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The deep learning methods for various disease prediction tasks have become very effective and even surpass human experts.
However, the lack of interpretability and medical expertise limits its clinical application. This paper combines knowledge
representation learning and deep learning methods, and a disease prediction model is constructed. The model initially
constructs the relationship graph between the physical indicator and the test value based on the normal range of human
physical examination index. And the human physical examination index for testing value by knowledge representation learning
model is encoded. Then, the patient physical examination data is represented as a vector and input into a deep learning model
built with self-attention mechanism and convolutional neural network to implement disease prediction. The experimental
results show that the model which is used in diabetes prediction yields an accuracy of 97.18% and the recall of 87.55%, which
outperforms other machine learning methods (e.g., lasso, ridge, support vector machine, random forest, and XGBoost).
Compared with the best performing random forest method, the recall is increased by 5.34%, respectively. Therefore, it can be
concluded that the application of medical knowledge into deep learning through knowledge representation learning can be
used in diabetes prediction for the purpose of early detection and assisting diagnosis.

1. Introduction

In recent years, with the development of big data and com-
puter technology, intelligent systems based on deep learning
method have been used in many fields. Deep learning as an
important branch in the field of machine learning has been
used in data representations with multiple levels of abstrac-
tion through multiprocessing layer models [1]. It has been
widely used in the areas of speech recognition [2], image rec-
ognition [3, 4], and natural language processing [5]. With
the increasing usage of medical equipment and digital

recording systems, the amount of patient data is generated
and the value of big data is gradually benefiting with the
usage of deep learning [6]. Currently, in the medical field,
deep learning is mainly used in the research of medical
imaging [7, 8] and electronic health record (EHR) [9, 10].
Moreover, physician-level accuracy has been widely
achieved in some complex disease diagnosis tasks, such as
breast lesion detection [11], diabetes complication predic-
tion [12], and Alzheimer’s disease classification [13].
Nevertheless, deep learning-based methods have not yet
been widely applied in clinical diagnosis. One of the main
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factors is due to the black-box feature of deep learning algo-
rithms. The visual or textual explanations provided by deep
learning algorithms seem reasonable, but the details of the algo-
rithm’s decisions are not clearly exposed [14]. Internals of the
model is difficult to grasp for patients or physicians and can
contribute to trust issues. Furthermore, it is also against the eth-
ical responsibility of clinicians to leave medical decision-
making to black-box systems because it lacks interpretability
[15]. In addition, the majority of deep learning models are
trained on the basis of data-driven [16] methods, which require
that the datasets should be high volume and quality [17]. How-
ever, medical datasets are characterized by uncertainty, hetero-
geneity, time dependence, sparsity, and irregularity [18-20].
These features make the medical datasets that have noisy, miss-
ing, and redundant data; thus, it is challenge to guarantee data
quality. Besides, security and privacy issues in the healthcare
industry restrict the access to healthcare data [21].

Consequently, owing to the black-box feature of deep
learning algorithms and the complexity of medical data, it is
difficult for using deep learning model to achieve perfect
decision-making. However, some research [22] suggests that
the knowledge-driven approach can be applied to embed
external domain of medical expertise into deep learning
models to improve data quality and enhance the interpretabil-
ity of the models. At present, knowledge-driven approach pri-
marily relies on the building of knowledge graphs [23], such as
a knowledge-driven drug reuse approach is proposed in the
literature [24], which is based on the constructed comprehen-
sive drug knowledge graphs. Knowledge graphs, as a kind of
graph-based data structure, can formally describe real-world
matters and their interrelationships [25]. With its huge
descriptive power of complex data and better interpretability
compared with the traditional methods, it has a promising
prospect in smart medical domains [26] and medical knowl-
edge Q&A system [27]. The massive medical knowledge
graphs have also been built constantly, such as IBM’s Watson
Health Knowledge Graph and Shanghai Shuguang Hospital’'s
Knowledge Graph of Chinese Medicine [28]. Intelligent dis-
ease diagnosis is aimed at allowing computer machines to
learn medical professional knowledge and simulate the analy-
sis of physicians for diagnosis [29], so it is of great research sig-
nificance to introduce medical professional knowledge into
disease diagnosis through knowledge graphs.

