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An expanded whole-cell model of E. coli links cellular
physiology with mechanisms of growth rate control
Travis A. Ahn-Horst 1, Luis Santiago Mille 1, Gwanggyu Sun1, Jerry H. Morrison 1 and Markus W. Covert 1✉

Growth and environmental responses are essential for living organisms to survive and adapt to constantly changing environments.
In order to simulate new conditions and capture dynamic responses to environmental shifts in a developing whole-cell model of
E. coli, we incorporated additional regulation, including dynamics of the global regulator guanosine tetraphosphate (ppGpp), along
with dynamics of amino acid biosynthesis and translation. With the model, we show that under perturbed ppGpp conditions, small
molecule feedback inhibition pathways, in addition to regulation of expression, play a role in ppGpp regulation of growth. We also
found that simulations with dysregulated amino acid synthesis pathways provide average amino acid concentration predictions
that are comparable to experimental results but on the single-cell level, concentrations unexpectedly show regular fluctuations.
Additionally, during both an upshift and downshift in nutrient availability, the simulated cell responds similarly with a transient
increase in the mRNA:rRNA ratio. This additional simulation functionality should support a variety of new applications and
expansions of the E. coli Whole-Cell Modeling Project.
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INTRODUCTION
Since Rudolf Virchow’s declaration in 1855 that “all cells come from
cells”, scientists have pursued the question of how child cells arise
from a parent: the question of growth. In particular, while it is now
widely known that cells take in nutrients from the environment,
grow, and give rise to new cells, what is less well understood is the
dynamics of how cells can respond to nutrients, regulate gene
expression, and optimize growth when faced with changing
environments. A cohesive, integrated, and ideally, predictive theory
of cell growth is thus one of the oldest and most fundamental
pursuits in the field of biology, not only in terms of basic science
but also with a host of potential applications.
A large body of work has sought to describe the determinants of

growth, often starting with a coarse-grained perspective by
capturing relationships that are observed empirically. Often, this
starts by relating ribosome content to growth rate and considering
the limits translation places on growth1–3, which can also be
extended to dynamic environments4,5. Some have also considered
the trade-offs a self-replicating system must make when con-
strained by resource allocation6–8. Still others have used more fine-
grained models to probe the mechanisms that underlie growth,
such as guanosine tetraphosphate (ppGpp) regulation of ribosome
expression9. In this work, we sought to represent knowledge
learned from these previous studies (Fig. 1a) in the context of a
developing whole-cell model, not only to expand the functionality
and predictive capabilities of the model, but also to provide a more
integrated framework for assessing the molecular underpinnings of
growth control and responses to changing environments.
Whole-cell modeling is an approach that facilitates compre-

hensive mechanistic modeling and is also readily applicable to
empirical analysis. By choosing mathematical representations of
physiological subunits of the cell (eg. transcription, metabolism,
protein degradation) that are most suited to the collective
understanding of, data availability for, and dynamics of these
individual processes, whole-cell modeling can track and update
the internal state of a simulated cell as it grows. This highly

integrative method can therefore bridge both mechanistic and
empirical approaches, and in the process can provide a deep
understanding of changes that happen throughout the entire cell.
Whole-cell modeling was first conceived in the 1970s by Francis
Crick10, followed by Michael Shuler11 Harold Morowitz12 and
Masaru Tomita13, but it was first demonstrated decades later in
M. genitalium, the smallest culturable organism14,15, and has more
recently been applied to E. coli16,17. Using whole-cell models to
capture behavior of single cells allows for integration and
assessment of heterogeneous datasets and the scientific commu-
nity’s current understanding of biological interactions through
mechanistic relationships. Although the original E. coli whole-cell
model described in Macklin et al.16 accounted for many of the
processes and physiology of E. coli, including the central dogma,
metabolism and regulation, the E. coli Whole-Cell Modeling
Project17 is an ongoing effort to expand the scope of the E. coli
whole-cell model by including missing gene and small molecule
functionality as well as increasing the number of possible nutrient
conditions for simulated growth.
A top priority of the E. coli Whole-Cell Modeling Project is the

ability to accurately simulate cell growth in a variety of
environmental conditions, and central to this priority is a detailed
model of growth rate control. Although the benchmark for the
original whole-cell model was that it be “gene-complete”, the
E. coli model should not only account for the known functions of
all the genes but also be able to respond to any environmental
condition. Fortunately, E. coli has already been characterized in
many environmental conditions, which provides a basis for
defining and parameterizing a whole-cell model. Prior to this
work, the E. coli model was parameterized for growth on three
separate environments: defined rich media, minimal glucose
media and anaerobic minimal glucose media. These environments
were essentially incorporated as three distinct versions of the
model without detailed control. As a result, simulating transitions
between conditions, while possible, was not realistic. Including
mechanistic regulation in response to changing environments in a
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simulation would allow the model both to accommodate more
environments and also to simulate cell states in between defined
media conditions. Such transition behaviors are far less frequently
observed experimentally, and so we hoped that the model might
provide mechanistic insight into cell growth in dynamically
shifting environments.
In this study, we look to extend the previous version of the

E. coli whole-cell model by including additional regulation and
dynamics in order to more accurately capture growth and
environmental responses. ppGpp is a major regulator of growth

in E. coli18 and controls the stringent response to nutrient
limitation. ppGpp is produced from GDP and ATP by RelA and
SpoT and concentrations rise in response to nutrient limitations.
Although ppGpp plays a role in many cellular processes19, one of
the key areas of influence is by interacting with RNA polymerases
(RNAP) to downregulate rRNA, tRNA, ribosomal proteins and tRNA
synthetases, while upregulating amino acid synthesis enzymes
and stress response genes. Transcription factors play a more
targeted regulatory role in responding to specific environmental
changes20, and can fine tune expression to optimize growth in
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Fig. 1 A detailed, holistic model of growth rate control has been incorporated into the E. coli Whole-Cell Modeling Project. a A schematic
representing biological functions and regulation that link the environment to growth. Black arrows represent mass flow, red arrows indicate
regulatory inhibition and green arrows represent activation. b A schematic illustrating the integration of the biological functions in (a) in the
context of the E. coli whole-cell model by including regulatory interactions and kinetic reaction rates. Such integration allows the growth
rate to be determined by the simulation state, which is responsive to the simulated environment of interest. Dashed lines represent the link
between the new mathematical representations and existing modeling processes that were modified. The resulting model includes more
gene functions, accounts for the action of more small molecules, and can accommodate simulations in more environments.
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certain conditions, for example, ArcA and Fnr responding to
anaerobic conditions21 or Crp and Cra coordinating central carbon
metabolism expression22. There have been separate attempts to
model both ppGpp regulation of growth9 and transcription factor
effects on growth in various media conditions23. The E. coli Whole-
Cell Modeling Project provides a basis for integrating both
together along with more detailed models of the central dogma
for dynamic responses to environmental changes.
In The Model Thinker, Scott Page uses the acronym REDCAPE

to capture all of the possible uses for a model: Reasoning,
Explanation, Design, Communication, Action, Prediction, and
Exploration24. In that context, some of the primary goals of this
work were to use a detailed model of growth rate control in E. coli
to explain in more detail the mechanistic underpinnings of the
relationships and “laws” that have been identified and affirmed in
recent studies, as well as to explore how such mechanism comes
together in the case of a nutrient shift. We discuss our model, the
resulting simulations and the new findings that resulted from
them in detail below.

RESULTS
An expanded E. coli model incorporates major determinants
of growth rate
In order to simulate new conditions and capture dynamic
responses to environmental shifts, our new version of the model
includes additional biological functionality and incorporates more
experimental data. Translating the biological function into
mathematical representations used in the model required the
addition of two modeling modules: (i) expanded transcriptional
regulation and (ii) kinetic rates for amino acid synthesis and
consumption (top and bottom panels of Fig. 1b). These new
features are integrated into the existing model framework by
updating physiological process submodels of the E. coli whole-cell
model to sense environmental changes, alter the internal state,
and ultimately give rise to mechanistically determined growth rate
in the simulation (center panel of Fig. 1b). While the previous
version of the whole-cell model included fixed rates of RNA and
protein polymerization for specific environmental conditions
based on literature values16, the new submodels provide a
mechanistic approach to growth where these rates are deter-
mined by the internal state of the simulation (see “Methods” for
complete details of new submodels, as well as how all simulations
were run and analyzed to create the figures).
With regard to expanding the transcriptional regulation

component of the model, we began by adding a kinetic submodel
of ppGpp synthesis and degradation, a central regulatory
molecule in transcription-based growth rate control. The concen-
tration of ppGpp over time is represented as an ordinary
differential equation accounting for kinetic reaction rates of the
RelA and SpoT enzymes, which depend on enzyme expression
levels, the amount of uncharged tRNA and the ppGpp concentra-
tion itself with kinetic parameters based on measured values
reported in the literature (see “Methods”). With a dynamic ppGpp
concentration, the model can then capture the numerous
transcriptional regulatory effects ppGpp exerts through binding
with RNA polymerase. The destabilizing effect that ppGpp has on
RNAP and the open complex during transcript initiation leads to
changes in the fraction of RNAPs that are actively transcribing as
well as changes to gene expression (including downregulation of
ribosomal genes and upregulation of metabolic enzymes), which
in turn alters the fractions of mRNA, rRNA and tRNA that are
produced. Changes to the fractions of mRNA, rRNA and tRNA
being transcribed can also lead to changes to the average RNAP
elongation rate due to differences in the elongation rates between
mRNA and stable RNA. By incorporating the regulation of RNAP
properties by ppGpp, we hoped to capture more dynamics of

RNA polymerization based on the environment and internal state
in our simulations, which also contributes to the overall dynamics
of the cellular growth rate.
Beyond ppGpp regulation of gene expression, we introduced

additional transcriptional regulation to the model, namely, greatly
expanding the control of transcription factors and including
transcriptional attenuation, as summarized in Supplementary
Table 1. Parameterization of the new regulation was achieved
using network component analysis (NCA)25–27. NCA is a matrix
decomposition method that can provide regulatory interaction
strengths between individual regulators and genes along with
overall activity signals in a measured condition based on a set of
expression data measurements and subject to constraints of the
known interaction network topology. Inputs to NCA were
transcriptomics data from EcoMAC28 and known regulatory
interactions from EcoCyc29. The output provided fold changes
that were consistent with both the transcriptomics and the known
regulatory network and were used to parameterize additional
transcription factor-to-gene regulatory interactions in the model
for 785 (17% of all genes) new genes that were previously
unregulated in the whole-cell model. Using NCA also allowed for
the addition of a model of transcriptional attenuation by providing
a way to parameterize the probability of attenuation through the
calculated fold changes. In total, the newly added regulation
provides the differential expression of 1052 (23% of all genes)
additional genes, consistent with annotated regulation, in order to
more accurately simulate new environments.
With regard to the second module, detailed rate equations for

the production and consumption of amino acids (based on
Michaelis-Menten kinetics) were also added to the model. The
synthesis rates are controlled by the expression of synthesis
enzymes, the concentration of upstream amino acids and the
concentration of the amino acid end product, which provides
feedback either through allosteric inhibition or a reversible
reaction. The model of amino acid transport was also expanded
to include mechanistic import and export rates based on internal
amino acid concentrations and transporter expression. Addition-
ally, loss rates to other metabolic reaction pathways are defined
with kinetic rates. Taken together, this means that the net rate of
amino acid production from metabolism can be determined
based on the internal state of the simulated cell and the
environment. The rate of supply of amino acids to elongating
peptides involves the charging of tRNA and polypeptide elonga-
tion at the ribosome, and kinetic rates for both of these processes
were also added to the model. This addition more directly ties the
output of translation, one of the major drivers of growth rate, to
the internal simulation state, and combined with the amino acid
synthesis rates, produces dynamic amino acid concentrations in
the simulation.

