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Summary 
Autoimmune diseases have long been known to share a common pathogenesis involving a dysregulated immune system with a failure to recognize 
self from non-self-antigens. This immune dysregulation is now increasingly understood to be induced by environmental triggers in genetically pre-
disposed individuals. Although several external environmental triggers have been defined in different autoimmune diseases, much attention is being 
paid to the role of the internal micro-environment occupied by the microbiome, which was once termed “the forgotten organ.” In this regard, the 
gut microbiome, serving as an intermediary between some of those external environmental effectors and the immune system, helps programming 
of the immune system to be tolerant to innocent external and self-antigens. However, in the presence of perturbed gut microbiota (dysbiosis), the 
immune system could be erroneously directed in favor of pro-inflammatory pathways to instigate different autoimmune processes.
An accumulating body of evidence, including both experimental and human studies (observational and interventional), points to the role of the 
gut microbiome in different autoimmune diseases. Such evidence could provide a rationale for gut microbiome manipulation with therapeutic 
and even preventative intent in patients with established or predisposed to autoimmune diseases, respectively.
Perturbations of the gut microbiome have been delineated in some immune mediated diseases, IBD in particular. However, such patterns of disturb-
ance (microbiome signatures) and related pathogenetic roles of the gut microbiome are context dependent and cannot be generalized in the same 
exact way to other autoimmune disorders, and the contribution of the gut microbiome to different disease phenotypes has to be precisely defined.
In this review, we revise the evidence for a role of the gut microbiome in various autoimmune diseases and possible mechanisms mediating 
such a role.

Graphical Abstract 

Keywords: Gut microbiome, dysbiosis, immune dysregulation, auto-immune diseases

© The Author(s) 2022. Published by Oxford University Press on behalf of the British Society for Immunology. All rights reserved.  
For permissions, please e-mail: journals.permissions@oup.com

Received 16 December 2021; Revised 29 April 2022; Accepted for publication 30 May 2022

mailto:was825@alumni.bham.ac.uk?subject=


162 Shaheen et al.

Abbreviations:  ACPA, anti-citrullinated protein/peptide antibodies; AhR, aryl hydrocarbon receptors; AID, autoimmune disorders; APC, antigen presenting 
cells; DAMP, damage associated molecular patterns; DSS, dextran sulfate sodium; FMT, fecal microbiota transplantation; FXR, farnesoid X receptors; GF, germ 
free; GPBAR-1, G Protein Bile Acid Receptor 1; GWAS, genome wide association studies; iNKT, invariant NK T cells; IPAA, ileal pouch anal anastomosis; IRAK1, 
IL-1 receptor-associated kinase 1; IRF-7, interferon regulatory factor 7; JIA, juvenile idiopathic arthritis; JNK, janus kinase; LPS, lipopolysaccharides; OTU, 
operational taxonomic unit; PAD, peptidylarginine deaminase; PAMP, pathogen associated molecular patterns; SCFA, short chain fatty acids; SFB, segmented 
filamentous bacteria; SPF, specific pathogen free; Tfh, follicular T helper; VE cadherin, vascular endothelial cadherin.

Introduction
Autoimmune disorders (AID) have been recognized to be 
triggered by environmental factors in genetically susceptible 
individuals with evidence of epigenetic dysregulation being 
involved in the pathogenesis [1, 2]. Several environmental 
agents (e.g. heavy metals, smoking, and pesticides) have been 
identified to have a role in the pathogenesis of autoimmune 
disorders [3]. The gut microbiome, in particular, has recently 
been implicated in contributing to autoimmune disorders via 
the pro-inflammatory and immune deregulatory effects that 
imbalance (dysbiosis) of the microbiome can induce [4].

While a perturbation of immune homeostasis leading to a 
predominance of effector Th1, Th17 lymphocytes and plasma 
cells is an essential pre-requisite for the development of auto-
immune disease states, antigen presenting cells APCs (dendritic 
cells and macrophages) usually instigate the process by sam-
pling different antigens and activating the pro-inflammatory 
milieu. This is critical for the interplay between gut microbiota 
and the immune system where these APCs can transport lu-
minal microbiota-derived antigens and toxins and present them 
to effector T and B lymphocytes, thereby activating them [5].

Although in health, this interaction promotes immune 
system homeostasis by suppressing pro-inflammatory path-
ways and increasing immune-modulatory T-Reg cell differ-
entiation and expansion [6, 7], changes in gut microbiota 
profiles in individuals with a genetic predisposition can lead 
to pathogenic autoimmune pro-inflammatory responses. An 
example of this is Th17 activation, with pathologic sequelae, 
can be induced by certain gut microbiota spp. including 
Enterococcus gallinarum, Bifidobacterium adolescentis, and 
Prevotella copri [8–10].

Interestingly, the effects of a specific gut bacterial species 
on the immune system are context-dependent. For instance, 
Akkermansia muciniphila mono-colonization in gnotobiotic 
C57BL/6 mouse models restricts activation of follicular T 
helper cells (Tfh) to Peyer’s patches with no appreciable acti-
vation of other immune cells whereas inoculation of the same 
species in specific pathogen free (SPF) mice leads to activa-
tion of all phenotypes of CD4+ Th cells with extension to the 
lamina propria as well [11].

The impact of gut microbiota on the immune system ex-
tends beyond the effect on T cell repertoire to include 
over-activation of antibody producing plasma cells, which 
contributes to autoimmunity [12]

In this article, we review the evidence pointing to gut mi-
crobial dysbiosis driving auto immune disease in humans.

Several lines of evidence point to a role for gut microbiota 
imbalance in the initiation and progression of AID. These 
include:

(1) Gut microbiota signatures in different AIDs—human 
cross sectional studies

Different studies have characterized microbiome alterations 
in different autoimmune diseases, with some of these changes 
exhibiting diagnostic potential as demonstrated by machine 

learning models designed to effectively predict the disease 
state. However, two major challenges exist before adopting 
any of these models. The first is the inconsistency between 
these studies regarding the microbiota taxa included in dif-
ferent models. This can be driven by differences in patient 
cohorts studied, geographical location, and varying method-
ologies used. The other challenge is the uncertainty regarding 
association or causation [13]. However, in this regard, the ap-
plication of some statistical methods such as Mendelian ran-
domization, which integrates genetic variants gleaned from 
Genome Wide Association Studies (GWAS) and associated 
with microbiota exposures, to conclude causal associations 
between gut microbiota and different autoimmune diseases 
can provide some valuable insight [14, 15]. Furthermore, 
many of the studies address microbiota dysbiosis in patients 
with well-established disease, thus introducing the con-
founding effect of therapies. In addition, with the exception 
of rheumatoid arthritis, which has been relatively thoroughly 
studied, few human cross-sectional studies in other diseases 
have addressed tissue immunology changes in relation to the 
reported microbiome dysbiosis.

