduction in testes size, seminiferous tubule diameter, and germ cell 

and Sertoli cell number was observed in mice exposed to MCZ in utero and during lactation 
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(40), indicative of prenatal endocrine-disrupting effect of MCZ on the male reproductive 

system.

MCZ exposure in male mice resulted in a significant decrease in basal plasma testosterone 

levels. Leydig cells isolated from these animals were also characterized by reduced 

basal testosterone and pregnenolone secretion, which may occur secondary to down-

regulation of CYP11A1 activity (41). In addition, inhibition of testicular 3β-hydroxysteroid 

dehydrogenase and 17β-hydroxysteroid dehydrogenase is considered to be the potential 

mechanism for MCZ (500 mg/kg b.w)-induced testosterone reduction (42). However, 

another study demonstrated an increase in testicular 3β-HSD activity in response to 100 

mg/kg b.w MCZ exposure (43). Such an inconsistency may arise from distinct effects 

of various doses of MCZ, which should be addressed in future dose-response studies. 

Moreover, MCZ-induced alteration 3β-HSD activity was accompanied by the disruption 

of testicular germinal epithelium, reduction of spermatogenic cells, and vacuolization 

of Leydig cells, as well as a significant decrease in serum FSH, LH, and testosterone 

concentrations in rabbits. Supplementation with GSH was shown to reverse these changes, 

implicating a role of oxidative stress in testicular MCZ-induced toxicity (43). In turn, 

apoptotic cell death was shown to follow MCZ-induced oxidative stress in testes (44).

In addition to reduced testosterone concentrations and impaired spermatogenesis, MCZ 

exposure also significantly decreased circulating estradiol and progesterone levels (15).

In parallel with reduced testosterone synthesis, MCZ was shown to affect its signaling 

through a down-regulating effect on the androgen receptor, as well as a dose-dependent 

inhibitory effect on agonist-induced AR transactivation (45). Correspondingly, MCZ 

possessed anti-androgenic activity in NIH3T3-AR-Luc cells treated with testosterone (46).

Taken together, the existing data demonstrate that MCZ may alter testosterone production 

via direct cytotoxicity to testosterone-producing Leydig cells, as well as interference with 

testosterone synthesis and signaling. In addition, reduction of LH in parallel with MCZ-

induced decrease in testosterone production may be indicative of disruption of the negative 

feedback mechanism of the hypothalamus-pituitary-gonadal axis. At the same time, high-

quality epidemiological data linking MCZ exposure to male infertility in humans seem to be 

lacking.

Ovaries

The ovaries are considered to be one of the primary targets for MCZ-induced endocrine 

disruption. At the organ level, MCZ exposure has been shown to cause a significant 

decrease in protein and glycogen content in ovaries, whereas the level of total lipids, 

phospholipids, and neutral lipids was increased in parallel with a reduction in ovarian 

size and corpus luteum number in rats (47). These changes were also associated with 

a significant decrease in follicle number and the number of cycles, whereas the number 

of atretic follicles increased substantially in response to MCZ exposure in mice (48). 

Similar patterns were characteristic of MCZ-induced inhibition of compensatory ovarian 

hypertrophy in hemicastrated female rats (49).
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MCZ-induced decrease in follicle number was shown to be associated with apoptosis that 

was ameliorated by vitamin C and E supplementation, implicating oxidative stress in MCZ-

induced ovarian toxicity in mice (50). A combination of these vitamins was also shown to be 

beneficial in the improvement of oocyte maturation, fertilization and implantation rates, and 

embryo development in first-generation mice pups from MCZ-exposed dams (51).

MCZ induced a dose-dependent cytotoxic effect on granulosa cells, characterized by 

altered intracellular contacts, membrane damage, chromatin condensation, cytoplasmic 

vacuolization, and reduced mitochondria length in mice (52). Given the role of granulosa 

cells in estradiol synthesis, MCZ cytotoxicity may result in reduced estradiol synthesis. 

Alteration of adrenal estradiol synthesis may also contribute to female reproductive system 

dysfunction (53).

A significant decrease in granulosa cell viability in response to mancozeb treatment was 

associated with increased progesterone levels. Taken together with the observed decrease in 

oocyte cumulus expansion and maturation upon MCZ exposure, this suggests that increased 

progesterone production may inhibit ovulation in caprines (54).

It is proposed that the mechanisms underlying mancozeb-induced granulosa cell dysfunction 

may involve oxidative stress, mitochondrial dysfunction, impaired ATP production, as well 

as p53 down-regulation (55). The observed decrease in both mRNA and protein p53 

expression in MCZ-exposed granulosa cells was associated with increased cell migration, 

thus inducing premalignant changes (56). In contrast, granulosa cells from MCZ-exposed 

mice were characterized by a higher apoptotic rate, which could be reversed by antioxidant 

resveratrol treatment (57), corroborating the previously discussed association between MCZ 

exposure and oxidative stress in granulosa cells.