Simulation outputs are a more realistic representation of
E. coli physiology
We next sought to assess the expanded E. coli model by
comparing our simulation output first with the original model
and then with experimental data. To compare models, we
simulated the growth of a cell in rich media, then in minimal
glucose media, and finally back in rich media, from many starting
cells and over many generations. Comparing time course data for
selected model outputs from the original (Fig. 2a) with the new
(Fig. 2b) simulations reveals significantly richer dynamics in the
new model, in addition to increased fluctuations over time, as
compared to relatively constant values in the old version. These
fluctuations are the result of increased mechanistic detail in the
equations describing regulatory control and the kinetics of cellular
processes (metabolism, transcription, and translation), as noted in
the previous section. With this additional mechanism in place,
rates of production and growth are more closely linked to the
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stochastic and dynamic internal state of the simulated cell.
Specifically, amino acid concentrations now vary over time in
response to a variety of factors instead of being constrained to a
fixed concentration target (leucine is used as a representative
example in Fig. 2a, b). Additionally, charged tRNA concentrations

are a new simulation output which plays a role in linking amino
acid supply rates with the ribosome elongation rate as well as
controlling transcriptional attenuation. More notably, uncharged
tRNA concentrations are sensed by RelA and SpoT to provide a
dynamic ppGpp concentration. ppGpp controls the relative
production of mRNA, rRNA and tRNA, which in turn controls the
overall RNAP elongation rate. Additionally, ppGpp binding to
RNAP affects the RNAP active fraction and ppGpp inhibition of
GTPases associated with the ribosome can limit the ribosome
elongation rate. The new simulations thus represent a clear
improvement in modeling cellular responses to changing
environments, such as the stringent response.
Including the expanded transcriptional regulation and amino

acid submodels allows for the simulation of growth under
additional environmental conditions, which can be compared to
experimental data as a model validation step. The original E. coli
model simulations exhibited limited growth rate distributions in
rich and minimal media conditions, as shown in Fig. 2c. The
average growth rates were based on expected growth rates from
experimentally characterized conditions, and the variance mainly
arose from fluctuations in stochastic initiation and degradation
events. Growth rate distributions arising from the new model are
shown for four environmental conditions in Fig. 2d, including for
two conditions which could not be simulated using the previous
version of the model and are not used for parameterization. The
corresponding simulation doubling times had wider distributions
in the new model and aligned more closely with experimental
coefficients of variation (Table 1). The updated model also showed
good agreement with other experimental measurements. For
example, multiple studies have indicated that a linear trend
correlates the growth rate to the RNA:protein ratio (representative
of the ribosomal content of cells) across multiple environmental
conditions30 (Fig. 2e, dashed line). While this correlation was
enforced (based on hard-coded mass fractions) in the earlier
version of the model, Fig. 2e shows that the trend holds for the
new simulations, both in conditions that were used to para-
meterize the model (rate parameters based on the expected
doubling time and mass fractions of RNA and protein) as well as
newly predicted conditions that were not directly characterized or
used to parameterize the model. Finally, we also compared our
simulated amino acid uptake fluxes to the maximum uptake rates
reported in literature31, and found that they were well-correlated

Fig. 2 Incorporation of the growth rate model results in
simulation responses to environments and environmental shifts
that are more accurate for well-characterized environments, and
more biologically reasonable in less well-characterized environ-
ments. Time series data show a nutrient downshift (green to
orange) following by a nutrient upshift (orange to green) over 28
cell generations in the previous model (a) and the current model (b).
The mean of 32 initial seeds is shown as the dark blue line with the
light blue region showing the standard deviation. c Distributions of
growth rates from 24 generations and 24 initial seeds from the
previous version of the model in minimal (pink) and rich (blue)
media with dashed lines showing the mean value. d Distributions of
growth rates from 24 generations and 24 initial seeds from the
current version of the model with new conditions (orange and
green) that are not directly parameterized and include arbitrary
amino acid combinations in the media. e Relationship between
growth rate and RNA/protein ratio for multiple environmental
conditions. The three possible media conditions from the previous
model are shown in orange, new media conditions used for
parameterization (and simulated) are in blue, new media conditions
that are not directly parameterized are in green. The dashed line is a
reference fit to data reported in literature (Bremer and Dennis30).
f Calculated amino acid uptake rates in the model compared to the
maximum uptake rate observed during a growth time series in
literature (Zampieri et al.31).
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(Fig. 2f). These comparisons therefore strengthened our con-
fidence that the new model was an improvement over the original
model, and that it provided an accurate representation of cell
growth on a variety of substrates.

ppGpp regulation of growth depends on two small molecule
feedback inhibition pathways in addition to regulation of
gene expression
With an expanded and validated model in hand, we were ready to
tackle key unanswered questions about growth rate control in E. coli.
For example, the concentration of ppGpp has been modulated
experimentally by overexpression of E. coli protein RelA to increase
ppGpp levels, and Drosophila melanogaster protein Mesh 1 to
decrease ppGpp levels32. One observation from this study seemed
paradoxical: that both increasing and decreasing the ppGpp
concentration lowered the growth rate, albeit with differing impacts
on RNA:protein mass ratios (Fig. 3a). The primary interpretation of
these and other data focuses on ppGpp’s control of ribosomal and
biosynthetic enzyme expression: at high ppGpp concentrations, the
ribosomes become limiting, whereas when ppGpp concentration is
decreased, low enzyme expression reins in growth1,2,32.
The whole-cell model enables us to assess other factors that could

contribute to these observations—for example, product-based
allosteric feedback on the amino acid biosynthesis enzymes or
translational GTPase inhibition by ppGpp—that could be prohibi-
tively difficult to interrogate experimentally. By comparing experi-
mental observations with simulated outcomes representing elevated
or depleted ppGpp concentrations, we hoped to gain deeper insight
into the mechanisms that give rise to the physiological outcomes
that result from such changes. The E. coli model simulations also
indicated that an optimal growth rate on glucose minimal media is
achieved when ppGpp is set to the wildtype concentration (50 μM),
and that both increasing and decreasing the ppGpp concentration
will lead to suboptimal growth (Fig. 3a, b). Since this observation was
noted in both the simulated and experimental data, we were able to
look more deeply into the model to determine the molecular
underpinnings of the behavior.
As mentioned above, the “usual suspects” in limiting the growth

rate as a result of changes in the ppGpp concentration are
ribosomal and biosynthesis enzyme concentrations, which were
generally consistent with our simulations. The normalized max-
imum capacity of ribosomal output was higher than the normal-
ized maximum capacity of enzyme synthesis when ppGpp
concentrations were decreased, and conversely, the maximum
capacity of amino acid biosynthesis was higher than the ribosomal
output when ppGpp levels were increased (Fig. 3c). However, the
simulations also produced a more surprising result - namely, that
while the maximum possible outputs differed between translation
and biosynthesis when ppGpp was increased or decreased, the
actual output was matched between the two and lower than for
the wildtype ppGpp simulation (Fig. 3d), following the same

trends as the growth rate. This suggested that other mechanisms
governing the growth rate remained to be identified.
We hypothesized that the reasons for the match were likely to be

different for the decreased versus increased ppGpp conditions, and
therefore considered each separately. For the case of decreased
ppGpp, we found the explanation to be fairly straightforward: lower
amounts of amino acid biosynthesis enzymes led to a slower
elongation rate per ribosome (Fig. 3e) and thus fewer proteins in
general, and r-proteins in particular. We guessed that this could be
seen in the free ribosomal RNA concentration in the cell, and in fact
there was a distinct increase in free rRNA counts as the ppGpp
concentration decreased (Fig. 3f). This hypothesis also suggested
that perturbing the biosynthetic enzyme concentrations would
enable cells to recover to the optimal growth rate at decreased
ppGpp concentrations. Accordingly, we simulated cells experien-
cing growth at a low ppGpp concentration (20 μM) without any
changes, as well as with two possible perturbations: a 25% increase
in enzyme expression, or an increase in ribosome expression arising
from 50% higher expression of rProtein and 100% higher
expression of rRNA. Comparing the growth rates from these
simulations to the growth rate expected under optimal ppGpp
concentrations (50 μM) showed that increasing enzyme expression
rescued to the original growth rate (50 μM ppGpp), while increasing
ribosome expression had minimal effect on the growth rate
(Fig. 3g), which supported our hypothesis.
The reason for the match between ribosomal and amino acid

biosynthetic output at increased ppGpp concentrations was more
complex, involving not only ppGpp-dependent transcriptional
control of ribosomal biosynthesis, but also two forms of feedback
inhibition via small molecule binding. The first form was the higher
concentration of ppGpp itself, which impacts the translation rate
directly via inhibition of translational GTPases (initiation and
elongation factors)33,34 (Fig. 3h). With regard to the second form,
we noticed that the free amino acid concentrations rose roughly 2.5-
fold as we doubled the ppGpp concentration (Fig. 3i, left) because
the ribosomal maximum capacity was not sufficient to match the
increased enzymatic biosynthesis output. This increase triggered
product inhibition of several amino acid biosynthesis pathways
(Fig. 3i, right), such that although the enzyme concentration was
higher (Fig. 3c), the resulting output was lower (Fig. 3d).
These results suggested a multiple perturbation approach to

rescuing the growth rate under increased ppGpp conditions:
increasing the ribosome count, which would not only increase
translation capacity but also reduce the amino acid pools, leading
to less inhibition of the biosynthetic pathways; and eliminating
GTPase inhibition, which would lead to a faster elongation rate. In
our subsequent simulations, we found that when cellular ppGpp
concentrations were high (90 μM), neither increasing the enzyme
expression nor the ribosome expression rescued the original
growth rate (Fig. 3j). Removing GTPase inhibition was also not
sufficient to fully rescue growth. However, removing GTPase

Table 1. Comparison of growth rates in various media conditions between the model and values reported in literature.

Previous model This model Literature

Minimal media supplement Mean Std CV Mean Std CV Mean Std CV

+all amino acids 25.8 0.46 0.018 27.5 2.83 0.103 22.5 4.63 0.206

+12 amino acids − − − 31.3 3.19 0.102 26.6 3.79 0.142

+6 amino acids − − − 40.9 7.36 0.180 30.1 4.63 0.154

No amino acids 47.7 1.12 0.023 52.4 7.14 0.136 37.7 5.83 0.155

Mean, standard deviation (Std) and coefficient of variation (CV) for doubling times in minimal glucose media supplemented with various amino acid
combinations using default options from the previous model, newly added growth regulation and kinetics (This model) and comparing both to Literature (68).
Distributions in doubling times in this model arise inherently from stochastic gene expression and more closely match the CV in literature. Corresponding
simulation growth rate distributions are shown in Fig. 2c, d. Simulated results were generated from 432 cell generations (24 initial seeds, 18 generations).
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inhibition while also increasing the ribosome concentration was
observed to completely rescue the growth rate. These results
support a more complex understanding of ppGpp’s role in
controlling the rate, involving not only ribosomal and enzyme
expression, but also the effect of feedback inhibition on
translation and amino acid biosynthesis.

Removing amino acid allosteric inhibition in simulations
provides amino acid concentration predictions that are
comparable to experimental results
Since our simulation results highlighted the role of end-product
inhibition of amino acid biosynthesis pathways in controlling the
growth rate, we next sought to compare the results of allosteric

inhibition perturbation experiments with modeling outputs.
Experimental results have shown that introducing specific point
mutations to synthesis enzymes can remove end-product allosteric
inhibition in amino acid synthesis pathways and cause an increase
in the concentration of the amino acid product35 (Fig. 4a). With the
amino acid network kinetics introduced in this newer version of
the whole-cell model, we can now simulate mutants that are
lacking allosteric inhibition by changing the inhibition parameter,
thereby predicting the effect of these mutations on amino acid
concentrations (Fig. 4b).
We performed these simulations for mutants in the arginine,

tryptophan, histidine, isoleucine, leucine, threonine and proline
biosynthetic pathways, and compared average amino acid
concentrations after full allosteric removal in the model to the
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concentrations reported in literature35 (Fig. 4b). The comparison
showed a qualitative agreement between simulations and
experimental results for all pathways, in which the concentration
of the amino acid whose inhibition had been abrogated increased,
while other amino acids remained at approximately their wildtype
levels. This agreement therefore supported both the model and
the prior experimental results.