The supplementary table attached demonstrates some of 
the gut microbiome alterations observed in different AID in 
humans “Supplementary Table S1”.

Still, the link between gut dysbiosis and consequent aber-
rant immune system activation has been much better delin-
eated in animal models.

(2) Experimental studies which link gut microbiota changes 
to the development of AID. In experimental models 
of liver disease, it was shown that translocation of 
Enterococcus gallinarum from gut to liver tissues in-
duced autoimmune antibodies and pro-inflammatory 
consequences in mono-colonized susceptible mice, an 
effect which was prevented by antibiotic administra-
tion or vaccination against E. gallinarum [8]. Another 
murine model of primary biliary cholangitis (PBC), 
dnTGFβRII mice, was shown to have gut dysbiosis with 
higher Lachnospiraceae, Bacteroidiaceae with lower rela-
tive abundances of the Ruminococcaceae, Rikenellaceae, 
S24-7 families compared to wild type mice. Interestingly, 
dnTGFβRII mice with TLR2 knockout had a significant 
exaggeration of cholangitis due to bacterial translocation 
resulting from the impaired gut barrier induced by TLR 
2 deficiency. The inflammatory process in both types of 
these transgenic mice was alleviated with antibiotic ad-
ministration [16].

In a mouse model of rheumatoid arthritis (RA) K/BxN, spe-
cific pathogen-free mice developed arthritis after about a 
month, whereas the phenotype was greatly abrogated when 
the mice were kept in germ-free conditions [17]. It was 
shown that mono-colonization with segmented filamentous 
bacteria (SFB) promoted inflammation and induced RA-like 
disease in these transgenic mice via Tfh effector cell activation 
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[17–19]. This again points to the critical interaction between 
gut dysbiosis and genetic predisposition for the development 
of autoimmune diseases given that, under normal circum-
stances, SFB maintain a homeostatic reciprocal relationship 
with Th17 that contains the gut microbiota and limits Th17 
over-expansion in the gut mucosa [20].

In another mouse model of arthritis (collagen-induced 
arthritis), it was shown that antibiotic treatment (Baytril; 
enrofloxacin) caused partial depletion of gut microbiota with 
consequent priming of a pro-inflammatory response (IL-17A, 
INF-γ) that aggravated arthritis severity. Pretreatment with 
antibiotics prior to the development of arthritis in this model 
similarly resulted in an exaggerated immune response [21].

In the context of systemic lupus, Lactobacillus reuteri, 
showing heterogenous immune impacts, was able to ex-
aggerate the pro-inflammatory pathway in interferon/
plasmacytoid dendritic cells (INF/pDC) (even before trans-
location) in both transgenic lupus-prone-mice and the 
TLR7 externally-activated lupus mouse model. Interestingly, 
starch feeding, which suppressed L. reuteri and enriched 
Clostridiales, prevented the development of lupus and abated 
the pro-inflammatory pathways [22].

In a study of the relationship between gut microbiota and 
lupus nephritis activity in MRL/Ipr mice (mouse model of 
lupus nephritis), it was shown that Lactobacillales were de-
pleted and that administration of a mixture of five strains of 
lactobacillus, in addition to changing gut microbiota com-
position toward more Lactobacillales, Clostridiales and 
Desulfovibrionales taxa, improved kidney function, decreased 
IL-6, and increased IL-10 levels in gut mucosa. Systemic ef-
fects of lactobacilli administration included an increase in 
serum IL-10 and a shift of Treg/Th17 ratio towards more Treg 
domination (anti-inflammatory). These effects were observed 
only in castrated male and female mice suggesting a hormone-
dependent effect of probiotics [23]. Similarly, therapeutic ma-
nipulations of gut microbiota through diet alterations can 
have a significant impact on disease progression. This was 
evident by the slower development and improved course 
of nephritic syndrome in a mouse model of lupus nephritis 
(SNF-1) when given acidic water over 34 weeks compared to 
mice on neutral water, which had a much higher rate of severe 
nephritis. These effects were mediated by alterations of the 
immune system driven by significant gut microbiota changes 
affecting particularly SFB [24].

In the model described above (MRL/Ipr), somewhat para-
doxically, administration of an antibiotic cocktail (ampicillin, 
metronidazole, neomycin, and vancomycin) from 9th week 
to the 16th week of age after the onset of disease resulted 
in an attenuated disease course as shown by improvement 
of kidney function, reduction of proteinuria, and reduction 
of IgG anti- (ds) DNA levels. The alteration of gut micro-
biota composition with a decrease of Lachnospiraceae and 
enrichment of the (pre-treatment depleted), lactobacilli was 
accompanied by a favorable change in the immune profile, 
which led to better clinical outcomes in the antibiotic treated 
arm. The antibiotic cocktail administration was associated 
with a reduction in Th17, Innate Lymphoid Cells-3 (ICL-3) 
and double negative cells in the spleen and kidney, which led 
to a drop in the pro-inflammatory IL-17 and IL-6 cytokines, 
and up-regulation of anti-inflammatory IL-10 [25]. In con-
trast to the previous study, antibiotic administration to MRL/
Ipr mice before the onset of lupus, changed gut microbiota 

adversely increasing pathobionts Klebsiella and Proteus while 
depleting beneficial taxa Lactobacillus, Bifidobacterium, and 
Bacteroides which exaggerated disease severity. This effect of 
antibiotics was reversed by fecal microbiota transplantation 
(FMT), which mitigated disease severity by restoring the gut 
microbiota composition depleted by antibiotics [26]. These 
contrasting studies of the effects of antibiotics on the devel-
opment of lupus highlight the importance of the timing of 
dysbiosis in relation to the maturity of the mice [25, 26].

Similarly, the role of the gut microbiome in the predispos-
ition to multiple sclerosis (MS) has been suggested by the 
rapid development of autoimmune encephalitis in the SJL/J 
mouse model of relapsing remitting MS in specific pathogen 
free (SPF) mice compared to their germ free counterparts that 
remained disease free for their lifetime. This could be ex-
plained by the critical role of the gut microbiome in the devel-
opment of a competent immune system capable of initiating 
an autoimmune response in genetically predisposed mice [27].