However, different diseases are diagnosed differently, and
the specialized knowledge has different features. It is worth-
while to consider how the medical knowledge can be widely
applied to various disease diagnosis models. In addition, if the
appropriate medical knowledge is selected, how to represent
this knowledge and combine it rationally with deep learning
models remains a challenge. In view of the above problems, this
paper selects common physical measurement data as the
research object, takes the normal range of medical examination
indexes as the professional knowledge, and simulates the pro-
cess of doctors to make the corresponding diagnosis based on
the patient’s medical examination data with the normal range
of medical examination indicators as the reference in the actual
clinical diagnosis. A disease prediction model integrating
knowledge representation and deep learning is proposed and
applied to diabetes prediction.
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The novelty and innovation in this study are summa-
rized as follows.

(1) According to the normal range of human physical
examination indexes and adopting the knowledge
representation learning method, a representation
vector of human physical examination index and
detection value is constructed. The representation
vector can precisely describe the relationships
between the physical examination indicators and
the detection values, which is suitable for a variety
of deep learning models and can increase the inter-
pretability of disease prediction models

(2) A deep learning model incorporating a knowledge
representation vector is proposed, which employs a
constructed representation vector of medical exami-
nation indicators and detection values to obtain a
relationship matrix of medical examination data.
The model associates each medical examination
indicator through a self-attention mechanism and
utilizes convolutional neural networks for feature
extraction for diabetes prediction

(3) We compared our model with other machine learn-
ing models such as support vector machines and
random forests, and the results show that our model
is superior to the compared machine learning
models in both precision and recall, indicating that
the presented model has a better diabetes prediction
effect

2. Materials and Methods

2.1. Deep Learning for Disease Diagnosis. In recent years, a
large amount of research work has attempted to apply deep
learning to medical diagnosis to assist clinicians and improve
the quality of healthcare, for example, medical image classifi-
cation [30-32], lesion detection [11], and pathology slides
[30, 33], as well as electronic health records [34, 35]. Although
these researches have yielded valuable results, the lack of inter-
pretability and data quality issues are still key factors limiting
their clinical application.

In order to trade off the performance and interpretability
of the models, a large number of researchers have researched
on interpretable disease diagnosis models [14, 15, 36], focus-
ing on interpreting deep black-box models [37]. For example,
Van Molle et al. presented a method which can unravel the
black box of convolutional neural networks in the dermatol-
ogy domain by visualizing the learned feature maps [38]. They
concluded that the features which focused on the convolu-
tional neural network were similar to dermatologists for diag-
nosis. However, the method suffers from the problem that it
cannot explain the causal relationship between the features
detected by the model and its output, which is not universal.
Because it has no specialized knowledge, it is still limited by
the quality of the data.

In addition, a number of researches [22, 39-41] have
attempted to incorporate domain expertise into deep learning
models. Shang et al. constructed a knowledge graph for EHRs
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to effectively utilize unused information hidden in EHRs [39].
And the semantic rules identified important clinical findings
in EHR data. However, the quality of this knowledge graph
depends on the amount of data in the EHR. Choi et al. sug-
gested GRAM, a graph-based attention model, which is used
to address the data insufficiency and interpretability issues,
and supplemented the EHR with hierarchical information
inherent to medical ontologies [40]. Ma et al. considered prior
medical knowledge in disease risk prediction and successfully
introduced a prior medical knowledge into deep learning
models using posteriori regularization techniques, and it can
be effectively applied to real medical datasets [41].

In the above-mentioned study, the main emphasis was on
electronic health records. However, not all patients have com-
plete records, and these records do not exist for patients who
may be first-timers in a hospital. Therefore, the broad applica-
bility of these models remains a challenge. To this end, Zou
et al. [42] selected relatively easy-to-obtain physical examina-
tion data as the subject of their study and used decision trees,
random forests, and neural networks to predict diabetes and
validated the general applicability of the models in their exper-
iments. However, the models based on machine learning or
statistical methods have low performance.

In order to improve the generalization and performance
of the model, Alade et al. proposed a feedforward network
model for diagnosing diabetes in pregnant women based
on expert system and applied it in web applications [43].
Azeez et al. constructed an expert system for disease diagno-
sis using the Mamdani reasoning method, which can be used
to diagnose a variety of diseases [44]. The expert system pro-
posed in literature [43, 44] has wide applicability and greatly
improves the accuracy of disease prediction, but it still lacks
the support of external professional knowledge.