Our comparison was to results that were aggregated across a
population at a single time point; however, the whole-cell model can
provide further granularity, in the form of single-cell time courses of
amino acid concentrations in both wildtype and mutant cells.
Examining these time courses in more detail led to further insights;
for example, we observed recurrent fluctuations, which occurred on
the order of about an hour, from the individual time course traces in
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mutant simulations but not wildtype (Fig. 4c). These observations are
most likely due to the faster time scales of allosteric inhibition as
compared to those of transcriptional and translational regulation.
The regularity of these fluctuations is seen for the amino acid
concentrations in other mutants as well with the rate of concavity
changes being lower for the wildtype than mutants (Fig. 4d).
We also noted that in all cases, the model overpredicted the

amino acid concentration that arises from the removal of allosteric
inhibition (Fig. 4b). This overprediction could result from multiple
possible mechanisms. A first possibility is that the model’s
representation of negative feedback in the wildtype may be stronger
than what actually occurs in E. coli. Although this could be due to
improper parameterization of the amino acid network or inaccurate
expression and regulation of enzymes in the model, it could also
point to discrepancies in experimental data and curated knowledge
of E. coli. For example, metabolite concentration measurements
made by different groups can span an order of magnitude or more
in the published literature (Supplementary Fig. 1), and can span
several orders of magnitude during different phases of bacteria
growth36. This may explain, for example, why the arginine
concentration in the wildtype simulation is already higher than
the experimental concentration in the ArgA mutant. Additionally, the
concentration of threonine in cells harboring the same ThrA S345F
mutation used in Sander et al. is also reported at 82.4 mM elsewhere
in literature37, which is much closer to the prediction of the model
(95.2 mM). It is also possible that the mutants do not experience
complete inhibition removal, which was shown for ProB38.
Another possibility is that our modeling of the perturbation is

too strong, ignoring possible redundant feedback loops which
could continue to repress amino acid biosynthesis even in the
mutant strain. This could be due to additional allosteric inhibition
of the amino acid biosynthesis pathways - for example, in separate
reaction steps - that is not captured by the model. Searching the
literature, we found that multiple pathways contain more than
one enzyme targeted by end-product inhibition, including
isoleucine (IlvIH)39, leucine (TyrB)40, threonine (ThrB)41, and proline
(ProC)42. Given this context, the whole-cell model enables us to
estimate how much of the amino acid synthesis pathway
inhibition is controlled by allosteric inhibition of the mutant
enzymes. First, we calculate the increase in amino acid concentra-
tions at varying levels of allosteric inhibition in the model by
scaling the KI parameter. Comparing the resulting fold change in
the end product amino acid concentration in literature to the fold
changes in the model can provide the expected change in
inhibition that would produce identical concentration fold
changes experimentally and computationally (Fig. 4e). The model
can then predict an effective KI that accounts for other potential
forms of regulation discussed above (Fig. 4f). We found that four
of the amino acids—arginine, tryptophan, isoleucine and proline
—had effective KI’s that were within one order of magnitude
higher than original values; the other three were within two orders
of magnitude. As mentioned above, some additional allosteric
regulatory pathways are already known; for other amino acids,
such as arginine, the model’s output suggests there may be
significant regulation in addition to transcription factors like ArgR
and allosteric inhibition of ArgA that are not included in the model
or curated in literature. Thus, model predictions can both suggest
the presence of additional regulation and also back-calculate the
specific contributions of other allosteric regulatory pathways as
they become known and better characterized.

Dynamics of cellular responses during environmental shifts
are defined by transient responses and resource reallocation
As mentioned above, a major way in which this version of the
E. coli model is an improvement over all previous whole-cell
modeling efforts is the incorporation of mechanistic regulation in
response to changing environments, which enables us to more

accurately simulate transitions from one environment to another,
particularly downshifts that activate the stringent response. Such
transitions are a fundamental aspect of E. coli’s life cycle, but they
can be challenging to characterize experimentally due to their
dynamic and transient nature. Thus, we wanted to use the model
to explore cell dynamics during environmental shifts to assess
responses to changing nutrient conditions.
Specifically, we sought to quantify the effects of first

removing, and then re-adding, amino acids to a medium in
which glucose was the primary carbon source. We simulated
this experiment with our model and plotted the resulting
trajectory of growth rate versus RNA:protein ratio as we did for
condition averages before. This plot presented as a cycle,
anchored by stable growth on either the glucose + amino acid
(upper right) or glucose minimal (lower left) media, both of
which fell on the linear trend correlating the growth rate to the
RNA:protein ratio30 (see also Fig. 2e, dashed line), with notable
transient deviations from the established trend as the simula-
tions reacted to the change in media conditions. In particular,
when amino acids are removed from the media, growth is
immediately and sharply reduced, but recovers over the next
3 h as the cell reallocates biomass towards a higher protein
fraction (Fig. 5a). Similarly, a sharp, transient increase in nutrient
uptake and growth rate follows the addition of amino acids to
glucose minimal media consistent with single-cell observa-
tions43,44; this is also followed by a reallocation of resources
phase, which lasts approximately 2 h as the cell adjusts to richer
media with a higher RNA fraction. For both shifts, the
reallocation of resources to biomass components like RNA
and protein is not as immediate as the change in growth rate.
This is because RNA and protein are generally stable, and thus
changes in their concentrations operate on longer time scales
than concentrations of small molecules, such as water and
amino acids.
We noted with interest that the reallocation from a downshift

follows a similar path as ppGpp perturbations that resulted in
enzyme limitations (note the points in blue shown in Fig. 3a),
while reallocation following an upshift mainly follows the
expected trend line after an initial growth rate spike from rapid
amino acid uptake. To investigate the downshift in more detail,
we re-introduced a component of our earlier E. coli model,
which did not include kinetic parameters for amino acid
biosynthesis and transport (see Fig. 1b bottom left), and
instead represented the amount of amino acids supplied to
translation as a constant depending on the media condition.
Simulated environmental shifts for this perturbation show
limited growth rate responses to shifts (Fig. 5b). This suggests
that the stringent response during sudden exposure to minimal
media depends on enzyme limitation, primarily via regulation
of transcription.
To better characterize the role of ppGpp in this cycle, we

again simulated the same environmental shifts, but where
ppGpp regulation had been removed (Fig. 5c). This simulation
output shows limited changes in the RNA/protein ratio, as well
as an inability to reallocate resources to obtain an RNA/protein
ratio that is optimal for growth on minimal media, supporting
prior reports underscoring the central role of ppGpp in setting
the RNA:protein ratio18.
To further elucidate the mechanism of the shift response, we

considered the growth rates of both the RNA and protein
separately as they changed over time. In the wildtype case,
both RNA and protein growth rates are initially depressed
below the expected growth rate for minimal media in response
to a downshift in nutrient availability (Fig. 5d). The protein
growth rate is able to recover faster, which drives the cell to a
lower RNA/protein ratio. This is likely due to dynamics of ppGpp
sensing and control: ppGpp senses the charging state of the
cell, so the concentration of ppGpp reaches a new steady state
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once the protein growth rate becomes stable, while the RNA
growth rate depends on ppGpp regulation so it normalizes to
the new condition only after ppGpp adjusts. In contrast, there is
no overshoot of the new growth rate in response to an upshift
in nutrient conditions, and the RNA growth rate increases more
quickly than the protein growth rate, which leads to an increase
in the RNA/protein ratio to support higher growth rates in the
rich media. This is primarily due to the higher reserve capacity
for RNA polymerases (i.e., the amount of polymerase which is
free for immediate use as the shift occurs) as compared to
ribosomes. From the simulations which did not include kinetic
parameters for amino acid biosynthesis and transport, we

further observed that the growth rate of protein does not
experience a drop below the expected growth rate in minimal
media after a downshift, while RNA still experiences a slightly
depressed growth rate relative to the final rate achieved in
minimal media (Fig. 5e). Thus, the stringent response is
attenuated, while the RNA-protein resource reallocation phase
remains intact. For the perturbed simulation in which ppGpp
regulation is removed, the growth rate of RNA does not
experience a drop below the expected growth rate in minimal
media after a downshift while protein still experiences a briefly
depressed growth rate (Fig. 5f). Taken together, these observa-
tions highlight the interplay between enzyme- based and
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ppGpp-based limitations on growth over time in changing
media conditions.
To better understand the depressed RNA growth rate

observed during downshifts with ppGpp regulation (Fig. 5d),
we considered the impact of ppGpp on the output rates of RNA
polymerases and degradation rates of RNA in more detail. We
observed that, without ppGpp regulation, the output from RNA
polymerases (Fig. 5g) generally matches the RNA growth rate
seen in Fig. 5f, while the RNA degradation rate is relatively
constant (Fig. 5h). However, when ppGpp regulation is included,
the RNA polymerase output does not drop to the extent that the
growth rate does after a downshift, and after an upshift, the
growth rate increases to the new growth rate nearly instanta-
neously while the RNA polymerase output increases steadily
over time (Fig. 5d, g). Moreover, we noticed that the RNA
degradation rate increases during the downshift, which leads to
a decrease in the overall RNA growth rate, but the rate also
decreases during the upshift, which helps support a higher RNA
growth rate (Fig. 5h). This difference in degradation rate can be
explained by differential expression of mRNA, which has a much
shorter half life than stable RNA (i.e., rRNA and tRNA). Thus, the
sharp increase in ppGpp following a downshift (Fig. 2b) leads to
a high fraction of mRNA being transcribed and degraded, while
a decrease in the mRNA fraction following an upshift when
ppGpp drops results in a reduced degradation rate.
Finally, we were surprised to see large but temporary ppGpp-

dependent increases in the mRNA to rRNA ratio during both up
and downshifts in nutrient conditions (Fig. 5i). These increases
appeared similar but occurred for different reasons and with
differing mechanisms depending on the shift (Fig. 6). During
the initial nutrient downshift, the fraction of newly transcribed
RNA that is mRNA increases as higher ppGpp concentrations
repress rRNA expression. This leads to a higher production rate
of mRNA, and as mRNA concentrations rise, so do the
degradation rates. After some time, the initial spike of ppGpp

subsides, which leads to a lower fraction of mRNA being
produced and lowers the mRNA to rRNA ratio. In contrast, an
upshift leads to lower ppGpp concentrations and a decrease in
the fraction of mRNA produced, but also an increase in overall
RNA polymerase output. This increased output leads to an
increase in both mRNA and rRNA production, but has more of
an impact on mRNA. This leads to a temporary increase in the
mRNA to rRNA ratio until more rRNA is produced as rRNA gene
dosage increases along with even higher output at the faster
growth rate.