In addition, gut microbiota from patients with multiple 
sclerosis patients decreased anti-inflammatory IL10+ Treg cell 
expansion and differentiation, inducing pro-inflammatory 
responses with exaggerated symptoms in a mouse model of 
autoimmune encephalitis compared to gut microbiota from 
healthy controls [28]. Furthermore, in mono-colonized mice, 
Acinetobacter calcoaceticus induced differentiation and ex-
pansion of INF+ Th1 response and inhibited FoxP3+ Treg dif-
ferentiation, in contrast to the immune-modulatory effect of 
Parabacteroides distasonis (depleted in MS patients), which 
enhanced IL10 producing CD4+ CD25+ IL10+ T cells and 
IL-10+ FoxP3+ Tregs [28] [28]. Similarly, fecal microbiota 
transplantation from MS discordant twin pairs into auto-
immune encephalitis GF mouse models resulted in the devel-
opment of encephalitis along with reduced IL-10 expression 
in a significant portion of these animals compared to mice 
transplanted with a healthy human microbiome [29].

Consistent with the above, administration of Lactobacillus 
reuteri DSM 17938 over 20 days in a mouse model of 
autoimmune encephalitis significantly and favorably al-
tered gut microbiota composition in these mice to decrease 
relative abundances of taxa associated with encephalitis 
(Rikenellaceae, Anaeroplasma, and Clostridium). Also, this 
probiotic significantly decreased Th1/Th17 populations with 
their related cytokine levels in these mice models, which sig-
nificantly inhibited the development of encephalitis [30].

Adoptive T-cell transfer studies also provide an insight 
into the immune-pathogenesis of AID, highlighting the role 
of gut microbiota in the pathogenesis of inflammatory bowel 
disease (IBD). For instance, CD4+ T lymphocytes, harvested 
from mice treated with antibiotics in early life, hastened the 
development of IBD in Rag-1 deficient mice. A genome wide 
analysis of these CD4+ T cells revealed disturbed expression 
of genes related to cell cycle regulation, cellular stress, and 
metabolism. Interestingly, cohousing antibiotic-treated mice 
with control mice decreased the elevated corticosterone levels 
in antibiotic-treated mice towards normal levels and abated 
the rapid onset of CD4+ induced experimental colitis ob-
served previously [31]. Although not formally addressed, it 
seems likely that the gut microbiota stands at the intersection 
between antibiotics and the immunological effects observed 
in this study.

Translocation of gut microbiota through a leaky gut epithe-
lial barrier with subsequent activation of Islet reactive T cells 
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has been postulated to result in type 1 diabetes mellitus (T1 
DM) in a mouse model of T1 DM, non-obese diabetic (NOD 
mice). In this experimental study, an impaired gut barrier with 
down-regulated tight junction proteins and altered mucous 
layer structure was shown to drive a pro-inflammatory state 
in the gut mucosa and the differentiation of islet reactive T 
cells to pro-inflammatory Th1/Th17 phenotypes, which later 
led to T1 DM. Interestingly, depletion of gut microbiota in 
BDC2.5XNOD mice by a mixture of antibiotics before induc-
tion of significant gut barrier disruption (via DSS colitis) pre-
vented the development of T1 DM in these mice, suggesting 
the importance of gut microbiota translocation for activation 
of the pro-inflammatory state [32].

Experimental models of AIDs also provide an invaluable 
insight on the role of highly selective targeting of gut micro-
biota by certain antibiotics as a way to alter the course of the 
disease. For instance, early life exposure to low dose of peni-
cillin, but not enrofloxacin or metronidazole, played a pro-
tective role against dextran sulfate induced DSS colitis in mice 
and dampened the pro-inflammatory Th17 pathways due to 
selective depletion of SFB [33]. In another study, a cocktail of 
antibiotics (ampicillin, metronidazole, vancomycin, and neo-
mycin) administered in combination or singularly in B10.RIII 
mouse model of autoimmune uveitis resulted in improvement 
of uveitis clinical scores and up-regulation of the immune-
modulatory Treg cells in intestinal mucosa and peripheral 
lymphoid tissues along with a reduction in the pool of effector 
T lymphocytes. Interestingly, these beneficial effects were seen 
only when antibiotics were administered orally inducing 
major gut microbiota shifts and not via the parenteral route 
where the effect on gut microbiota was minimal [34].

(3) Human intervention studies—probiotics and AID

Probiotics can be classified, based on the immune reactions 
they induce, into immunostimulatory or immunomodulatory. 
Immunostimulatory probiotics which induce differentiation 
and expansion of Th1 and Th17 can help mount an immune 
response against infections and malignant cells. On the other 
hand, immunomodulatory probiotics help expansion of Treg 
cells, leading to suppression and containment of inflamma-
tory responses thereby limiting autoimmune diseases [35]

In a large prospective longitudinal cohort study (TEDDY 
cohort) involving 8676 children from six centers in the USA 
and Europe, it was found that early probiotic administration 
(in the first 27 days of life) was associated with a lower in-
cidence of Islet cell autoimmunity. This effect was most evi-
dent in genetically predisposed HLA DR3/4 children but not 
among other genotypes [36].

In a randomized controlled trial (RCT) studying the 
therapeutic benefits of 8-week probiotic supplementation 
in patients with RA (60 patients), it was shown that a pro-
biotic (combination of Lactobacillus casei, acidophilus, and 
bifidum) supplementation improved the Disease Activity 
Score of 28 Joints (DAS-28), improved metabolic biomarkers, 
and reduced high-sensitivity CRP levels significantly in the 
treated cohort compared to the control group [37]. In another 
RCT on female patients with RA, L. casei 01 supplementation 
as a probiotic yielded similar outcomes, with clinical and la-
boratory improvements in the probiotic arm. In addition, a 
significant improvement in the cytokine profile was observed 
with probiotic supplementation [38]. A systematic review and 
meta-analysis of nine RCTs examining the use of probiotics 

in RA, showed that IL-6 was significantly lower in patients 
receiving probiotics compared to control patients, although 
overall no significant difference in clinical outcomes was de-
tected among the amalgamated groups [39].

In an in vitro study of the effects of gut microbiota from SLE 
patients on the immune system, co-culturing gut-microbiota-
conditioned dendritic cells (DC) with naive CD4+ lymphocytes 
significantly promoted Th17 differentiation and expansion 
from CD4+ lymphocytes compared to gut microbiota from 
healthy controls. Interestingly, enrichment of SLE gut micro-
biota with either the probiotic Bifidobacterium bifidum or a 
combination of Ruminococcus obeum and Blautia coccoides 
abated this effect and decreased the Th17/Th1 ratio [40].