Combining the advantages and disadvantages of the
above studies, this paper comprehensively considers the gen-
eral applicability of the model and the knowledge of medical
expertise. According to the medical examination data of
patients, we try to integrate medical expertise and combine
with deep learning technology to build a deep learning
model incorporating knowledge representation which can
be used to assist the diagnosis of diabetes.

2.2. Knowledge Representation Learning. Usually, the tradi-
tional knowledge graph is represented as triples (h, r, t), where
h denotes the head entity, ¢t denotes the tail entity, and r
denotes the relationship. Knowledge representation learning
[45] represents the research objects (entities and relations) as
dense low-dimensional real-valued vectors. Researchers have
proposed several knowledge representation models. In this
paper, we will introduce the TransE [46], Trans [47], and
TransR [48] models which are used in our experiments. The
model architecture of the three is shown in Figure 1.

The TransE model [46] uses the vector of relation 1. as a
translation between the head entity vector 1, and the tail entity
vector 1,. Equation (1) shows the relationship of those three
vectors.

1,+1 =1, (1)

Its loss function is shown in the following equation:
fr(h )=+ =1, ;. (2)

That is the L, or L, distances of the vectors 1, +1, and L,.

The TransE model has relative parameters, low compu-
tational complexity, and high scalability. However, because
of the simplicity of the model, the performance of the model
is dramatically reduced when dealing with complex relation-
ships. For example, in a one-to-many relationship, suppose
there are two triples in the knowledge base, which includes
diabetes, complications, and diabetic nephropathy and (,
complications, and diabetic foot; if the TransE model is used,
it will make the vectors of diabetic nephropathy and diabetic
foot become the same, which is obviously inconsistent with
the fact. Aiming at solving the shortcomings of TransE in
handling complex relationships, the improved TransH and
TransR models are proposed, respectively.

The TransH model [45] firstly processes the head entity
vector 1, and the tail entity vector 1, along the normal w, to
the hyperplane corresponding to the relation r, denoted by
1, andl, , respectively. The relationships are shown as follows:

L, =1, - wLw, (3)

l, =1- wilw,. (4)

Its loss function is shown in the following equation:
f?’(h’ t):|‘lh,+lr_1t,HL]/L2' (5)

The TransR model [46] implements the projection of
entity vectors onto the subspace of the relation r by defining

(dxk

the projection matrix M, € R“%), denoted 1, and1l, , respec-

tively. The relationship is shown as follows:

lh, = thT’

6
1 =1M,. ©

Then, it can make I, +1,=1,, and its loss function is
shown in the following equation:

fm =, +1 -1, )

3. Model Architecture

In this paper, a disease prediction model fusing knowledge
representation and deep learning is proposed, which is
aimed at simulating the process of disease diagnosis by phy-
sicians based on the patient’s physical examination data and
the known normal range of physical examination indexes.
The method obtains a matrix representation of patient phys-
ical examination data which is input into a deep learning
model to get the result of disease prediction.

The architecture of the deep learning model incorporating
the knowledge representation vector is shown in Figure 2. It is
mainly divided into the following three parts:
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(a) TransE model

(b) TransH model

Entity space

\4

Relation space

(¢) TransR model

FiGure 1: The models of different knowledge representation learning.

(1) According to the normal range of the test value of
the physical examination indicator, the relationship
between the physical examination indicator and the
detection value is constructed, and then, the knowl-
edge representation learning model is used to
acquire the representation vector of the physical
examination indicator and the detection value

(2) We obtain the physical examination data of patients,
acquire the relationship vectors between all physical
examination indicators and corresponding test
values according to the representation vectors of
physical examination indicators and test values in
(1), and splice them into a relationship matrix

(3) The relationship matrix is input to the classifier con-
structed by the self-attention mechanism (self-atten-
tion) and convolutional neural network (CNN) to
obtain the prediction results of diabetes

In this paper, the proposed model is referred to TH-
SAC. The choice of SAC model was made by comparing var-
ious models through reading literature and experiments.
This paper first tries classical machine learning methods
such as logistic regression and random forest, but these
methods have been widely used in disease prediction, and
it is difficult to improve the prediction effect. Therefore, we
began to try to use the method of deep learning. Firstly, we
got the vector representation of physical examination index
values through knowledge representation learning. Because
a single physical examination indicator cannot fully reflect
the disease status, different indicators will affect each other.
Through reading literature, we know that self-attention can

obtain global information, so we choose the self-attention
mechanism to calculate the interaction between different
indicators. However, self-attention calculations alone were
used to extract features that accurately reflected disease. In
this regard, CNN extraction is introduced for feature extrac-
tion on the basis of self-attention. Of course, we also had
tried DNN, Bi-LSTM, and other models, as well as self-
attention and CNN alone, but the effect was not good when
we evaluated the accuracy, recall rate, F1 value, and so on; at
last, we finally chose SAC model.