DISCUSSION
As mentioned in the Introduction, with this work we sought to
explain some of the key relationships related to growth rate
determination from previous studies, as well as to explore the
complex behaviors and interactions that arise in response to a
dramatically changing environment. With regard to explana-
tion, without a comprehensive model, previous studies have
focused primarily on interactions between catabolism and
transport, protein synthesis, and the size of amino acid pools
and the control that can be exerted by or on each. Our model
enabled us to incorporate a whole host of other effects,
including the coordinated functions of thousands of genes, in
ways that not only substantiated the observations and
bolstered the conclusions of other labs, but also allowed us to
interpret these observations and conclusions in more mechan-
istic detail. With regard to exploration, we found that a
quantitative, holistic, and dynamic view of this organism
enabled us to generate several new insights and predictions
regarding E. coli behavior. Since E. coli and other bacteria
regularly experience dramatic environmental shifts as part of
their oral-fecal life cycles, such findings may be relevant not
only to our fundamental understanding of a major model
organism, but also to the spread of disease.
From a modeling standpoint, the first and critical point is that

the whole-cell model can now calculate growth rate and growth
variability based on the internal cellular state represented by
the model. Achieving this milestone required several technical
advances (detailed above and in the “Methods”) and should
unlock new avenues of exploration particularly in areas of cell
physiology that depend on growth variability between indivi-
dual cells, such as persister formation45 and survival under
stress46. However, further modeling advances may be required
to enable future progress and a more detailed description of
growth. One limitation of the current model is the reduced
representation of the amino acid network. In order to
parameterize the kinetic reactions to achieve balanced growth
in the context of the whole-cell model, reaction pathway
kinetics are treated as a single step without considering the
accumulation of intermediates, and multiple entry points from
central carbon metabolism are ignored. This approach was
chosen to reduce the number of unknown parameters that
need to be determined and to be able to set up mass balance
equations based on the expected supply of amino acids to
translation and uptake in rich media in order to solve for those
parameters (see “Methods”). Even so, the estimates of these
parameters are not unique, and a distribution of a similar set of
parameters would likely lead to many of the same phenotypic
outcomes we noted in this work, since we already observe
similar simulation outcomes from a variety of initial conditions
(i.e., different seeds with different internal states). This could be
due to regulatory feedback (from either transcriptional regula-
tion and/or small molecule inhibition or saturation), which leads
to stability in the simulations despite fluctuations in concentra-
tions, and could also confer robustness to parameter adjust-
ment. Overall, parameterization of large kinetic models of
metabolism is a well-known problem with attempts to create
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Fig. 6 Transient increases in the mRNA to rRNA ratio arise
through different mechanisms during nutrient up- or downshifts.
Schematic demonstrating a toy example of how an increase or
decrease in ppGpp concentration can lead to similar increases in the
mRNA to rRNA ratio. “Mass'' represents the amount of RNA (blue:
mRNA, red: rRNA, gray: degraded mRNA) that would already be
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minimal or rich media there is balanced growth with mRNA and
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on simulation observations. In the center, the mRNA to rRNA ratio is
shown for each condition with the transient shift conditions both
showing higher ratios than the steady state minimal or rich media.
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scalable methods to determine parameters47–49 and while
versions of dynamic FBA can provide metabolite dynamics at
the genome scale50, there are difficulties in constraining
kinetics while achieving balanced growth16. The approach
presented here provides a means of integrating hard kinetic
constraints for a subset of metabolism that is fairly well
characterized and parameterized and integrating the resulting
concentration changes with dynamic FBA all in the context of
balanced growth with processes outside of metabolism.
From a biological standpoint, we were surprised to find that

without allosteric inhibition of their synthesis pathways, free amino
acid concentrations will not only be higher but experience greater
variability and even oscillations. This finding has implications when
screening single cells such as using FACS for overproduction strain
development51 where mutants are selected based on single time
point measurements that could miss a high production strain that
might temporarily be at a low point in the concentration oscillation.
It also suggests a critical role of allosteric inhibition in providing
stability to internal amino acid pools and confirms the role of
allosteric inhibition on the robustness of amino acid biosynthesis35.
The model demonstrates an important role for mRNA degradation
during the stringent response, and also highlights a new
phenomenon: that the simulated cell responds similarly to both
an upshift and a downshift in nutrient availability with a transient
increase in the mRNA:rRNA ratio. Considering this observation from
a survival perspective, it seems that producing more mRNA
immediately following environmental shifts would allow a cell to
adapt to the new environment by shifting expression to take
advantage of available resources and match new environmental
demands. Whether this phenomenon occurs in response to other
environmental shifts (including nutrient shifts, but also temperature,
pH or other conditions), as well as whether it can be observed in
E. coli experimentally, are tantalizing future questions to explore.
Although the new environmental simulations that can now be

compared directly to experimental data are encouraging, much
remains to be incorporated in order to reach our eventual goal of
fully simulating any media condition. For example, our approach
to amino acid dynamics here can and should also be extended to
better capture the effects of other limitations on growth and
ppGpp regulation, including central carbon metabolism, nucleo-
tide synthesis and lipid synthesis19,52, and our approach to
modeling ppGpp should be applied to other global regulators
involved in metabolism, such as determining dynamics of cAMP
for improved cAMP-Crp regulation53 or expanding Lrp regulatory
interactions to capture more Leu-Lrp regulation54. Such expansion
would likely improve growth rate predictions in a wider range of
conditions or metabolic limitations.
Notwithstanding the model’s current prediction capacity, we

also noted a number of questions or inconsistencies. One
question relates to our observation that the simulated growth
rate decreases with either increased or decreased ppGpp, as
also shown experimentally32 (Fig. 3a). However, the RNA:protein
mass ratio trend under perturbed ppGpp conditions showed
less consistency between the simulation results and experi-
mental outcomes. Specifically, the ratio appears to be very high
at low ppGpp levels, contrary to reported values that appear to
approach a value around 0.632, and relatively constant as
ppGpp is increased. This suggests the need for additional
regulation of rRNA transcription in the model such as through
initiating ribonucleotides55, or may hint at a more direct (and
unannotated) regulatory role of rRNA itself, similar to how
ribosomal proteins can regulate their own expression56.
Similarly, the higher amino acid concentrations simulated for
mutants lacking allosteric regulation (see Fig. 4b, e, f), as
compared to experiments35, also suggest the presence of other
regulatory pathways that are not accounted for in the model
and perhaps even currently unknown. Answering these ques-
tions is worthy of a significant experimental effort in the future.

In sum, our work presents a significant step forward towards
achieving a whole-cell model of E. coli that not only accounts for the
known functionality of genes but also the functionality of small
molecules and has the ability to simulate a variety of new
environments that E. coli might encounter. In the process, it also
helps to explain mechanistically how growth rate control operates in
responding to changing conditions. We anticipate that this new
functionality, and the insights it can catalyze, will support a variety of
new applications with and expansions of the E. coli Whole-Cell
Modeling Project17.

METHODS
Here we describe three aspects of the methods used to produce this work.
First, although the modeling framework (including the whole-cell modeling
approach, model construction and simulation algorithm) has essentially
remained the same since the first version of the E. coli model described in
the supplement of Macklin et al.16, additional data preprocessing and
submodels have been updated as described in the first section below.
Second, we include a detailed list of how all the simulations were run. Third,
we describe how outputs from the simulations were used to produce each
figure panel. Note that all code used to parameterize the model, run
simulations and analyze the output is available on GitHub at https://
github.com/CovertLab/WholeCellEcoliRelease.

Computational and modeling methods
Modeling features added. We found that the features described below
were sufficient to capture the dynamics of environmental shifts with amino
acids and provide a mechanistic determination of the growth rate of the
cell in a variety of media conditions. Although whole-cell modeling is made
possible by treating processes as independent on short time scales, this
project demonstrated that those processes can become heavily dependent
on each other. Including dynamic amino acid concentrations was an
essential first step that relied on combining amino acid biosynthesis,
transport and tRNA charging. Amino acid supply is tightly coupled with
tRNA charging and both happen on very fast time scales compared to
other model processes so it was necessary to abstract amino acids
pathways out of the main metabolism submodel, integrate both amino
acid supply and tRNA charging kinetics on sub-timestep scales, and update
metabolism with the result. This change led to responsive amino acid
concentrations, which provided buffering capacity to tRNA charging to
improve stability of that submodel. tRNA charging rates provide a more
responsive translation rate to more accurately capture the protein growth
rate as a function of the cellular state. Perhaps more importantly, tRNA
charging levels are required for proper modeling of ppGpp as RelA and
SpoT sense the charging state of the cell and control the concentration of
ppGpp. All of the mechanistic processes added are directly controlled by
transcriptional regulation (ppGpp, transcription factors and transcriptional
attenuation), which will affect expression of the functionally implemented
genes. The newly added regulation was crucial to maintain stable amino
acid pools and respond to changing environments. Missing or incorrect
data for any of these regulatory elements could lead to instability during
development and ultimately, required all of the features to be integrated
together for all of them to work as expected.

Amino acid biosynthesis. Rates of amino acid synthesis play a critical role
in limiting the amount of protein that a cell can make by specifying the
amount of precursors that can be made available to ribosomes. A newly
added simulation option (--mechanistic-translation-supply)
uses a kinetic approach to amino acid biosynthesis pathways to determine
the rate of supply to translation that is dependent on enzyme expression,
amino acid concentrations and the linked network topology of different
amino acid pathways. Amino acid biosynthesis pathways display a wide
range of complexity from single, reversible reaction steps, to long linear
pathways, and even some branching pathways with shared branchpoint
intermediates. Mass enters each pathway from various points in
metabolism (Supplementary Fig. 2). One common precursor used in all
pathways is glutamate. With this in mind we make the assumption that
glutamate is upstream of all amino acid pathways and a single step occurs
between each amino acid (Supplementary Fig. 2)). Simplifying to a single
reaction step starting from glutamate allows for simple parameterization
that maintains expected amino acid concentrations and provides enough
supply to translation to maintain balanced growth.
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Parameters for each amino acid pathway (reaction) are determined
before simulations based on the following rate equations:

vsupply;i ¼ vsynth;i � vdown;i � vdeg;i � vrev;i þ vexchange;i (1)

vsynth;i ¼ kcat;f ;i � Ef ;i � 1

1þ AAi
KI;i

�
Y

j2fupig

1

1þ KM;j

AAj

(2)

vdown;i ¼
X

j2fdownig
vsynth;j (3)

vdeg;i ¼ kcat;deg;i � Edeg;i � 1

1þ KM;deg;i

AAi

(4)

vrev;i ¼ kcat;rev;i � Erev;i � 1

1þ KM;rev;i

AAi

(5)

where vsupply,i is the rate of amino acid supply to translation in a given
time step and determined by vsynth,i, vdown,i, vdeg,i, vrev,i, vimport,i, vexchange,i,
which are rates of synthesis, loss to downstream amino acids,
degradation loss, loss to reverse reactions, exchange with the environ-
ment, respectively, for amino acid, i. Not all rates, such as reverse or
degradation rates, exist for each amino acid depending on the network
topology specified in Supplementary Fig. 2. Furthermore, for a given
amino acid, only a reverse or degradation reaction can be present in our
representation since we can only solve for two kcat parameters (forward
and loss) given the constraints described below. kcat is the reaction rate
constant, E is the enzyme concentration, AA is the amino acid
concentration, KI is the allosteric inhibition constant, {up} and {down}
are the sets of amino acids that are upstream or downstream of the given
amino acid, and KM is the Michaelis constant.
Enzyme concentrations (E) come from expected expression in a

given environmental condition. Enzymes capable of catalyzing the
same reaction step are summed together and given the same
parameters to simplify the parameter calculation. Amino acid concen-
trations (AAi) come from expected concentrations in a given environ-
mental condition.
KI parameters are determined based on reported values in literature

and the expected amino acid concentration in minimal media such that
the KI is as close to the concentration while staying within the bounds of
reported data (see Supplementary Table 2).
KM parameters for upstream amino acids, reverse reactions and

degradation reactions come from various literature sources. In cases
where data is not available, we use the following assumptions in order
to get saturating kinetics: upstream reaction KM are assumed to be the
amino acid concentration in minimal media for a high dynamic range
while reverse and degradation KM values are assumed to be 10 times
the amino acid concentration in minimal media in order to have limited
loss at physiological concentrations (see Supplementary Table 2).
We use an optimization problem to solve for kcat parameters and

environmental exchange rates (vexchange) using concentrations in
minimal glucose media and rich media with all amino acids added. At
steady-state amino acid concentrations, a mass balance around each
amino acid links metabolic rates (synthesis and transport) to translation,
which has a known rate—the rate required to meet protein doubling
demands for the two growth conditions. Along with known rates of
transport from literature31, we should be able to solve for the remaining
two unknowns (forward and loss kcat) with two equations (minimal and
rich media):

kcat;f � Csynth;minimal � kcat;r � Closs;minimal ¼ Sminimal þ vdown;minimal (6)

kcat;f � Csynth;rich � kcat;r � Closs;rich ¼ Srich þ vdown;rich � vexchange (7)

where C is the capacity of a forward or reverse reaction and defined as the
enzyme concentration multiplied by saturation terms or C ¼ v

kcat
, S is the

rate of supply of amino acids to translation needed to double the protein
mass within a cell cycle, and Closs represents the capacity for either the
reverse, vrev, or degradation, vdeg rate.
However, the additional constraint of having positive kcat parameters

makes solving the set of equations infeasible for some amino acids. For this
reason, we must use an optimization approach. Varying the uptake rate is
sufficient to provide a non-negative solution for the kcat parameters.
Setting an objective function to closely match the available data for kcat
values and uptake rates allows us to select a set of parameters from the

possible solution space:

objective ¼ 1000 � jjvexchange � vexchange;lit jj þ jjkcat � kcat;lit jj þ jjkcat;rev jj
(8)