In contrast, progesterone synthesis in bovine luteal cells was inhibited by mancozeb 

exposure, being indicative of MCZ-induced inhibition of P450scc (CYP11A1) and 3beta-

HSD (HSD3B1) enzymes (58). Correspondingly, chemical modeling analysis revealed 

capability of MCZ methyl group to interact with hydroxyl group of Asn315 residue in 

CYP11A1 (59).

As a result of endocrine dysfunction, exposure of female mice to mancozeb was shown 

to reduce meiotic maturation of the oocytes and its arrest in metaphase II, as well as 

decreased formation of oocyte pronuclei following in vitro fertilization (60). Even in oocytes 

reaching metaphase II, mancozeb exposure resulted in significant alterations of meiotic 

spindle formation, predominantly characterized by impaired microtubule length (61).

The above-mentioned changes in the ovarian function due to MCZ exposure were shown 

to be associated with impaired implantation in mice (62). Reduced trophoblastic spheroid 

attachment to endometrial epithelial cells in MCZ exposed animals may be at least partially 

mediated by down-regulation of endometrial estrogen receptor β receptor and integrin β3 

expression, whereas ETU itself did not possess such an inhibitory effect (63). In addition, 

even in the lack of significant changes of decidualization markers in endometrial stromal 

cells, MCZ suppressed decidualization-induced morphological changes in stroma cells that 
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may be associated with altered Prostaglandin E synthase transcription and protein expression 

(64).

In contrast to male effects, the existing epidemiological data demonstrate that MCZ 

exposure may significantly affect female fertility and adverse pregnancy outcomes, 

resulting in altered menstrual cycle, spontaneous abortions, miscarriage, as well as adverse 

developmental outcome in children (17).

Adrenals

Several studies demonstrated that the adrenals may also be considered as potential targets for 

mancozeb endocrine-disrupting activity. Specifically, even in the absence of cytotoxic effects 

in rainbow trout adrenocortical cells, MCZ exposure was shown to inhibit dibutyryl-cAMP- 

and ACTH-induced cortisol secretion (65). Molecular docking analysis of the interaction 

between MCZ with steroidogenic enzymes demonstrated that MCZ was characterized by 

the highest binding affinity to CYP11B1, a 11-beta-hydroxylase of the adrenal cortex 

involved in the biosynthesis of cortisol and corticosterone (66). Moreover, in an angiotensin-

II-responsive steroid-producing adrenocortical cell line H295R, mancozeb exposure was 

shown to be associated with estradiol levels (67).

Adipose tissue

In the last decades, adipose tissue has been considered as a novel endocrine organ secreting 

a wide spectrum of molecules with systemic effects (68). Certain studies demonstrated 

the potential impact of MCZ exposure on PPARγ, the key adipogenesis regulator (69). 

Specifically, in in silico molecular docking analysis, MCZ was shown to bind PPARγ 
through interaction between thiomethyl and amino acid residues of the fungicide with 

Arg288, Ser289, His323, and Tyr327 residues in PPARγ molecule (70).

At the same time, in an in vitro study mancozeb was found to be cytotoxic to adipocytes 

without any significant influence on mPPARγ activation (71). In agreement with this, MCZ 

exposure was shown to reduce adipogenesis in a culture of adipocytes, although it increased 

model adipose tissue vascularization in non-toxic concentrations (72).

Neurotoxicity as a potential contributor to mcz endocrine disrupting activity

The existing studies of endocrine disrupting activity of MCZ directly or, more frequently, 

indirectly implicate the role of altered hypothalamus-hypophysis-gland (thyroid, adrenal, or 

gonad) in mediating the observed adverse effects. Despite the lack of clear evidence, it has 

been proposed that toxic effects of MCZ and ETU exposure on neuronal structures may 

result in endocrine dysfunction due to the role of hypothalamus as a central controller of 

endocrine system functioning (73). This hypothesis was indirectly supported by the role 

of neurotoxin-induced hypothalamic damage in the dysregulation of hypothalamic-pituitary 

axis (74). In this regard, MCZ neurotoxicity will be briefly reviewed herein.

Both MCZ and maneb exposure were shown to possess neurotoxic effects in rat dopamine 

and GABA mesencephalic populations, inducing mitochondrial dysfunction characterized 
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by the inhibition of respiratory chain complex I activity. It is noteworthy that neurotoxic 

effects were mediated by both organic moiety and Mn2+ (75). Correspondingly, DA and 

GABAergic neurons were characterized by degeneration in MCZ-exposed C. elegans (76). 