3.1. Representation Vector of Physical Examination Indicators
and Detection Values. In the actual clinical diagnosis of dis-
eases, physicians often make judgments by combining the
patient’s physical examination data and existing physical
examination knowledge. For example, the normal range of
blood glucose values in the clinical diagnosis of diabetes is
3.9-6.1 mmol/L. When the blood glucose value is greater than
7.0 mmol/L, it is considered as a possibility of diabetes mellitus
[49]. As shown in Figure 2, this paper considers embedding
such medical expertise in the model, namely, the normal range
of physical examination indicators. Firstly, according to the
normal range of physical examination indicators defined in
medical science and the advice of medical experts, the values
of relevant physical examination indicators are divided into
seven ranges: severely low, generally low, slightly low, normal,
slightly high, generally high, and seriously high. The measured
value of each physical examination index corresponds to a
range; that is, there is a relationship between the physical
examination index and the measured value. For example, if
the normal range of triglycerides is 0.45-1.81 mmol/L, the rela-
tionship between triglycerides and 0.45.mmol/L is normal.
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This relationship can be expressed in triplet form (triglyceride, e, =e,—¢, (8)

normal, 0.45.mmol/L), which is the basic form of the knowl-
edge graph. Through this method, all relevant physical exam-
ination indicators and their corresponding test values are
expressed in the form of the above triplet, and then, the phys-
ical examination indicators and the corresponding test values
are expressed in vector form through knowledge representa-
tion learning method.

Since it exists complex one-to-many and many-to-one
relationships between the physical examination indexes
and the corresponding test values, the TransH model chosen
in this paper is more suitable with this kind of relational rep-
resentation. Therefore, after converting the knowledge of the
physical examination into the form of triples, the representa-
tion vector is obtained using the TransH model. The model
uses the translation vector and the normal vector of the
hyperplane to represent the relation r. The projection
vectors of the entity vector and the hyperplane which is
called as the relation r are calculated according to equations
(3) and (4). Then, according to equation (5), the low-
dimensional dense representation entity vector of the physi-
cal examination index and the test value is acquired.

3.2. Relationship Vector of Physical Examination Indicators
and Detection Values. After getting the representation vector
of the medical examination knowledge, in order to reflect the
relationship between the medical examination indicators
and their corresponding test values in the model, we use
the difference between the entity vector of each medical
examination indicator and its corresponding test value to
represent the relationship. Based on the basic idea of knowl-
edge representation learning model, 1, +1, = 1,, the relation-
ship between the entity vector of physical examination
indicator and its corresponding entity vector of detection
value is represented by the difference, as shown in the
following equation:

where e, is the entity vector of test values, e, is the entity vec-
tor of physical indicators, and e, is the corresponding rela-
tionship vector between e, and e,.

For example, the relationship between the physical vec-
tOT €4,(1ing blood glucose ©f fasting blood glucose and the physical
vector e; ;... Of the test value (7.1 mmol/L) is expressed as
€7 1mmol/L ~ efastingblood glucose* The r elatiOHShip vectors elr
between all the physical indicators and their corresponding
test values are combined to form the relationship matrix
between the physical indicators and the test values of one
person, as shown in the following formula:

k 12 3
EY" = le, €, €], ]. 9)
Among them, k is the dimension of the entity vector, and
m is the number of physical examination indicators.