Amino acid transport. Transport of amino acids from the environment
provides additional nutrient sources for the cell and reduces the amount
of energy and resources that need to be spent on amino acid biosynthesis
as well as the translation of enzymes to catalyze biosynthesis. Together,
this helps support higher growth rates in rich media containing amino
acids. From the optimization in Eq. (8), we can get exchange rates that can
be used to parameterize transport of amino acids based on concentra-
tions of transporters and amino acids. Using the new --mechanistic-
aa-transport simulation option, the simulation will calculate an
exchange rate based on Eq. (9) when a given amino acid is in the media,
otherwise the rate will be a constant rate based on the value from Eq. (8)
when amino acids are present. We assume that the rate of uptake is
inhibited by internal amino acid concentrations as is the case with many
transporters57,58 and that export of each amino acid occurs with
Michaelis–Menten kinetics:

vexchange;i ¼ vimport;i � vexport;i (9)

vimport;i ¼ kcat;im;i � T im;i � 1

1þ AAi
KI;i

(10)

vexport;i ¼ kcat;ex;i � Tex;i � 1

1þ KM;i

AAi

(11)

where v represents rates of transport, kcat is the rate constant for import or
export, T is the transporter expression for import or export, AA is the amino
acid concentration, KI is the inhibition constant for import, and KM is the
Michaelis constant for export for each amino acid, i.
Transporter to amino acid mappings come from annotated function on

EcoCyc29. If multiple transporters exist for a given amino acid, the
transporters are summed together and given the same set of parameters.
All amino acids can be imported in the model except for cysteine which
does not have a dedicated importer29,59 and shows minimal uptake from
the environment 31.
KI values are assumed to be the expected concentration of each amino

acid in rich media.
Some KM values come from literature and are based on steady-state

internal concentrations of amino acids when corresponding dipeptides
are added to the external media, which literature suggests should be near
the KM

60 (see Supplementary Table 3). For those that do not have data
available, a KM is assumed based on the average increase of the other
amino acid KM values over the amino acid concentration in minimal media:

factor ¼
P

i
KM;i

AAi

n
(12)

where i is each amino acid with data and n is the number of amino acids
with data so that unknown KM values can be estimated:

KM;j ¼ factor � AAj (13)

for each amino acid, j, without data.
To solve for kcat parameters for import and export, we use the

relationship in Eq. (9) under two conditions: when amino acids
concentrations are at the expected concentrations in rich media, the
exchange rate will be the rate calculated from Eq. (8) and the assumption
that when amino acid concentrations are equal to the export KM, vexchange
will be 0, which is how the KM values were defined when curated.
This approach does not take into account competition of multiple amino

acids in the media for transporters that can recognize multiple amino
acids. For simplicity in solving for the kcat parameters based on the
available equations, we also are unable to treat multiple transporters for
each amino acid separately even though kcat, KI, and KM parameters would
likely vary for each transporter.

Phenomenological amino acid supply. This option provides an alternative
to mechanistic amino acid biosynthesis and transport and is not
dependent on the expression of enzymes and transporters but is
responsive to amino acid concentrations to help provide stability to
tRNA charging. This approach is not used in simulations with all regulation
but instead when mechanistic amino acid supply is turned off
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(--no-mechanistic-aa-supply). With this option, the model uses a
phenomenological approach to determining the supply rate instead of
relying on the kinetics described above:

vsupply;i ¼ f supply;i � vsupply;i;media (14)

where vsupply,i,media is calculated before simulations for each media
condition with a known doubling time based on the rate needed to
double the protein fraction and fsupply,i is defined as:

f supply;i ¼ f base synthesis;i þ f inhibited synthesis;i þ f import;i � f export;i (15)

where

f base synthesis;i ¼ c1;i (16)

f inhibited synthesis;i ¼ 1

1þ ½AAi �
KI;i

(17)

f import;i ¼
c2;i if AAi in environment

0 otherwise

�
(18)

f export;i ¼ ½AAi �
KM;i þ ½AAi � (19)

c1,i, c2,i, KI,I, and KM,i can be determined by defining parameters fI and fM
and constraints below that represent the fraction of contributions to the
supply rate at the expected amino acid concentrations when the cell is in
the presence of amino acids in the environment and when amino acids are
not present:

when [AAi]= [AAi,basal]:

f inhibited synthesis;i ¼ f I (20)

f supply;i;basal ¼ 1 (21)

when [AAi]= [AAi,amino acid]:

f export;i ¼ fM (22)

f supply;i;amino acid ¼ 1 (23)

Solving shows that the parameters are defined as

KI;i ¼ f I � ½AAi;basal �
1� f I

(24)

KM;i ¼ 1
f M

� 1

� �
� ½AAi;amino acid � (25)

c1;i ¼ 1� f I � ½AAi;basal�
KM;i þ ½AAi;basal�

� �
(26)

c2;i ¼ 1� c1;i þ 1

1þ ½AAi;amino acid �
KI;i

� f M

0
@

1
A (27)

This approach does not depend on the expression of enzymes or
transporters and does not take the topological amino acid synthesis
network and precursors into account. The base rate is assumed to change
immediately upon a change in the environment without accounting for
the time it takes for regulation to alter expression. Terms are dependent on
the amino acid concentration to provide stability and provide an
approximation of the control amino acid concentrations can have over
the rates by increasing the supply at low amino acid concentrations and
decreasing the supply at high amino acid concentrations.

tRNA charging. tRNA charging plays a central role in linking amino acid
kinetics to translation (and ultimately the overall cellular growth rate).
Additionally, new transcriptional regulatory features are dependent on
tRNA charging - ppGpp concentrations indicate levels of uncharged tRNA
in the cell and charged tRNA concentrations affect transcriptional
attenuation. In the model, tRNA charging is used in PolypeptideE-
longation to capture a more mechanistic view of translation but can be
optionally disabled with a simulation option (--no-trna-charging).
With no tRNA charging, translation is simply limited by the codon
sequences actively translated mRNAs and a constant rate of amino acid
supply that is condition dependent based on the expected doubling time.

With tRNA charging, the rate of amino acid incorporation becomes a
function of the state of the cell including the codon sequence of mRNAs
being translated as well as amino acid, tRNA, synthetase and ribosome
concentrations. With the assumption that charging happens sufficiently
fast (kcat ≈ 100 s−1 vs ~1 s time step) and the state of the cell does not
significantly change between time steps, the ratio of uncharged to
charged tRNA can be adjusted until rates of tRNA charging (vcharging) and
ribosome elongation (velongation) reach a steady state during each time step.
This is shown with ODEs for each tRNA species, i, shown below:

d½tRNAcharged;i �
dt

¼ vcharging;i � velongation;i (28)

d½tRNAuncharged;i �
dt

¼ � d½tRNAcharged;i �
dt

(29)

The rates of charging and elongation are based on previous work 9 and
defined below:

vcharging;i ¼ kS � ½synthetasei � �
½tRNAuncharged;i �

KM;tRNAu ;i
� ½AAi �
�KM;aa;i

1þ ½tRNAuncharged;i �
KM;tRNAu ;i

þ ½AAi �
KM;aa;i

þ ½tRNAuncharged;i �
KM;tRNAu ;i

� ½AAi �
�KM;aa;i

(30)

velongation;i ¼ f i � krib � ½ribosome�
1þP

j f j � KD;tRNAc
½tRNAcharged;j � þ

½tRNAuncharged;j �
½tRNAcharged;j � �

KD;tRNAc
KD;tRNAu

� �� � (31)

where kS is the synthetase charging rate, KM;tRNAu is the Michaelis constant
for free tRNA binding to synthetases, KM,aa is the Michaelis constant for
amino acids binding synthetases, fi is the fraction of codon i to total
codons to be elongated, krib is the max ribosome elongation rate, KD;tRNAc is
the dissociation constant of charged tRNA to ribosomes and KD;tRNAu is the
dissociation constant of uncharged tRNA to ribosomes. KM values for tRNA
and amino acids come from literature with default values of 1 μM and 100
μM, respectively, for species that do not have curated data9. Charging
currently ignores the concentration of ATP in determining the rate.
krib from Eq. (31) can be defined in two ways depending on the simulation

options that are set. With --no-ppgpp-regulation or --disable-
ppgpp-elongation-inhibition selected, krib will be a constant.
Otherwise, when --ppgpp-regulation is selected, krib is determined
based on the current ppGpp concentration and competitive inhibition of
GTPases associated with translation (initiation and elongation factors):

krib ¼ krib;max

1þ ppGpp
KI

� �H (32)

where krib,max is the maximum elongation rate, KI is the inhibition constant
and H is a Hill coefficient reflecting cooperativity. The parameters are fit
with a least squares approach using ppGpp concentrations and elongation
rates from literature30.
With tRNA charging, translation will be limited by the calculated

elongation rate (velongation) instead of the supply of amino acids to
PolypeptideElongation. With a variable amount of amino acids
being produced and used at each time step, the concentration of each
amino acid species, i, in the cell can vary as shown below, which will
update the homeostatic target in Metabolism:

d½AAi �
dt

¼ vsupply;i � vcharging;i (33)

where vsupply,i is the rate of supply of amino acids from Eq. (1) or Eq. (14),
which includes both synthesis and uptake, and vcharging,i is the rate of
charging as determined above.
When the --mechanistic-translation-supply option is used

in simulations, tRNA charging can show some instability due to the
assumption that the amino acid concentration remains constant through-
out the timestep as charging occurs. To improve stability, the --aa-
supply-in-charging option should also be used. This option allows
the amino acid concentration used in the charging ODEs (Eq. (28), Eq. (29))
to vary on sub-timestep scales based on the ODEs defined with amino acid
supply (Eq. (33)).