These findings corroborate earlier indications of Mn2+ toxicity (77) with a special focus on 

dopaminergic and GABAergic neurons (78). It has been also demonstrated that microglia 

activation may significantly contribute to MCZ-induced H2O2 generation in mesencephalic 

dopamine and GABA cell populations, which was also found to be Mn2+, but not Zn2+-

dependent (79). Moreover, increased Mn2+ brain accumulation following MCZ exposure 

was associated with reactive oxygen species (ROS) overproduction and a compensatory 

activation of Nrf2/ARE signaling in brain (80). Finally, MCZ exposure was shown to 

increase APP and Aβ42 protein expression in PC12 cells, as well as activate the double-

stranded RNA dependent protein kinase that is known to promote neuronal apoptosis (81). 

In addition, proapoptotic signaling was characterized by modulation of Bcl-2, Bax, Caspase 

3, and caspase 9 mRNA expression in adult zebrafish brain (82).

Several studies have also demonstrated the adverse effects of MCZ exposure on 

neurotransmitter metabolism. Specifically, the levels of excitatory transmitters, glutamate 

and aspartate, were reduced in the early postnatal period, whereas at the age of one month 

cerebellar cortex was characterized by the elevation of glutamate and reduction of aspartate 

(83). An increase in excitatory neurotransmitter release in response to MCZ exposure was 

also associated with mitochondrial and synaptic dysfunction, as well as neuroinflammation 

(84). These findings generally corroborate the observation of MCZ-induced inhibition of 

ATP-dependent vesicular uptake of glutamate (85).

MCZ-induced neurodegeneration at diencephalic sites in Ornate wrasses was also associated 

with increased orexin mRNA and protein expression, being associated with reduced food 

intake (86).

It is also notable that behavioral deficits in MCZ-exposed C. elegans may precede profound 

structural damage in response to MCZ exposure (87), indicating early neuronal effects in the 

course of MCZ toxicity.

Consistently with the laboratory data, human biomonitoring studies demonstrated that MCZ 

exposure was shown to affect neurodevelopment in children. Specifically, MCZ exposure as 

assessed by increased ETU concentrations was shown to be associated with poorer verbal 

learning ability (88), impaired social-emotional development (89), and semantic memory 

(90). Although MCZ neurotoxicity may underlie these effects, it is also proposed that altered 

sex hormone dysregulation or thyroid dysfunction may also affect the developing brain.

Conclusions

The existing data demonstrate that MCZ possesses significant endocrine-disrupting 

properties in the thyroid and gonads, inducing its effects through toxic damage to hormone-

producing cells, inhibition of the enzymes involved in hormone biosynthesis, modulation of 

hormonal receptors, as well as dysregulation of hypothalamus-pituitary-gland axis. At the 
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same time, an increasing body of data demonstrates that other endocrine tissues, including 

adipose tissue and adrenals, may be the targets of MCZ toxicity (Figure 4).

In addition, due to the role of hypothalamic structures in central control of endocrine system 

functioning, it has been proposed that MCZ neurotoxicity may at least partially contribute 

to endocrine disrupting effects of the fungicide. However, further studies are required to 

unravel the mechanisms of MCZ endocrine-disrupting activity and overall toxicity.
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Figure 1. 
Structure of Mancozeb (A) and closely related dithiocarbamate fungicides, Maneb (B) and 

Zineb (C).

Slika 1. Struktura mankozeba (A) i srodnih ditiokarbamatskih fungicida, maneba (B) i 

cineba (C).
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Figure 2. 
Formation of ethylenethiourea, a toxic metabolite of dithiocarbamate fungicides.

Slika 2. Nastajanje etilen tioureje, toksičnog metabolita ditiokarbamatskih fungicida.
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Figure 3. 
The potential mechanisms linking mancozeb exposure and thyroid disorders. MCZ – 

mancozeb, DUOX – dual oxidase, TPO – thyroid peroxidase, TG – thyroglobulin, NIS 

– sodium iodide symporter, MIT – monoiodothyronine, DIT – diiodothyronine, T3 – 

triiodothyronine, T4 – thyroxine.

Slika 3. Potencijalni mehanizmi koji povezuju izloženost mankozebu i tiroidne poremećaje. 

MCZ – mankozeb, DUOX – dual oksidaza, TPO – tiroidna perioksidaza, TG – tiroglobulin, 

NIS – natrijum-jodid simporter, MIT – monojodotironin, DIT – dijodotironin, T3 – 

trijiodotironin, T4 – tiroksin.
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Figure 4. 
Targets of mancozeb endocrine-disrupting activity and the potential role of neurotoxicity in 

endocrine dysfunction through alteration of hypothalamic-pituitary axis.

Figure 4. Ciljna tkiva i organi mankozeba kao endokrinog ometača i moguća uloga 

neurotoksičnosti u endokrinoj disfunkciji putem izmene ose hipotalamus-hipofiza.

Skalny et al. Page 18

Arh Farm (Belgr). Author manuscript; available in PMC 2022 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Thyroid
	Testes
	Ovaries
	Adrenals
	Adipose tissue
	Neurotoxicity as a potential contributor to mcz endocrine disrupting activity
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