3.3. SAC Classifier. The SAC classifier is key part of the TH-
SAC model in Figure 3 and consists of the following layers:

(1) Input layer: the relationship matrix E¥” obtained by
splicing the relationship vectors between all the
physical examination indicators and the correspond-
ing detection values is the input of the classifier

(2) Self-attention layer: since each medical examination
index is interrelated, the relationship matrix E® is
further input into the self-attention layer, so that
each medical examination index can get global infor-
mation, which is in line with the current medical
diagnosis experience. In this paper, the number of
layers adopted for the self-attentive layer is 2 in our
attention mechanism. As shown in Figure 4, in the
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FiGurg 3: TH-SAC: architecture diagram of a disease prediction model integrating knowledge representation and deep learning.
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attention layer, the following three weights w, € RPk
, Wi € R?* and w, € R are first defined, and each
relation vector €' is linearly mapped into three differ-
ent spaces according to equations (10)-(12) to get
the query vector g, the key vector k;, and the value
vector v;:

q; = qui, (10)
k, =wel, (11)
v,=w,e (12)

For each query vector q;, we can calculate the output

vector e, according to the following equation:

. m
€on = Z aiiVi> (13)
=

where a;; denotes the weight of the ith output concern to the
jth input, which is calculated from the following equation:

a;; = softmax (s(k;, q;) ),
ijqi (14)
VD’

where softmax(e) is a function normalized by columns and
D, is the dimension of q;.

In order to simultaneously calculate the output vector
corresponding to each relation vector in the relation matrix
EF™, the query vector q,, the key vector k;, and the value
vector v; can be merged into the query matrix Q, the key
matrix K, and the value matrix V, respectively. Then, the
output matrix of the attention layer is obtained according
to the following equation:

$ (kj’ q) =

K'Q
E . = Vsoft . 15
attn sortmax ( \/D_k) ( )

(3) Convolutional layer: after acquiring the global infor-
mation through the self-attention layer, the output
matrix E ,, of the self-attention layer is input to
the convolutional neural network in purpose of min-
ing the information in the relationship matrix using
deep learning model. Suppose W/ € R™?, where h is
the filter window size and d denotes the dimension-
ality of the input vector. For the local features e/ith~!

of the input from row i to row i + k — 1, the ith eigen-

value of the feature submatrix extracted by the
convolutional filter is expressed as

¢ :f(wf . e:ti;lh_l + b), (16)

where f(-) is the nonlinear activation function relu(-) and b
is the bias value. Thus, the local feature matrix of the output

matrix E_, obtained from the attention layer is

C=cp> 65 €357 5Cpppyn] (17)

Subsequently, a maximum pooling operation is per-
formed on each feature mapping, i.e.,

¢=max {C}. (18)

Then, the final representation vector of the medical exam-
ination data is obtained as shown in the following equation:

th = [0 05 GGy - (19)

(4) Fully connected layer and softmax layer: the repre-
sentation vector of medical examination data is
transformed by the fully connected layer to obtain
the score vector s which can be used to predict diabe-
tes. The quantity of hidden units in the fully con-
nected layer is 2, ie., diabetic and nondiabetic.
Finally, the score vector s is input to the softmax
layer which can transform to a conditional probabil-
ity distribution:

pi(s) = exp (s;) ’

i=1,2 20
3 e (s) )

The whole model uses a crossentropy loss function to
measure the gap between the predicted probability distribu-
tion of diabetes and the real probability distribution, and the
parameters of the model are trained and updated by a back-



TaBLE 1: The reference range of detection value of some physical
examination indicators.

Medical examination indicator Reference range

Serum alanine aminotransferase 9-50IU/L
Serum aspartate aminotransferase 15-401U/L
Albumin 40.0-55.0g/L

Total bilirubin

Blood urea nitrogen

2.0-20.0 ymol/L

3.6-9.5 mmol/L
2.86-6.10 mmol/L
0.45-1.81 mmol/L
0.00-3.37 mmol/L
1.16-1.42 mmol/L

Total cholesterol
Triglycerides
Low-density lipoprotein
High-density lipoprotein

TABLE 2: Entity type and quantity.

. Number of

Type of entity Example entities
Medical examination indicator Triglycerides 16
Detection value 1.62 mmol/L 5499
Abnormally high <HIGHEST> 1
Abnormally low <LOWEST> 1
Unknown <UNK> 1
Medical examination indicator Triglycerides 16

TaBLE 3: Relationship type and quantity.

Relationship types Number of entities

Severely low 337
Generally low 343
Slightly low 457
Normal 1558
Slightly high 2663
Generally high 2005
Severely high 2017

TaBLE 4: The distribution of physical examination dataset.