ppGpp kinetics. As a major regulator of growth in bacteria18, including
ppGpp dynamics in a model designed to capture growth and environ-
mental responses is imperative. Through RelA, ppGpp synthesis occurs in
coordination with translation at the ribosome so reactions are modeled
together within the PolypeptideElongation process. Reactions are
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only modeled when two simulation options are enabled together
(--trna-charging and --ppgpp-regulation). In addition to RelA,
SpoT is also responsible for producing ppGpp as well as hydrolyzing
ppGpp so the total change in ppGpp concentration can be written as:

dCppGpp

dt
¼ vRelA þ vSpoT ;syn � vSpoT ;deg (34)

where vRelA is the rate of ppGpp production by RelA, vSpoT,syn is the rate of
ppGpp production by SpoT and vSpoT,deg is the rate of degradation of
ppGpp by SpoT. The equations that govern these rates are shown below:

vRelA ¼ kRelA � CRelA �
Crib:tRNAu;i

KD;RelA;i

Crib:tRNAu;i

KD;RelA;i
þQ

j≠i 1þ Crib:tRNAu;j

KD;RelA;j

� � (35)

vSpoT ;syn ¼ kSpoT ;syn � CSpoT (36)

vSpoT ;deg ¼ kSpoT ;deg � CSpoT � CppGpp � 1

1þP
i
CtRNAu;i

K I;SpoT ;i

(37)

where kRelA, kSpoT,syn, and kSpoT,deg are rate constants for ppGpp production
by RelA, ppGpp production by SpoT and ppGpp degradation by SpoT,
respectively, CRelA, Crib:tRNAu , CSpoT, CppGpp, and CtRNAu are concentrations for
RelA, ribosomes bound to uncharged tRNA, SpoT, ppGpp and uncharged
tRNA, respectively, KD,RelA,i is a dissociation constant for RelA binding
ribosomes for each uncharged tRNA species at the A-site and KI,SpoT,i is an
inhibition constant for the effect of each species of uncharged tRNA on
SpoT mediated degradation of ppGpp. vRelA includes an adjustment for the
competitive inhibition for all other tRNA species that RelA could recognize
represented by the product. Parameters for KD,RelA,i are based on those
reported in literature9. Direct inhibition of uncharged tRNA on SpoT
hydrolase activity is assumed based on reports in literature61,62 with the
base KI,SpoT,i parameter being assumed such that the value is sufficiently
high to be above concentrations of uncharged tRNA that are normally
present during exponential growth at different rates61 while also
empirically providing qualitatively stable ppGpp concentrations in simula-
tions. Both KD,RelA,i and KI,SpoT,i are adjusted by the prevalence of each tRNA
species, which gives each tRNA species approximately the same amount of
control over ppGpp production and degradation. This is based on reports
in the literature that show different tRNA species can have varying effects
on ppGpp production63. The adjustment to both parameters is calculated
prior to simulations based on expected total tRNA concentrations (CtRNA):

ratioi ¼ CtRNAiP
jCtRNAj

(38)

adjustmenti ¼ ratioiP
j
ratioj

ntRNA

(39)

KD;RelA;i ¼ adjustmenti � KD;RelA;lit (40)

KI;SpoT ;i ¼ adjustmenti � KI;SpoT ;lit (41)

where ntRNA is the number of tRNA species
Concentrations for all species necessary for calculations in Eq. (34)

except for Crib:tRNAu are directly tracked by the model. With Eq. (31), the
concentration of ribosomes bound to uncharged tRNA can be calculated
for each species, i as follows:

Crib:tRNAu;i ¼ Crib;i

CtRNAu ;i

KD;tRNAu

1þ CtRNAu ;i

KD;tRNAu
þ CtRNAc ;i

KD;tRNAc

(42)

where Crib,i is the concentration of ribosomes with species i at the A-site
and defined as

Crib;i ¼ velongation;i
σi � krib (43)

where velongation,i is defined in Eq. (31), krib is the max ribosome elongation
rate and σi is A-site fraction saturated with charged tRNA defined as

σi ¼
CtRNAc ;i

KD;tRNAc

1þ CtRNAu ;i

KD;tRNAu
þ CtRNAc ;i

KD;tRNAc

(44)

SpoT degradation inhibition by uncharged tRNA is based on work by
Murray and Bremer61. Parameters for SpoT are also calculated with data from

that work with the assumption that SpoT is at a concentration of 0.1 μM. With
a ppGpp half life of 30 s with no ppGpp synthesis and inhibited translation
(assume fully charged tRNA and no uncharged tRNA to inhibit ppGpp
degradation), kSpoT,deg can be determined by integrating the following ODE:

dCppGpp

dt
¼ �kSpoT ;deg � CSpoT � CppGpp (45)

which gives the following solution with the measured half life:

kSpoT ;deg ¼ lnð2Þ
t1=2

� 1
CSpoT

¼ lnð2Þ
30

� 1
0:1

¼ 0:23
1

μM � s (46)

This value can then be used to solve for the synthesis rate constant by
using the measured ppGpp concentration (6 pmol/OD from Murray and
Bremer or 11.4 μM with OD to volume conversion for an average cell) and
assuming a steady state concentration of ppGpp in a RelA knockout with
no degradation inhibition:

dCppGpp

dt
¼ kSpoT ;syn � CSpoT � kSpoT ;deg � CSpoT � CppGpp ¼ 0 (47)

kSpoT ;syn ¼ kSpoT ;deg � CppGpp;SS (48)

Solving for kSpoT,syn:

kSpoT ;syn ¼ 0:23 � 11:4 ¼ 2:6 s�1 (49)

ppGpp regulation. Although ppGpp has many effects on physiology
throughout the cell, interactions with RNAP and control of transcription is
one of the main ways it helps the cell respond to the environment and
optimize growth. This relies on dynamics of ppGpp as described in the
previous section and exhibits regulatory control over many of the features
described here through downregulation of ribosomes (rRNA and rProtein),
tRNA, tRNA synthetases, RNAP, SpoT and other genes as well as
upregulation of amino acid synthesis enzymes and RelA.
Without ppGpp regulation, the probability of initiating a transcript is

defined as

vsynth;j ¼ αj þ
X
i

PT ;iΔri;j (50)

where αj represents basal recruitment of RNA polymerase, PT,i is the
probability that the ith transcription factor is DNA-bound and Δri,j is the
recruitment effect of the ith transcription factor on the jth gene.
ppGpp regulation of gene expression can be enabled with a simulation

option (--ppgpp-regulation). When ppGpp regulation is enabled,
Eq. (50) must be modified to account for the effect of ppGpp with the main
difference being that the basal recruitment rate (αj) is now dependent on
ppGpp. With a variable αj, we must also adjust the recruitment effect of
transcription factors (Δr) to prevent negative or 0 synthesis probabilities for
many genes that are regulated by both ppGpp and transcription factors.
This results in a slightly adjusted form of Eq. (50):

vsynth;j ¼ αj þ αj
αj;o

�
X
i

PT ;iΔri;j (51)

where αj,o is the basal probability used to calculate the original recruitment
parameters so that transcription factors will always reduce expression by
the same fraction regardless of the basal probability calculated by the
current ppGpp concentration.
To calculate parameters for the new equation, we start by assuming that

ppGpp binds to RNA polymerases and the free and bound forms of RNA
polymerase have different amounts of expression for each gene. The
binding can be represented with a reversible reaction:

RNAPfree þ ppGpp Ð RNAPppGpp (52)

To calculate the impact of ppGpp on RNA expression the following
equation is used:

expj ¼ ð1� f Þ � expfree;j þ f � expppGpp;j (53)

where expfree,j and expppGpp,j represent the amounts of expression expected
from the free and ppGpp bound RNA polymerases, respectively, and are
determined prior to simulations. f is the fraction of RNA polymerases that
are bound to ppGpp as defined below:

f ¼ RNAPppGpp
RNAPtotal

¼ C2
ppGpp

K2
M þ C2

ppGpp

(54)
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where CppGpp is the concentration of ppGpp, KM is determined prior to
simulations and represents the Michaelis constant representing the
concentration of ppGpp where half the RNA polymerases are bound.
There is also a Hill coefficient of 2 representing the fact that ppGpp has
multiple sites of interaction with RNA polymerase64.
To calculate KM of ppGpp binding to RNA polymerase, several

assumptions are made. The first is that the amount of RNA in a cell at
different growth rates changes due to changes in stable RNA expression.
The second is that this change in RNA is controlled by ppGpp
concentration changes which cause differential expression based on the
amount of RNA polymerase that is bound. Finally, the amount of RNA
polymerase bound to ppGpp follows the relationship in Eq. (54). Using
population level data for RNA mass fraction, RNA polymerase concentra-
tion and ppGpp concentration at different cell doubling times from Bremer
and Dennis30 allows KM (as well as overall expression rates from free and
ppGpp bound RNA polymerase) to be determined with a least squares fit
based on the following relationship:

RNAfraction;i ¼ CRNAP;i � ðð1� f iÞ � expfree þ f i � expppGppÞ (55)

f i ¼
C2
ppGpp;i

K2
M þ C2

ppGpp;i

(56)

where RNAfraction,i is the mass fraction of the cell that is RNA, CRNAP,i is the
cellular concentration of RNA polymerase and CppGpp,i is the cellular
concentration of ppGpp for each growth rate i.
ppGpp-dependent fold change data and basal expression data can be

used to solve for expfree,j and expppGpp,j for each gene, j, using data from
Sanchez-Vazquez et al.64. To ensure consistency with annotated ppGpp
regulation, only genes known to be regulated by ppGpp as curated from
EcoCyc29 and with consistent regulatory direction with the fold change
data are regulated by ppGpp in the model. Notable exceptions to this
include the addition of negative regulation of all tRNA synthetases that are
not annotated on EcoCyc and the rProtein rpmF, which is the only rProtein
that is not annotated under ppGpp regulation. The fold change data from
Sanchez-Vazuez et al. represents the change from an uninduced (low
ppGpp) condition in rich media to a RelA induced (high ppGpp) condition.
Assuming the overexpression of RelA leads to ppGpp concentrations that
are much greater than KM so that all RNA polymerases are bound to
ppGpp, the fold change can be represented as:

FCj ¼ log2
expinduced;j
expuninduced;j

¼ log2
expppGpp;j

ð1� f richÞ � expfree;j þ f rich � expppGpp;j (57)

where FCj is the measured fold change for gene j and frich is the fraction of
RNA polymerases bound to ppGpp in rich media as determined by Eq. (56)
with the concentration for ppGpp in rich media.
Measured RNA expression in M9+ glucose conditions (basal) provides

another relationship between measured data and expfree,j and expppGpp,j for
each gene:

expbasal;j ¼ ð1� f basalÞ � expfree;j þ f basal � expppGpp;j (58)

where expbasal,j is the measured RNA expression data for each gene, j,
and fbasal is the fraction of RNA polymerases bound to ppGpp in basal
media as determined by Eq. (56) with the concentration for ppGpp in
basal media.
Taken together, Eq. (57) and Eq. (58) can be used to solve for the

unknown values expfree,j and expppGpp,j. This provides expression for
nearly all genes but some adjustments are needed. First, some genes do
not have fold change data (transcript is too small, difference was not
significant, etc) but are annotated as being regulated by ppGpp. For
those with positive regulation, the average fold change of all positively
regulated genes, FC+, is used. For those with negative regulation, the
fold change calculated from fitting expfree and expppGpp in Eq. (55), FC−,
is used since this mostly represents the change in rRNA and tRNA
expression which is not measured in the fold change data set. Another
adjustment is needed for certain genes with high positive fold changes.
In these cases, solving the two equations results in a negative value for
expfree,j. Since negative RNA expression is not possible, these values are
truncated at 0.
Expression adjustments to ribosome and RNA polymerase related

genes are currently done outside the framework of ppGpp regulation in
order to get the appropriate doubling time in given conditions. To
match ppGpp regulation expression levels to these expression adjust-
ments, a least squares fit is performed to determine new expression
values for the adjusted genes. Based on Eq. (53), a system of equations

can be set up for the expression in each of three conditions (rich, basal,
anaerobic):

F � r ¼ e (59)