Probiotic administration over 2 months was associated with 
improvement of reflux, bloating, and distension symptoms in 
a cohort of otherwise stable 10 systemic sclerosis patients. 
The administered probiotics included either Lactobacillus 
GG or Bifidobacterium infantis [41].

In an interesting placebo-controlled RCT of Bifidobacterium 
longum BB536 administration, over 8 weeks, in patients with 
mild to moderate active ulcerative colitis (UC), there were sig-
nificant improvements in different endoscopic activity scores 
in the probiotic treated group compared to the control arm, 
although differences between the two groups in clinical re-
mission rates were insignificant. Probiotics were administered 
as supplementary therapy to their regular medication [42]. 
On the other hand, in the case of Crohn’s disease, an early 
systematic review and meta-analysis of eight RCTs on the 
use of probiotics for maintenance of remission indicated that 
probiotics failed to maintain clinical or endoscopic remission 
and did not offer an advantage in preventing relapse [43]. 
Although these results were reproducible in patients with CD, 
in another systematic review and meta-analysis of RCTs in 
patients with IBD, probiotics were able to augment the in-
duction of remission when added to conventional therapies 
in patients with UC and also to maintain that remission in 21 
RCTs in UC. In addition, probiotics also showed an advan-
tage in maintaining antibiotic-induced remission in five RCTs 
in patients who have inflamed pouches after undergoing ileo-
anal pouch anastomosis (IPAA) following subtotal colectomy 
to treat UC [44].

Consistent with the above, a systematic review and meta-
analysis of 22 trials using probiotics in IBD showed that 
VSL#3 (a combination of 8 microbial strains) was beneficial 
in inducing remission in patients with active UC. Probiotics 
were also effective in preventing UC relapses to an ex-
tent similar to 5-ASA. However, these benefits of probiotics 
could not be extended to patients with Crohn’s disease [45]. 
Another systematic review and meta-analysis of 27 trials of 
probiotics in IBD yielded similar results, with the conclusion 
that probiotics, particularly VSL#3, had a significant benefit 
in patients with UC with varying degrees of colonic involve-
ment. In addition, a combination of lactobacillus with a pre-
biotic conferred a benefit in UC patients. In Crohn’s disease, 
the use of a combination of VSL#3, Saccharomyces boulardii, 
and lactobacillus showed a trend towards benefit, although 
this was statistically insignificant [46]. In this systematic ana-
lysis, significant benefits of probiotics in Crohn’s disease were 
evident only in patients using steroids and following surgery.

In MS, probiotic administration (a combination 
of lactobacillales casei, fermentum, acidophilus and 
Bifidobacterium bifidum) for 12 weeks in a double-blinded 
placebo-controlled RCT (involving 60 patients), significantly 
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improved clinical scores (Expanded Disability Status Score 
EDSS, Beck Depression Inventory and Depression Anxiety 
Scale) along with improvement of different biochemical 
markers of metabolism and inflammation compared to pla-
cebo (such as CRP, HOMA insulin resistance score, and 
HDL-cholesterol levels) [47]. Almost similar results were 
reproducible in another placebo-controlled RCT in pa-
tients with MS (48 patients), where probiotic administra-
tion (Lactobacillales reuteri, casei, plantarum, fermentum, 
Bifidobacterium infantis, and Bifidobacterium lactis) for 4 
months improved the previously mentioned clinical and bio-
chemical markers compared to placebo. In addition, pro-
biotics significantly improved the immune profile in treated 
patients, decreased IL-6 and increased IL-10 significantly [48].

(4) Human intervention studies—antibiotics and AID

One of the earliest clues to the role of antibiotics in AID 
was the protective effect of prophylactic antibiotics against 
rheumatic fever after group A β-hemolytic streptococci infec-
tion [49].

From a gut microbiota perspective, the dysbiotic impact in-
duced by antibiotics can be long lasting as shown by Jernberg 
et al. who showed that one week of clindamycin treatment 
disturbed human gut microbiota and that this disruption 
could be detected up to 2 years post treatment [50]. However, 
the gut microbiota changes induced by antibiotics provide an 
opportunity for microbiota manipulation with therapeutic in-
tent [51, 52].

The impact of antibiotics on different AID provides a clue 
to the role of gut microbiota in these disorders given the sig-
nificant dysbiotic effects of antibiotics. In an early study, the 
use of specific antimicrobials (phenoxymethylpenicillin and 
quinolones) by mothers before pregnancy was correlated with 
the later development of type I DM in their children. Also, 
frequent use of antibiotics by children (≥7 times) was asso-
ciated with a higher risk of development of DM compared 
to those children with a lower frequency of antibiotic intake 
[53]. In contradistinction to the previous results, antibiotic 
use in early life or during pregnancy was not associated with 
the development of type I DM in genetically predisposed chil-
dren in both the TEDDY cohort group (>15 000 children) 
and the Norwegian Mother and Child Cohort Study (114 215 
children) [54].

Although the American College of Rheumatology included 
minocycline as one of the Disease Modifying Anti-Rheumatoid 
Drugs (DMARDs) that can be used to control RA activity 
[55], this cannot be generalized to other antibiotics where a 
large case-control study (involving 8482 RA patients and 22 
661 control subjects) concluded that antibiotic prescription 
was associated with a higher risk of RA development in the 
following years [56]. This association showed a pattern of 
dose–response relationship where exposure to one antibiotic 
resulted in an odds ratio (OR) of 1.51 compared to an OR of 
2.94 with exposure to >10 antibiotic prescriptions [57]. The 
previous results were reproducible in another nested case-
control study on juvenile idiopathic arthritis patients where 
bacterial antibiotic, and not antiviral or antifungal, were asso-
ciated with a significant risk of developing JIA (OR 2.1) with 
a dose response relationship detected where OR increased to 
three with more than five antibiotic courses. This effect was 
independent of the type or frequency of infection [58].

Among the long list of medications implicated in the de-
velopment of drug-induced lupus, antibiotics and anti-
tuberculosis drugs are well-recognized [59]. The mechanism 
underpinning this has to be explored further in the light of 
the gut dysbiosis induced by antibiotics as shown in the ex-
perimental studies of MRL/Ipr mouse models described 
above [24, 25]. Also, the xenobiotic metabolism offered by 
gut microbiota may offer another means by which gut micro-
biota interact with SLE [60–62].