Disease label Training set Test set
Diabetes 3815 954
Nondiabetes 35924 8824
Total 39109 9778

propagation algorithm. The loss function is denoted as
1
Loss = _ﬁZD’i log (p;) + (1-y;)-log (1-p;)], (21
i

where N represents the number of samples and y, represents
the true label of sample i and with disease is marked as 1 and
no disease is marked as 0.
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TaBLE 5: Model parameter settings.

Parameter Value
Optimizer Adam
Batch_size 32
Epoch 100
Dropout 0.5
Learning rate 0.0002
Entity vector dimension of physical examination data 256
Size of convolution filter window 2,3, 4
Number of convolution filters per window size 100
Number of layers of self-attention 2

4. Experiment and Results

4.1. Experimental Data. The data that are used in the exper-
iments are derived from the reference range of the detection
values of diabetes physical examination indexes provided by
Zhongda Hospital, China. The procedure of this study was
approved by the Research Ethics Committee of Zhongda
Hospital affiliated to Southeast University (Approval no. of
Ethics Committee: 2019ZDSYLL199-P01), China. Table 1
shows the reference ranges of the test values of medical indi-
cators. Based on this physical examination knowledge, a
total of 5518 related entities, 7 types of relational entities
(severely low, generally low, slightly low, normal, slightly
high, generally high, and severely high), and 9410 ternary
relationships are established. The types of entities and their
quantities are shown in Table 2, and the types of relation-
ships and their numbers are shown in Table 3. As it is
impossible to predict the threshold value of each physical
test index in practice, the entities with detection values
greater than (less than) the maximum (minimum) value
set in the experiment are uniformly treated as abnormally
high <HIGHEST> entities (abnormally low <LOWEST>
entities). In addition, all missing value items were replaced
by the unknown entity <UNK>.

The physical examination data of diabetic patients pro-
vided by a large company is adopted, which contains 11
physical examination indicators, such as serum alanine ami-
notransferase, serum aspartate aminotransferase, and albu-
min, with a total number of 48887. And the training set
accounts for 80%, and the test set accounts for 20%, as
shown in Table 4.

4.2. Experimental Setup. The deep learning framework,
PyTorch, and the knowledge representation learning frame-
work, OpenKE, are primarily utilized in the experiments.
The specific parameter settings of model are shown in
Table 5. In this paper, the hyperparameter values selected
in the model are optimized by grid search algorithm, and
the accidental selection of the hyperparameter values is pre-
vented by the cross-validation of fivefold.

4.3. Evaluation Indicators. In this paper, accuracy, recall and
F1_score are adopted. Mean rank (MR) and Hit@10 are cho-
sen as the evaluation metrics of the knowledge representation
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model. In addition, in order to improve the credibility, the
experimental results are verified by the fivefold cross-
validation method.

4.3.1. Mean Rank. When evaluating the performance of the
knowledge representation learning model, each triple(h, r, t)
is evaluated, the head entity is removed and replaced with
other entities in the knowledge base in turn, and the wrong tri-
ple entity (h, r, t) is constructed. The similarity of head and tail
entities using the relation function f,(h, t) is calculated. After
getting the similarity from all the triples (including the correct
triples and the incorrect triples), the triples are sorted in an
ascending order. The average value of all correct triple ranking
positions is the MR. For better knowledge graph representa-
tion, the score of the correct triad will be smaller than the score
of the incorrect triad and will be ranked more highly. There-
fore, the smaller the MR value is, the better the knowledge
mapping representation vector is. Specifically, MR is shown
in the following equation:

(22)

where N denotes the number of correct triples and rank; rep-
resents the ranking of the correct triples.

4.3.2. Hit@10. The ratio of the number of correct triples con-
tained in the top 10 of the above ranking to the total amount
of correct triples is the Hit@10 value. Therefore, the larger
the Hit@10 value is, the better the knowledge graph represen-
tation vector is. Specifically, as shown in the following
formula,

rank<10
Hit@10= —L
NT

x 100%, (23)

where N%<10 represents the number of correct triples in the
top ten.

4.4. Analysis of Experimental Results

4.4.1. Comparative Analysis of Knowledge Representation
Models. At first, the performance of different knowledge repre-
sentation models is analyzed, and the results are illustrated in
Tables 6 and 7. As shown in Table 6, from the comprehensive
MR metrics and Hit@10 metrics, the TransH model performs
the best effect of knowledge representation. This demonstrates
that TransH can better deal with the complex relationships of
“one to many” and “many to one” between physical examina-
tions and detection values, which makes up for the deficiency
of TransE. Although the TransR model takes into account
these complex relationships, there are only similar relation-
ships between the physical examination and the test value,
such as high and low, and the different relationships focus
on the similar properties of the entities, so the TransR model
does not perform well in knowledge representation.