1� f rich f rich
1� f basal f basal

1� f anaerobic f anaerobic

2
64

3
75 � expfree;j

expppGpp;j

" #
¼

exprich;j � tf rich;j
expbasal;j � tf basal;j

expanaerobic;j � tf anaerobic;j

2
64

3
75
(60)

where frich, fbasal and fanaerobic are the fractions of RNA polymerase bound to
ppGpp in different conditions, expfree,j and expppGpp,j are the gene specific
expression values for free and ppGpp bound RNA polymerases, exprich,j,
expbasal,j and expanaerobic,j are adjusted expression values for genes of
interest in each of the conditions and tfcondition,j is the contribution to
expression that is expected to be controlled by transcription factors as
defined below:

tf condition;j ¼
expcondition;j � Δrcondition;j

pcondition;j
(61)

where Δrcondition,j is the change in probability expected from the average
transcription factor binding in the condition as described above and
pcondition,j is the expected synthesis probability in the condition (not
considering ppGpp regulation). This calculation assumes that the ratio
between expression and synthesis probability will be constant for each
gene, which can be used to convert the expected change in synthesis
probability from transcription factors to an expected change in
expression. Finally, solving with least squares provides the following
solution:

r̂ ¼ ðFT FÞ�1
FT e (62)

Additionally, we want the probability of synthesis in minimal media with
ppGpp and with transcription factor effects to match the synthesis
probability in minimal media without ppGpp regulation, which is the
condition used to parameterize transcription factor effects. By doing this,
we ensure that transcription factors have the correct magnitude of effect
under ppGpp regulation. We need to make adjustments to expfree,j and
expppGpp,j to scale the probabilities from Eq. (50) (vsynth,o) and Eq. (51)
(vsynth,ppGpp) to be equal:

scalej ¼ vsynth;o;j
vsynth;ppGpp;j

(63)

adjusting both expfree,j and expppGpp,j by scalej for any genes that are
regulated by transcription factors will ensure that vsynth,ppGpp,j and vsynth,o,j
are equal.
During simulations, αj in Eq. (50) becomes dependent on ppGpp

concentrations as shown with the equations below:

αj ¼
expj � loss
ngenes

(64)

where expj is defined in Eq. (53). loss is the expected loss rate of the given
transcript approximated by:

loss ¼ lnð2Þ
τ

þ lnð2Þ
t1=2

(65)

where τ is the expected doubling time from the current concentration of
ppGpp (interpolation performed from data from Bremer and Dennis30) and
t1/2 is the measured RNA half life. ngenes is the expected gene copy number
which is a function of τ as determined above and the gene’s position in the
genome.

Network component analysis for transcriptional regulation. Although
transcriptomics data is widely available in many environmental conditions
with new data being produced at a rapid pace, representing the data and
changes in expression such that it is consistent with the annotated
regulatory network and in a manner that can be incorporated in the
whole-cell model can be challenging. For this problem, we used network
component analysis (NCA) to greatly expand the number of regulator
(transcription factors and uncharged tRNAs) to gene regulatory pairs that
are included in the model. In order to parameterize the effect of a
regulator on a gene in the model, we need to start with an expected fold
change that captures the difference between an inactive and an active
regulatory condition. NCA uses gene expression data (E) and an interaction
network topology (Zo) to decompose the expression data into regulatory
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interaction strengths between each regulator and gene (A) and the overall
activity signal for a regulator in each condition (P):

min
A;P

kE � A � Pk2 (66)

st:A 2 Zo (67)

For the analysis performed here, gene expression data (E) comes from
the EcoMAC compendium28, which provides log2, normalized gene
expression for 4189 genes in 2198 conditions. The network topology
(Zo) that only allows specified network connections to be non-zero in A
comes from EcoCyc annotations29. There are several algorithms that can
be used to solve the NCA problem, but we used an implementation of
Robust NCA26 with the option of performing Iterative Sub-NCA27 for
overlapping regulatory units that would otherwise not have a solution.
Preprocessing of the network topology from EcoCyc is performed to

better account for biological differences between activation and
repression from regulators. Any dual regulators are split into two
separate entries in Zo, one for positively regulated genes and one for
negatively regulated genes. Any genes with ambiguous regulation from
a regulator are added to both the positively and negatively regulated
subset. This approach can improve the fit by allowing the same
regulator to have different amounts of positive or negative activity in
each condition.
Output from the algorithm will provide a unique solution up to a

scaling factor provided that certain criteria are met25. In order to
convert output to the format we can use in the model (fold changes
from one condition to another), we need to consider both A and P since
the magnitude in A, which reflects the interaction strengths between a
regulator and gene, will be dependent on the range of activities in P. To
calculate the fold change, we determine an average regulator activity
for a set of conditions with high activity (Pj,high) and a set of conditions
with low activity (Pj,low). The sets are defined as the activities that are
more than a standard deviation away from the mean of all condition
activities for that regulator and include the top or bottom 10 activities
even if these do not fall one standard deviation away from the mean.
Using a minimum of 10 conditions limits the impact of outliers for some
regulators. This leads to a calculation for the fold change (FCij) expected
for regulator j on gene i:

FCij ¼ Aij � ðPj;high � Pj;lowÞ (68)

Transcriptional attenuation. Although transcriptional attenuation repre-
sents a relatively small number of regulatory interactions in the cell, it
plays an important role in amino acid biosynthesis and tRNA charging
stability. When levels of charged tRNA are low, more mRNA for synthesis
enzymes will be produced leading to higher enzyme concentrations
and higher rates of amino acid synthesis, which can lead to an increase
in charging. Conversely, when charged tRNA concentrations are high,
enzyme expression is attenuated to prevent excess resources going to
the enzymes and the production of amino acids. With the application of
NCA to parameterize the magnitude of transcriptional regulation along
with dynamic tRNA concentrations in the cell, we can now simulate
transcriptional attenuation rates. Attenuation is modeled based on a
Poissonian process to determine whether or not transcription proceeds
past the attenuation site65:

Pstop;i ¼ 1� e
�
P

j

tRNAj
Ki;j (69)

where Pstop is the probability that transcriptional attenuation leads to
the termination of transcription, tRNA is the concentration of charged
tRNA and K is a parameter calculated from expression data to represent
the strength of attenuation for a tRNA species j on transcription of gene
i. tRNA species for each amino acid are treated as the same so their
concentrations are summed together and they have the same K value.
K values are calculated before simulations using expected tRNA

concentrations in rich media and fold changes calculated by applying
the NCA method to the transcriptional attenuation regulatory interac-
tions specified on EcoCyc29. The fold change is assumed to represent
the change in transcriptional activity from a condition with no charged
tRNA to a condition with the highest expected charged tRNA:

FCi ¼ 1� Pstop;iðtRNArichÞ
1� Pstop;iðtRNA ¼ 0Þ (70)

where FC is the expected fold change. Since Pstop,i= 0 when there are no
charged tRNA, we can simplify the equation and solve for K directly:

FCi;j ¼ 1� Pstop;iðtRNArichÞ (71)

FCi;j ¼ e
�tRNAj;rich

Ki;j (72)

Ki;j ¼ tRNAj;rich
ln FCi

(73)

With transcriptional attenuation, the number of transcripts will be lower
than previously calculated. Basal synthesis probability parameters are
calculated based on measured expression without accounting for
transcriptional attenuation so we must adjust these higher. Calculating
the adjustment parameter is done prior to simulations and a new α for
Eq. (50) or Eq. (51) is defined as

αj;adjusted ¼ αj þ adjust (74)

where adjust is calculated such that the basal probability with the
adjustment and transcriptional attenuation is the same as the original
basal probability:

1� Pstop
� � � αj;adjusted ¼ αj (75)

rearranging, we can solve for adjust:

adjust ¼ αj � 1
1� Pstop

� 1

� �
(76)

During the simulation, the initiation probability of genes controlled by
transcriptional attenuation will use the adjusted basal probability
(αj,adjusted). Additionally, at each time step of the simulation, we calculate
the stop probability of each actively transcribing RNAP if it is transcribing a
gene under transcriptional attenuation control by using the charged tRNA
concentration in the cell. A random number is drawn from a uniform
distribution and if it is less than the calculated probability, then we remove
the RNAP from DNA and transcription of that gene stops.

Other modeling updates. The changes listed below indicate updated
functionality compared to what existed in the previous version of the model.
This does not include new features like amino acid biosynthesis kinetics,
ppGpp kinetics, transcriptional attenuation or tRNA charging, which were
discussed in the previous section, but does include how those new features
have impacted previous implementations with new functionality.

● Metabolism:

– Metabolite concentrations now come from an average from
literature with new datasets added22,35,66,67, including concentra-
tions for 38 new metabolites.

– ppGpp concentration is now available and dynamic based on
kinetic equations (see more above).

– Amino acid concentrations are dynamic based on supply and
demand, which are determined by the simulation state (see more
above).

– Biomass-related metabolite concentrations are now determined
based on the RNA to protein ratio of the simulation instead of the
expected doubling time of the condition.

– Dynamic s-adenosylmethionine (SAM) concentration based on
methionine concentration.

– cAMP concentration is a step function for known conditions based
on measured relative changes22.

● Regulation:

– Additional transcription factors have been added (Crp, LrhA).
– Additional transcription factor to gene interactions have been

added (see more above).
– Variable amino acid and SAM concentrations leads to variable

transcription factor activity for ArgP, ArgR, Lrp, MetJ, PutA, TrpR,
and TyrR.

– Transcription factor binding occurs before other processes in a
timestep to more accurately calculate binding.

– Active forms, effector binding and gene regulation direction for
some transcription factors (ArgR, Lrp, TyrR) have been updated to
more accurately capture the biological effects in the model.
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● Values previously modeled as constants unique to each environment
based on experimentally measured values and the expected simula-
tion doubling time, which resulted in step functions between
conditions and the inability to simulate outside of parameterized/
experimentally characterized conditions:

– RNAP active fraction determined from ppGpp binding RNAP.
– Fraction of RNA types synthesized (mRNA, rRNA, tRNA) is

determined from ppGpp binding RNAP and transcription factors.
– Fraction of mRNA synthesized that is rProtein and RNAP is

determined from ppGpp binding RNAP and transcription factors.
– A variable transcription elongation rate is used for stable RNA

elongation and mRNA elongation.
– Amino acid supply rates to translation are determined by amino

acid, biosynthesis enzyme, transporter, tRNA synthetase and tRNA
concentrations (see more above).

– The ribosome elongation rate is determined by ribosome, tRNA
and ppGpp concentrations (see more above).

● New environments:

– New carbon sources: acetate and succinate.
– Single amino acid addition to minimal media or removal from

rich media.
– Other arbitrary amino acid combinations.

Simulated experiments
Simulation descriptions. All simulations were performed by initializing a
given number of cells with a different random seed. Simulations continued for
a defined number of cell cycles with one of the two daughter cells providing
the initial conditions for a new simulated cell cycle after division. Although
initialization of simulations produces a cell state that is representative of cell
states achieved during simulations, under perturbed conditions this might not
be the case. To account for this, the first few generations are excluded from
some analysis while the simulation state normalizes as noted below. Due to
compute and storage limitations, simulation sets with many variants are often
run with fewer generations or initial seeds than simulation sets with fewer
variants (eg. Simulation set 16 vs. Simulation set 17). Commands for generating
workflows for each set of simulations are are included on GitHub at https://
github.com/CovertLab/WholeCellEcoliRelease/blob/v2.0/runscripts/growth-
paper/sims.sh. After queueing the workflow with the python runscripts/
fireworks/fw_queue.py command, workflows were run with qlaunch
-r rapidfire --nlaunches infinite --sleep 5. More details about
setting up the computing environment and running simulations is given on
the GitHub page: https://github.com/CovertLab/WholeCellEcoliRelease.

Media shifts. Simulations were performed with 32 starting seeds grown
for 28 generations. Simulations began in rich media (M9 glucose + all
amino acids). At 5 hr, media was shifted to minimal media (M9 glucose). At
10 hr, amino acids were added back into the media. Four different
combinations of simulation options were used:

Simulation set 1 All regulation
Simulations include all newly added regulation.

Simulation set 2 No mechanistic amino acid supply
Simulations do not include mechanistic amino acid supply or transport

so that the amount of amino acids supplied to tRNA charging is
determined in a phenomenological manner that is independent of
enzyme and transporter expression.