In a large retrospective study following 1 072 426 subjects 
over the period from 1994 to 2009, antibiotic exposure in 
childhood was associated with the development of IBD in a 
dose-response manner, where exposure to >2 courses of anti-
biotics had a higher hazard ratio compared to exposure to 
≤2 courses of antibiotics. The risk increased by 6% for each 
antibiotic exposure [63].

In IBD, antibiotics have been used with therapeutic intent 
in Crohn’s disease and in patients who develop chronic in-
flammation (pouchitis) following the creation of ileal-pouch 
anal anastomoses (IPAA) following subtotal colectomy for 
UC [64, 65]. In Crohn’s disease, antibiotics have been used for 
the induction of remission with relatively favorable outcomes. 
Crohn’s disease trials included utilization of metronida-
zole + ciprofloxacin for 12 weeks [66], ciprofloxacin alone 
for 6 weeks [67], rifaximin for 16 weeks [68], doxycycline, 
ciprofloxacin and hydroxychloroquine for 4 weeks followed 
by doxycycline and hydroxychloroquine for 24 weeks [69].

Collectively, various and sometimes contradictory out-
comes of antibiotic use in different AID states provide an 
insight into the involvement of gut microbiota in the patho-
genesis of these diseases given the consistent dysbiotic effect 
of broad spectrum antibiotics.

The following section assesses what has been learned about 
the pathogenesis of AID from FMT studies:

(5) Fecal microbiota transplant studies

Fecal microbiota transplantation appears to provide a method 
to transfer the health or disease phenotypes from the donor 
into the recipient through the transfer of a healthy or per-
turbed microbiome niche. This is evident from both experi-
mental studies, where infusion of microbiota from patients 
with autoimmune diseases instigated similar disease processes 
into GF or genetically susceptible animal models, and clinical 
trials of fecal microbiota transplantation from healthy donors 
into patients with different autoimmune disease processes.

In this context, transfer of microbiota from patients with 
IBD into gnotobiotic mice induced a Th-17 pro-inflammatory 
response with down-regulation of the immunomodulatory 
T-cells in these mice models, with subsequent development 
of colitis. These changes were reversed upon transfer of gut 
microbiota from a healthy donor, which corrected dysbiosis 
and abolished the pro-inflammatory response [70].

Furthermore, FMT from a healthy donor into a rat model 
of DSS induced colitis improved gut microbiota perturbation 
in these animal models, restoring diversity and recovering 
some depleted gut microbiota taxa. This was associated with 
significant attenuation of colitis. Interestingly, removal of 
the noxious DSS accelerated the beneficial effects of FMT, 
suggesting a synergistic effect of anti-inflammatories (repre-
sented by stopping DSS) and FMT as a therapeutic approach 
in colitis [71].
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Similarly, transplantation of GF mice with microbiota from 
MS patients predisposes to the development of more severe 
autoimmune encephalitis (when induced experimentally 6 
weeks after FMT) compared to mice receiving microbiota 
from healthy donors. This exaggerated response was associ-
ated with a limited differentiation of T-Reg cells in mice re-
ceiving a diseased microbiome [28].

Although the transfer of fecal microbiota from RA pa-
tients into the GF arthritis (SKG) mouse model, did not in-
duce spontaneous severe, it promoted expansion of the Th-17 
cell lineage in the large intestine of these mice compared to 
their counterparts implanted with microbiota from healthy 
controls. Moreover, after zymosan injection, SKG mice trans-
planted with gut microbiota from RA patients developed 
severe arthritis and systemic inflammation as evidenced by 
higher RF titers, Th-17 response, and enlarged peripheral 
lymph nodes. Prevotella was the main promoter of such a 
response [72].

Again, FMT from SLE patients into GF C57/B6J mice 
led to a pro-inflammatory response as characterized by sig-
nificantly higher levels of SLE related autoantibodies (Anti-
dsDNA, ANA), serum cytokine levels (IL-6, IL-8, TNF-α, 
and INF-γ), significant expansion of different B-lymphocyte 
subsets in the intestinal lamina propria, and significant ex-
pansion of peripheral Th-17 and CD4+ CXCR3+ cells coupled 
with a significant reduction of immunomodulatory T-Reg 
cells in these mice compared to those receiving gut microbiota 
from healthy controls. Interestingly, FMT from SLE patients 
altered histidine metabolism in transplanted mice with conse-
quent systemic effects [73].

Although, “yellow soup,” the first reported form of FMT 
used in treating human diarrhea, dates back more than 1700 
years in China, the first formal use of fecal transplant with 
therapeutic intent in the western world was in 1958 for the 
treatment of pseudomembranous colitis [74]. Further to the 
successful use of FMT in the treatment of C. Difficile colitis 
[75], there has been a surge of trials of FMT with therapeutic 
intent in patients with IBD in the last decade. A systematic 
review and meta-analysis estimated the clinical remission and 
response rates after healthy donor FMT for UC at 28% and 
49%, compared to placebo rates of 9% and 28% (OR 3.68, 
2.48), respectively [76]. Similar odds ratios for clinical remis-
sion and response were reproducible in a later meta-analysis 
of FMT in UC [77]. This is very promising given the inex-
pensive and less side effects associated with such a treatment 
modality.

The immune dysregulation underpinning IBD and the suc-
cessful use of FMT in these diseases instigated an expanding 
number of trials of FMT in other AIDs, with at least five 
trials of FMT in multiple sclerosis, two in RA, two in anky-
losing spondylitis, one in Sjogren syndrome and three in type 
1 DM currently underway in different phases according to 
ClinicalTrials.gov as of April 2022.

Recently, autologous fecal microbiota transplantation was 
shown to preserve residual beta cell function in patients newly 
diagnosed with type 1 DM. This was associated with a change 
in gut microbiome structure, metabolomics, gene expression, 
and more importantly T-cell immunology [78].

The animal experimental and human cross sectional and 
interventional studies described above demonstrate accumu-
lating evidence for a pathogenetic link between disturbances 
of the microbiome and the development of AID. For this 

link to work in practice, gut microbiota components need to 
transfer across the mucosal/epithelial barrier. The following 
sections describe what is known about the microbiota and 
intestinal permeability, and the potential role of bacterial me-
tabolism and molecular mimicry in driving pathogenesis in 
AID.