In addition, from Table 7, we can see that the TransH
model outperforms both the TransE model and the TransR
model by 0.07% and 0.15% in accuracy and 0.29% and

TaBLE 6: MR and Hit@10 of different knowledge representation
model.

Model MR Hit@10 (%)
TransE 623.0 44.9
TransH 711.6 47.9
TransR 897.8 19.0

TaBLE 7: Accuracy and Recall Rates of Different Knowledge
Representation Models.

Model Accuracy (%) Recall (%) F1

TransE-SAC 97.11 87.16 0.8300
TH-SAC 97.18 87.55 0.8351
TransR-SAC 97.03 86.89 0.8295

TABLE 8: Accuracy and recall rates of different diabetes prediction
models.

Model Accuracy (%) Recall (%) F1

LR 90.29 49.9 0.1731
SVM 90.59 51.60 0.0631
NB 87.48 53.94 0.1604
RF 96.37 82.11 0.8295
XGBoost 92.42 61.64 0.3746
DNN 90.21 58.62 0.1373
TH-SA 96.05 86.15 0.7892
TH-CNN 96.26 87.03 0.8307
TH-SAC 97.18 87.55 0.8351

TaBLE 9: Distribution of sampled physical examination dataset.

Disease label Training set Test set
Diabetes 35294 8824
Nondiabetes 35924 8824
Total 70588 17648

0.56% in recall, respectively. This further indicates that the
representation of the TransH model is more rational for
the triples constructed in this paper based on medical exam-
ination knowledge, which also makes the performance of
prediction model better. The text continues here (Figure 3
and Table 2).

4.4.2. Comparative Analysis. For the purpose of verifying the
advantages of the proposed TH-SAC model for the diabetes
prediction task, some relevant diabetes prediction models are
selected for experiments. The TH-SAC model is used to repre-
sent the medical examination data as vectors through knowl-
edge representation learning, and deep learning approach is
used for prediction. In this paper, the traditional machine
learning methods that work well on diabetes prediction tasks
and deep neural networks (DNN) are selected for comparisons,
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and the results are illustrated in Table 8. Compared with the
most effective random forest methods in machine learning, it
can be seen that the TH-SAC model has been improved by
0.81% and 5.34% in accuracy and recall, respectively. This is

because our model is based on deep learning approach and
adopts a self-attention architecture, which is better at mining
effective information from complex and high-dimensional
medical examination data. Compared with that of DNN
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TaBLE 10: Accuracy and recall rates of different diabetes prediction
models.

Model Accuracy (%) Recall (%) F1
Embedding-SAC 96.98 86.32 0.8253
TH-SAC 97.18 87.32 0.8351
Z
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FIGURE 8: The test loss value of the original data set.

method, the accuracy and recall rate are improved by 6.97%
and 28.83%, respectively. The results show that the method of
representing medical examination data as vectors through
knowledge representation learning is more superior to simply
employing detection values. The embedded external knowledge
not only improves the interpretability of the model but also
enhances the performance of the model.

Moreover, the classifier used in the TH-SAC model is
designed and implemented by integrating self-attention
and convolutional neural networks (CNN). Therefore, we
select the following methods for comparative experiments:
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self-attention and CNN are used alone, and the results are
shown in Table 8. It can be seen that the SAC classifier has
better performance in terms of accuracy and recall. This is
because the SAC classifier is able to integrate the local
features with their corresponding global dependencies,
which provides more superior performance than that of only
self-attention or CNN alone.