Gut permeability and microbial translocation 
studies
The gut epithelial barrier has been recognized to be impaired 
in AIDs [79]. This is suggested by a significant body of evi-
dence as follows:

It has been suggested that type 1 DM originates in the gut 
following gut microbiota alterations by environmental fac-
tors (including diet) and impaired gut epithelial barriers that 
enhance bacterial translocation to prime the immune system 
against β cells [80]. In an early study of T1 DM patients, gut 
permeability studies (urinary lactulose/mannitol ratio) and 
electron microscopy studies of duodenal mucosa suggested 
significant impairment of gut permeability in those non-celiac 
patients compared to healthy controls [81]. This increased gut 
permeability, as measured by increased urinary excretion of 
the radioactive tracer Ci 51Cr of EDTA, is correlated at least 
in part to poor glucose control and the development of dia-
betic neuropathy [82].

In another study of intestinal permeability in diabetic pa-
tients, up-regulation of the tight junctional protein zonulin, 
as indicated by significantly higher serum zonulin levels, 
was detected in diabetic patients compared to age and sex 
matched controls. Higher zonulin levels were correlated 
with higher intestinal permeability (as measured by lactu-
lose/mannitol urinary ratio following the administration of 
sugar permeability probes) and disturbed expression of other 
tight junctional proteins such as claudin 1, 2 and myosin 
IXB. Interestingly, higher serum zonulin level were shown 
to precede the development of DM by 3.5 ± 0.9 years [83]. 
This was confirmed in an experimental study on DM prone 
BB rat models, which showed higher levels of intestinal 
intraluminal zonulin (35 fold) compared to DM resistant BB 
rats. Antagonists of zonulin receptors in these DM prone rats 
significantly decreased the incidence of DM by 70% [84].

Interestingly, enhanced gut permeability could be traced 
to the preclinical phases of the disease where patients with 
preclinical islet cell autoimmunity performed similar to those 
with recent onset and long term diabetes mellitus in terms 
of higher urinary lactulose/mannitol excretion compared to 
healthy controls [85]. This again points to a proposed origin 
of T1 DM in the gut.

In a longitudinal study of 21 neonates over 24 months, it 
was shown that gut microbiota changes could be linked to gut 
inflammatory (calprotectin) and permeability (zonulin) bio-
marker changes during early life. Fecal calprotectin, which 
decreased progressively after 6 months of life, correlated 
negatively with alpha diversity and relative abundances of 
Clostridiales and Ruminococcaceae which increased with age. 
On the other hand, zonulin expression (as a surrogate marker 
of permeability) was associated with 19 OTUs, including 
Ruminococcus torques, bacillales, and clostridiales [86].

In another study, children with recently diagnosed T1 DM 
or those who have more than two islet autoantibodies (IA) 
had dysbiotic gut phenotypes with lower relative abundances 
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of Prevotella and Butryicimonas compared to healthy con-
trols. Children with diabetes and those who progressed from 
expressing autoantibodies to the development of DM had 
higher intestinal permeability (as measured by serum lactu-
lose/rhamnose ratio) and lower alpha diversity compared to 
healthy controls and those with antibodies who did not de-
velop diabetes [87].

Patients with Hashimoto’s thyroiditis were shown, in a 
case control study, to have increased intestinal permeability 
as demonstrated by the significantly higher zonulin levels in 
those patients compared to patients with congenital hypo-
thyroidism. Interestingly, serum zonulin levels correlated 
with levothyroxine dose in Hashimoto’s thyroiditis patients, 
suggesting a correlation between intestinal permeability and 
disease severity [88].

An increase in the peripheral pool of B lymphocytes in mul-
tiple sclerosis and Crohn’s disease implies excessive antigen 
exposure with postulated impairment of the gut epithelial 
barrier, increasing the non-self-antigen exposure load in these 
patients with subsequent activation of autoimmunity [89].

In an in vitro experiment, it was shown that plasma from 
patients with active Crohn’s disease, which is rich in pro-
inflammatory cytokines (TNF-α) induced enhanced para-
cellular permeability when incubated with 3D Caco-2 cysts 
with decreased expression of occludin and ZO-1 tight junc-
tion proteins. This effect was mitigated when adalimumab 
(an anti-TNF monoclonal antibody) or a janus kinase (JNK) 
inhibitor was added [90]. This suggests that the inflamma-
tory milieu associated with active Crohn’s disease increases 
gut permeability.

In a cohort study of 50 patients with Crohn’s disease in 
remission, it was shown that disturbed intestinal perme-
ability as assessed by urinary lactulose/rhamnose excretion 
was associated with a significantly higher risk of relapse [91]. 
Abnormal intestinal permeability has been shown to cluster 
in families of patients with Crohn’s disease affecting, healthy 
relatives with no distinct or typical familial pattern, where 
even spouses had higher a prevalence of abnormal intestinal 
permeability, implying an environmental rather than pure 
genetic risk [92].

In a prospective study, low dose naltrexone, known for its 
favorable effects on wound healing, was administered to a 
group of patients with refractory IBD (47 patients) over 12 
weeks. Interestingly, the intervention resulted in clinical im-
provement and remission in 74.5% and 25.5% of patients, 
respectively. This was associated with improved intestinal 
barrier and decreased endoplasmic reticulum stress in the gut 
mucosa [93].

Interferon gamma (INFγ), a proinflammatory cytokine 
which is overexpressed in IBD [94], was shown to impair 
the vascular endothelial barrier in gut mucosa via down-
regulation and impairment of VE-Cadherin adherens protein, 
aggravating permeability and course of IBD. In this regard, 
imatinib has been shown in experimental colitis models to re-
store the VE-cadherin junction and alleviate colitis [95].

There is, however, a considerable “chicken or egg” debate 
regarding the role of intestinal permeability in IBD; whether it 
is an instigating event that leads to the development of IBD or 
a consequence that is aggravated by the disease, with substan-
tial argument can be made for either theory [96, 97],

In this regard, it has been postulated that pathogenic micro-
biota species can enhance gut permeability, providing access 

for environmental antigens, toxins, and bacterial products to 
the blood stream where they can activate a pathogenic im-
mune response. Thus, excessive “gram -ve” bacterial LPS 
translocation (as evidenced by higher soluble CD14 levels) can 
instigate the evolution and progress of SLE [98]. Also, experi-
mental studies have shown that toll-like receptor 4 (TLR4) 
activation is another critical mechanism through which gut 
microbiota can aggravate disease course [99]. TLR2, a re-
ceptor of Pathogen Associated and Damage Associated 
Molecular Patterns (PAMPs and DAMPs), has been shown to 
be overexpressed by CD4+, CD8+ T lymphocytes, and CD14+ 
monocytes in patients with SLE. Activation of TLR2 is known 
to prime a pro-inflammatory milieu by increasing IL-6, IL-17 
a, f, and TNF-α. This may provide a clue to the role of the gut 
microbiota and epithelial barrier dysfunction in the develop-
ment and exaggeration of SLE [100].

Gut dysbiosis has been clearly demonstrated in patients 
with SLE [101, 102]. As maintenance of a healthy gut epi-
thelial barrier is dependent, at least in part, on the inter-
actions between a healthy gut microbiota and a homeostatic 
gut immune system, this could provide a clue to impaired 
gut barrier in patients with SLE. Patients with SLE are 
prone to developing protein losing enteropathy, which can 
be the first manifestation in many cases, and this can pro-
vide another pointer to a disrupted gut epithelial barrier 
given the normal mucosa and absence of lymphangiectasia 
in SLE patients, compared to other protein-losing enterop-
athies [103]

Interestingly, retinoic acid (RA) has been shown to augment 
the intestinal epithelial barrier through regulation of tight 
junction protein expression and by enriching Lactobacillus 
spp. which are known to enhance the gut barrier function. 
It also restores the Th17/Treg balance (which is disturbed 
in SLE) and inhibits pro-inflammatory cytokine pathways, 
namely, IL-1 Receptor-Associated Kinase 1 (IRAK-1) and 
Interferon Regulatory Factor (IRF-7) with a therapeutic po-
tential which could be considered in different AID [104].

Circulating microbiome profiling showed a trend to lower 
microbiome diversity in both SLE patients and healthy con-
trols, which was statistically significant in first degree re-
latives (FDR) of patients with SLE compared to healthy 
controls. Differential microbiome patterns existed among 
different groups in this study, with Lactobacillus iners and 
Thermoanaerobacterium saccharolyticum enriched in 
FDR compared to their control group. Paenibacillus genus 
(Firmicutes) was, in contrast, enriched in control groups com-
pared to SLE patients or FDR [105].

Contribution of gut microbiota to the 
development of AID; involved mechanisms
Several mechanisms have been proposed to explain how gut 
microbiota contribute to the development of autoimmune 
diseases (Fig. 1). These include:

(1) Evidence for translocation of gut bacteria

Bacterial translocation in AID is evidenced by the detection of 
bacteria or their products in the circulation or tissues of those 
patients. Translocation of pathobionts or their products may 
lead to activation of a pro-inflammatory immune response 
with a contribution to AID [7].



168 Shaheen et al.

In a recent case control study, SLE patients and their 
first-degree relatives (excluding siblings) had significantly 
higher plasma lipo-polysaccharide (LPS) levels (a TLR4 
ligand) compared to healthy controls. Plasma LPS correlated 
positively with serum anti-dsDNA IgG levels in first-degree 
relatives (FDR) and healthy controls but not in SLE patients 
[105]. Also, E. Gallinarum was implicated in the pathogenesis 
of autoimmune liver diseases through detection of this bac-
terial DNA in the liver tissues of patients with autoimmune 
hepatitis. Co-culturing this bacterium with hepatocytes pro-
moted a pro-inflammatory autoimmune response [8].

Furthermore, Zegarra-Ruiz et al. were able to demonstrate 
the translocation of Lactobacillus Reuteri, which exagger-
ated pro-inflammatory INF/plasmacytoid DC pathways, to 
internal organs in spontaneous transgenic and inducible lupus 
prone mouse models [22].

The oral periodontal pathobiont Porphyromonas gingivalis 
has been implicated in RA through the generation of 
citrullinated peptides which promote ACPA formation [106]. 
This is consistent with an interesting study on 470 individuals 
from five countries where profiling of oral and gut microbiome 
showed that transfer to and colonization of large intestine by 
oral microbiota strains occurs commonly in healthy subjects 

and that many RA and CRC associated gut pathobionts are, 
in fact, originating from the oral cavity [107].

(2) Bacterial metabolites induced activation of the immune 
system

Gut microbiota products, including their metabolites, can 
have direct effects on the gut mucosal immune system, re-
sulting in either pro-or anti-inflammatory effects. For in-
stance, the SCFA butyrate produced by gut microbiota has 
been shown to decrease the production of cytokines from in-
variant NK T cells (iNKT) via histone deacetylase inhibition. 
This alleviated antibody-induced arthritis (AIA) in wild type 
mice and not iNKT cell-deficient Jα 18 knockout mice [108].

Metabolomic study of fecal samples from patients with 
RA and ankylosing spondylitis demonstrated lower fecal 
SCFA levels [109]. This is consistent with the beneficial 
immunomodulatory effects of SCFA, which are known to 
promote the anti-inflammatory response mediated by T-Reg 
cells and IL-10 [110].

High dietary salt intake (a characteristic of the ‘Western 
diet’) was shown to promote Th17 expansion along 
with depletion of Lactobacillus species. with detrimental 

Figure 1: gut microbiome and autoimmune diseases (potential mechanisms). Perturbed gut microbiota can contribute to the development of 
autoimmune diseases through several proposed , including translocation of pathobionts and their proinflammatory products as lipopolysaccharides 
(LPS), molecular mimicry, which entails similarity between bacterial antigens and self-antigens in genetically predisposed individuals, and disordered 
metabolome (which normally helps contain inflammatory pathways in healthy state). Normally, different microbiota metabolites (SCFA in particular) can 
induce expansion of the immunoregulatory T-helper cells (T-Reg), innate lymphoid cells (ILC-3) and their immunoregulatory cytokines (IL-10, 22) while 
blocking proinflammatory pathways mediated by Th-17. Patients with autoimmune diseases (AID) usually exhibit gut epithelial barrier dysfunction with 
increased permeability facilitating bacterial translocation.
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consequences (hypertension) in both humans and mouse 
models. Interestingly, Indole-3 Lactic Acid (ILA), a metabolite 
of the depleted lactobacillus murinus spp. in these mouse 
models, was shown to significantly reduce Th17 differenti-
ation in vitro [111].

Some strains of Lactobacillus catabolize tryptophan to 
produce indoles and indole derivatives which are ligands for 
aryl hydrocarbon receptors (AhR), which when activated and 
after interaction with the nuclear RORγt receptors, bind to 
the IL22 locus to up-regulate its expression by ILC-3 (in-
nate lymphoid cells). IL22 belongs to the immunomodulator 
family IL10 [112]. This highlights the immunoregulatory ef-
fects mediated by Lactobacillus spp.