4.4.3. SMOTE Resampling Analysis. As shown in Table 4, the
number of negative samples in the dataset used is much
larger than the number of positive samples, and there exists
the problem of unbalanced distribution. However, the
degree of imbalance in the dataset can affect the accuracy
of the model as well as the generalization ability [50]. In this
paper, the SMOTE [51] method is adopted to address the
problem of imbalanced distribution of the dataset. As shown
in Table 9, the distribution of positive and negative samples
in the dataset after resampling with the SMOTE method
reaches a balanced state. After SMOTE resampling, the
above prediction models were experimented again and com-
pared. The experimental results are shown in Figures 5 and 6
. The accuracy of all models on the balanced dataset after
resampling has decreased, and the F1 values has increased.
The results indicated that more illnesses were predicted to
be nonillnesses before resampling, while more nonillnesses
were predicted to be illnesses after resampling. Additionally,
comparing the performance of all models on the resampled
datasets, the model proposed in this paper still outperforms
the other models in terms of accuracy and F1 values. More-
over, it is less affected by the datasets and the accuracy of the
model does not fluctuate significantly. This further proves
the applicability as well as the effectiveness of the TH-SAC
model.

4.4.4. Comparative Analysis of Knowledge Representation
and Embedding Representation. In order to verify the effec-
tiveness of incorporating external medical examination
knowledge, this paper compares the embedding representa-
tion and knowledge representation of medical examination
index entities and detection value entities. The embedding
representation refers to the one-hot encoding of all entities
and then multiplying them with a weight matrix. The com-
parison results are shown in Table 10; it can be seen that
the knowledge representation significantly outperforms the
random representation model in terms of prediction perfor-
mance. This indicates that the entity vector constructed in
this paper by the relationship between the physical examina-
tion index and the detection value plays a good role.

Figures 7-10 present the training loss values and test loss
values of the two models on the original and resampled data-
sets. It can be seen that the loss values of the TH-SAC model
in the initial training are smaller than those of the models
without the introduction of knowledge, indicating that the
vectors obtained by training the normal range of the medical
examination indexes can provide a better representation of
the relationship between the medical examination indexes
and their corresponding detection values. In addition, as
shown in Figures 8-10, the model with the embedded repre-
sentation has the risk of overfitting.
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4.4.5. Comparative Analysis of Representation Vectors with
Different Dimensions. In the process of knowledge representa-
tion learning, if the vector dimension is too small or too large,
there exists a risk of overfitting. In order to select the optimal
dimension of the representation vector, the number of four
dimensions of 200, 256, 300, and 512 is selected in our exper-
iments, and the results are shown in Figures 11 and 12.
From Figures 11 to 12, it can be seen that the accuracy and
recall are lower in the lower 200-dimensional representation
vector because the information contained is not comprehen-
sive. However, the higher the dimension is, the more complex
the model parameters are, and the longer the training time is.

Therefore, considering the accuracy, recall, and complexity of
the model parameters, we selected the dimension number of
the representation vector which is 256 in this paper.

4.4.6. Self-Attention Mechanism Weight Visualization. As
shown in Figure 13 and Table 11, the weights of the self-
attention layer in our model are visualized. It can be seen
that there is a strong correlation between low-density lipo-
protein (LDL) and high-density lipoprotein (HDL) and
BMI with total cholesterol and triglycerides, which is consis-
tent with the medical expertise. It also indicated that the
model proposed in this paper has the interpretability.
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5. Conclusions

Deep learning generally has problems in the medical field, such
as insufficient data, low quality, and lack of interpretability of
models. In this paper, a disease prediction model combining
knowledge representation and deep learning is proposed and
applied in the field of diabetes. According to the relationship
between physical examination index and test value, the vector
representation of physical examination knowledge entity is con-
structed through the TransH model, and then, the relationship
matrix of patient physical examination data is obtained. Then
feature extraction was carried out through the constructed
self-attention mechanism and convolutional neural network,
and a deep learning model for disease prediction was designed
and implemented. In the experiment, the accuracy rate and
recall rate of the model in this paper were 97.18% and
87.55%, respectively, which were better than those of the tradi-
tional machine learning method and the deep learning method
without introducing knowledge representation. Therefore, the
medical knowledge introduced in this paper improves the valid-
ity and efficiency of the model to a certain extent.

However, there are still some limitations to our approach.
In this paper, the range of physical examination index values
is divided according to the experience of medical experts, except
the normal range. Moreover, the accuracy of prediction
depends to some extent on the accuracy of range division, so
whether the range division is optimal remains to be further
studied. In addition, the knowledge of physical examination
used in this paper is incomplete and does not take into account
the relationship between the normal range of physical examina-
tion indicators and age and sex. And the patient’s related symp-
toms and the actual clinical diagnosis are different. In the next
step, we will try to introduce the above relationship to improve
the disease prediction model and build a computer-aided diag-
nosis system.
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