AhR ligands produced by some microbiota members have 
proven critical in the gut brain communications/axis where, 
through acting on the central nervous system astrocytes, they 
help mitigate inflammatory activities in the CNS. This is con-
sistent with their reduced levels in patients with multiple 
sclerosis [113, 114].

Secondary bile acids, produced by some gut microbiota spp. 
(Bacteroides fragilis, valgatus, Bifidobacterium, Lactobacillus 
plantarum, Eubacterium among others), have been shown to 
control dendritic cell (DC) function via binding to FXR and 
G Protein Bile Acid Receptor 1 (GPBAR1), thereby inhibiting 
NF-κB mediated transcription of proinflammatory pathways 
[115]. Consistent with that, activation of FXR by the FXR 
agonist obeticholic acid was shown to mitigate intestinal in-
flammation, promote gut epithelial barrier function and in-
hibit translocation of pathobionts [116]. This can represent 
a future prospective towards the prevention of autoimmune 
processes in susceptible patients.

Enzymatic activities intrinsic to some microbiota species 
may sometimes be the “first hit” in the autoimmune process. 
This is exemplified by the peptidylarginine deaminase “PAD” 
activity of the oral pathobiont, Porphyromonas gingivalis, 
known to cause periodontitis. This species has been linked 
to the development of RA along with higher titers of anti-
citrullinated peptide antibodies through citrullination of 
self-peptides by PAD followed by the initiation of the auto-
immune strike [117].

(3) Molecular mimicry

Another potential mechanism by which translocating com-
ponents of the microbiota can effect immune modulation is 
molecular mimicry. The gut microbial ecosystem is a very rich 
one, with a massive repertoire of different antigens encoded 
by more than nine million genes [56].

Molecular mimicry entails similarity between bacterial 
antigens and self-antigens, which drives cross activation of 
effector immune cells to attack self-antigens [7]. However, for 
molecular mimicry to induce an autoimmune response, the 
contribution of host genetics is critical for HLA-DR related 
antigen recognition [118]. This supports the concept of micro-
biota genetic interplay for the development of autoimmune 
diseases, which is particularly evident with gut microbiota 
perturbations in early life [119].

Likewise, molecular mimicry entails gut microbiome im-
mune system interactions to generate cross-reactive lympho-
cytes which can mount autoimmune assaults in remote tissue 
organs that can involve even immune privileged sites such 
as the retina [120]. This usually involves different cells of 
the immune system, both innate and adaptive immune cells, 

involving and not limited to Th-1, Th17, ILCs, NKT, T-Reg, 
and B-lymphocytes [121].

Roseburia intestinalis of the gut microbiome has been 
linked to the evolution of anti-glycoprotein I (Anti-GPI) 
and autoreactive CD4+ memory T cells in antiphospholipid 
syndrome (APS). This has been explained through mo-
lecular mimicry between Roseburia intestinalis expressed 
mimotopes and β2 glycoprotein I antigen. Interestingly, anti- 
RI mimotope antibodies were significantly higher, and cor-
related positively with anti-β2GPI IgG titers, in patients with 
APS. Also, colonization of mouse models with R. intestinalis 
promoted the development of anti-β2GPI IgG with auto-
immune consequences [122].

Some microbiota strains have been implicated in the de-
velopment of collagen-induced arthritis via molecular mim-
icry of their peptides and collagen type 2. These included 
Candida albicans [123] and Streptococcus sanguis [124]. In 
RA, Prevotella copri has been postulated to present antigens, 
mimicking synovial membrane self-antigens, which promote 
auto-reactive T lymphocytes to induce autoimmunity. In this 
context, the filamin A and N-acetylglucosamine-6-sulfatase 
are two outstanding autoantigens in RA that have been 
shown to be similar to Prevotella derived epitopes [125].

Another prominent and old example of the importance of 
molecular mimicry in the development of autoimmune dis-
eases is the cross-reactivity induced by similarity between 
klebsiella pneumoniae antigens and self HLA-B27 to initiate 
the development of ankylosing spondylitis [126].

Gut mycobiota and virobiota: the unknown 
knowns
Although the role of certain viruses such as cytomegalo-
virus has been well characterized in the development and 
exacerbation of some AIDs, including UC [127], SLE [128] 
and MS [129], the role of other integrated viral commu-
nities of the gut microbiome has acquired much attention 
recently. Gut virome alterations have recently been dem-
onstrated in dedicated studies in IBD patients, and a role 
in the disease has been proposed through interactions with 
and alteration of gut microbiome compositions by dif-
ferent phages [130, 131]. Lysis of certain gut bacterial spe-
cies by phages and subsequent release of their components 
has been implicated in the promotion of an inflammatory 
response in IBD [132]. The virome in other autoimmune 
diseases such as RA has recently been explored with com-
positional variations demonstrated in oral more than gut 
viromes. Interestingly, an integrated model of gut virome 
and bacteriome was more accurate in predicting IBD pa-
tients than either one of them [130].

Another player in the gut microbiome is the mycobiota, 
which comprises different fungal communities. Similarly, al-
tered gut mycobiota composition with unbalanced fungal/
bacterial ratios has been demonstrated in patients with CD 
[133, 134]. Still, the altered structure and underpinning role 
of gut mycobiota in different AIDs have to be further ex-
plored in more studies.

Conclusions and the way forward
Data regarding the pivotal role of the gut microbiome in the 
pathogenesis of chronic autoimmune diseases is accumulating 
rapidly.
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In this review we highlight existing evidence from cross 
sectional associative studies in human cohorts and animal 
models, data from studies in which the microbiome has been 
manipulated, including recent exciting data from studies 
involving fecal microbiota transplantation. We touched on 
potential mechanisms by which bacterial components of the 
gut microbiome could result in systemic inflammation by 
interacting with intestinal epithelium and some early data re-
garding the virome in this regard.

Of course, definite mechanisms remain tantalizingly elu-
sive, and much is yet to be learnt regarding the non-bacterial 
contribution of the complex ecosystem in the gut in this re-
gard. Furthermore, given the lack of studies in patients with 
incipient disease and longitudinal follow up fundamental 
questions regarding association as opposed to causality re-
main uncertain.

Future human studies, perhaps employing FMT as a ‘dis-
covery’ as well as treatment modality with careful mechan-
istic analyses will undoubtedly shed light on this in the near 
future.
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