Simulation set 3 No ppGpp regulation
Simulations do not include ppGpp regulation of transcript expression,

RNAP properties or GTPase activity (ribosome elongation rate).

Simulation set 4 No new regulation
Simulations do not include any newly added regulation or kinetics (no

ppGpp regulation, no mechanistic amino acid supply or transport, no
transcriptional attenuation, and no tRNA charging). This is mainly representa-
tive of simulations from the first version of the E. coli whole-cell model
described in Macklin et al.16 with some minor added features and bug fixes.
Growth related properties such as RNAP active fraction and ribosome
elongation rate follow step functions during environmental shifts based on
the expected value from experimental characterization in each condition.

Amino acid combinations in media. Simulations were performed with
24 starting seeds grown for 24 generations in glucose minimal media
supplemented with different combinations of amino acids - without
amino acids, with 6 amino acids (Arg, His, Met, Pro, Thr, Trp), with 12
amino acids (previous 6 plus Ala, Asn, Asp, Leu, Ser, Tyr), and with all
amino acids. Simulations with 6 or 12 amino acids started with all amino
acids in the media to initialize the simulations with a known
environment and after 10 min, the other amino acids were removed.
Two combinations of options were used:

Simulation set 5 All regulation
Simulations include all newly added regulation.

Simulation set 6 No regulation
Simulations do not include any newly added regulation or kinetics

(no ppGpp regulation, no mechanistic amino acid supply or transport,
no transcriptional attenuation, and no tRNA charging). This is mainly
representative of simulations from the first version of the E. coli whole-
cell model described in Macklin et al.16 with some minor added features
and bug fixes. Growth-related properties such as RNAP active fraction
and ribosome elongation rate follow step functions during environ-
mental shifts based on the expected value from experimental
characterization in each condition.

Single amino acid media. Simulations were performed with 4 starting seeds
grown for 16 generations. Simulations began in rich or minimal media and an
amino acid was removed or added, respectively, after 10min of growth.

Simulation set 7 Add one amino acid to M9 glucose

Simulation set 8 Remove one amino acid from M9 glucose + all amino acids

Media conditions. Simulations were performed with 16 starting seeds
grown for 8 generations in M9 glucose grown aerobically, M9 glucose
grown anaerobically, M9 glucose with all amino acids, M9 acetate, or
M9 succinate. Two combinations of options were used:

Simulation set 9 All regulation
Simulations include all newly added regulation.

Simulation set 10 No regulation
Simulations do not include any newly added regulation or kinetics (no

ppGpp regulation, no mechanistic amino acid supply or transport, no
transcriptional attenuation, and no tRNA charging). This is mainly
representative of simulations from the first version of the E. coli whole-cell
model described in Macklin et al.16 with some minor added features and bug
fixes. Growth-related properties such as RNAP active fraction and ribosome
elongation rate follow step functions during environmental shifts based on
the expected value from experimental characterization in each condition.

ppGpp sensitivity analysis. Simulations were performed with 8 starting
seeds grown for 8 generations. ppGpp concentrations were fixed at 10-100
μM in 10 μM increments. Growth was in M9 glucose media or M9 glucose
with all amino acids.

Simulation set 11 ppGpp sensitivity analysis

Expression limitations with fixed ppGpp concentrations. Simulations were
performed with 4 starting seeds grown for 8 generations on M9 glucose
media. Expression for metabolic enzymes or ribosomes was adjusted to
determine how expression limited growth at perturbed ppGpp concentra-
tions. ppGpp concentrations started at 50 μM (the expected concentration
for minimal media) and had a slow ramp to a perturbed concentration at a
rate of 0.01 μM/s for improved stability.

Simulation set 12 Limitations at low ppGpp
The final concentration of ppGpp was set at 20 μM. Simulations were either

a control with no expression changes, had adjustments to expression for
amino acid biosynthesis enzymes between 0.5x and 2x, or had adjustments to
ribosomal genes (rProtein and rRNA) between 0.5x and 2x.

Simulation set 13 Limitations at high ppGpp
The final concentration of ppGpp was set at 90 μM. Simulations were either

a control with no expression changes, had adjustments to expression for
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amino acid biosynthesis enzymes between 0.5x and 2x, or had adjustments to
ribosomal genes (rProtein and rRNA) between 0.5x and 2x.

Simulation set 14 Limitations at high ppGpp with variable ribosome
expression
The final concentration of ppGpp was set at 90 μM. Simulations were either

a control with no expression changes, had adjustments to expression for rRNA
at 1.1x, 1.25x or 1.5x, had adjustments to expression for rProtein at 1.1x, 1.25x
or 1.5x, had adjustments to expression for both rRNA and rProtein at 1.1x,
1.25x or 1.5x, had adjustments to expression for rRNA at 1.2x, 1.5x or 2x and
adjustments to expression for rProtein at 1.1x, 1.25x, or 1.5x, respectively, or
had adjustments to expression for rRNA at 1.5x, 2.25x or 3.5x and adjustments
to expression for rProtein at 1.1x, 1.25x, or 1.5x, respectively.

Simulation set 15 Limitations at high ppGpp with variable ribosome
expression and no GTPase inhibition
The final concentration of ppGpp was set at 90 μM. Simulations

were either a control with no expression changes, had adjustments to
expression for rRNA at 1.1x, 1.25x or 1.5x, had adjustments to expression for
rProtein at 1.1x, 1.25x or 1.5x, had adjustments to expression for both rRNA
and rProtein at 1.1x, 1.25x or 1.5x, had adjustments to expression for rRNA at
1.2x, 1.5x or 2x and adjustments to expression for rProtein at 1.1x, 1.25x, or
1.5x, respectively, or had adjustments to expression for rRNA at 1.5x, 2.25x or
3.5x and adjustments to expression for rProtein at 1.1x, 1.25x, or 1.5x,
respectively. The inhibitory interaction between ppGpp and translational
GTPases was also removed so that the ribosome elongation rate no longer
depended on the concentration of ppGpp.

Removing allosteric amino acid inhibition. Simulations were performed in
M9 glucose media. Simulations included wildtype cells as well as mutants
of ArgA, TrpE, HisG, LeuA, ThrA, IlvA, and ProB with varying levels of amino
acid end product allosteric inhibition. Due to computational limitations,
two sets of sims were run with a smaller number of cells but more values of
inhibition removal or a larger number of cells but only complete inhibition
removal as described below:

Simulation set 16 Partial inhibition removal
Simulations were performed with 4 starting seeds grown for 8 generations.

Mutants had multiple levels of inhibition removal determined by increasing
the original K_I parameter by 2x, 5x, 10x, 100x, or ∞x (complete removal).

Simulation set 17 Larger set of sims with full inhibition removal
Simulations were performed with 16 starting seeds grown for 16

generations. Mutants had complete inhibition removal.

Simulation analysis methods
Figure 2. Panels a and b: Simulation data comes from Simulation set 4 for
a and Simulation set 1 for b. Time series data is binned into 5 s bins and
averaged to downsample the original data. The mean value for each value
is calculated across all simulation seeds for each bin and shown as the solid
trace. The standard deviation is calculated across all simulation seeds for
each bin and added to or subtracted from the mean to produce the
shaded region. All values come directly from simulation outputs at each
time step except for a few noted below:

● LEU conc: the model produces counts of leucine and a conversion
factor to convert from counts to molar concentration (based on
Avogadro’s number and the current cell volume). These values are
multiplied together to produce the concentration.

● Fraction charged LEU tRNA: the model provides counts of each leucine
tRNA species that is charged and uncharged. The counts of each
species that are charged is summed together at each time step to
produce a total count of charged tRNA. The counts of each species
that are uncharged are also summed together. The counts for charged
and uncharged are then added together to produce a total tRNA count
specific to leucine. The fraction charged is then calculated as the
charged counts divided by total counts.

● ppGpp conc: the model produces counts of ppGpp and a conversion
factor to convert from counts to molar concentration (based on
Avogadro’s number and the current cell volume). These values are
multiplied together to produce the concentration.

Panels c and d: Simulation data comes from Simulation set 6 for c and
Simulation set 5 for d. The model provides growth rate at each time step
and this value is averaged over every 100 time steps before producing the

histograms. Data from the first 6 simulation generations is dropped to
provide sufficient time for the simulation to reach a new steady state when
shifting from rich media to only a subset of the amino acids in the media.
Panel e: Literature data (dashed line) comes a linear fit to data in

Bremer et al.30. Simulation data representative of the simulation output
from the previous version of the model in three possible media
conditions comes from Simulation set 10, data for the new model in
parameterized conditions comes from Simulation set 9 (excluding the
first 6 generations) and Simulation set 5, and data for the new model in
unparameterized conditions comes from Simulation set 7 (excluding the
first 2 generations) and Simulation set 8 (excluding the first 4
generations). Growth rate comes directly from simulation output. RNA/
protein mass ratio is determined by the RNA mass divided by protein
mass at each time step. A moving average is applied to each cell
trajectory data series (multiple generations from a single starting seed)
with a window of 200 time points. The mean and standard deviation is
then calculated for the plot with error bars representing a standard
deviation. Pearson’s r between the growth rate and RNA/protein mass
ratio is calculated for the groups of points indicated on the plot and
squared to produce the R2 shown on the plot.
Panel f: Literature data comes from the maximum rate observed in

Supplemental Data 1 from Zampieri et al.31. The model uptake flux is
calculated prior to sims as the expected uptake flux to meet demands of
translation, which is used to calculate transport parameters used in the
sim. Pearson’s r between the model and literature data is calculated and
squared to produce the R2 shown on the plot.

Figure 3. Panel a: Literature data comes from Fig. 2d (increasing ppGpp) and
3H (decreasing ppGpp) from Zhu et al.32. Additionally, a linear fit is shown for
data in Bremer et al.30. Simulation data for perturbed ppGpp conditions
comes from Simulation set 11 (excluding the first 2 generations to allow for
normalization to the adjusted ppGpp concentration). Growth rate comes
directly from simulation output. RNA/protein mass ratio is determined by the
RNA mass divided by protein mass at each time step. A moving average is
applied to each cell trajectory data series (multiple generations from a single
starting seed) with a window of 200 time points before the mean across all
values is taken.
Panels b, c, d, e, f, h and i: Simulation data comes from Simulation set 11

(excluding the first 2 generations to allow for normalization to the adjusted
ppGpp concentration). Growth rate and elongation rate (per ribosome) come
directly from simulation output. Other values are calculated based on
simulation outputs:

● Normalized capacity (ribosomes): capacity in each condition as defined
below normalized by the capacity at 50 μM.

capacity ¼ kcat;max � ðNrib;active þ Nrib;inactiveÞ (77)

where kcat,max is the maximum ribosome elongation rate, Nrib,active is the
number of active ribosomes, and Nrib,inactive is the number of inactive
ribosomes.
● Normalized capacity (amino acid enzymes): capacity in each condition

as defined below normalized by the capacity at 50 μM.

capacity ¼
X
AA

kcat;fwd;AA � Nenz;AA (78)

where kcat,fwd,AA is the forward reaction rate and Nenz,AA is the number of
enzymes to catalyze the reaction for each amino acid, AA.
● Output (ribosomes): the model produces counts of amino acids

elongated by the ribosome and a conversion factor to convert from
counts to molar concentration (based on Avogadro’s number and the
current cell volume). These values are multiplied together to produce the
concentration and normalized by the time step to produce a rate.

● Output (amino acid enzymes): the model produces counts of amino acids
produced and a conversion factor to convert from counts to molar
concentration (based on Avogadro’s number and the current cell
volume). These values are multiplied together to produce the concentra-
tion and normalized by the time step to produce a rate.

● rRNA excess: the model produces counts of rRNA, ribosome subunits
and ribosomes. After converting these counts to a mass basis with
molecular weights, we divide the mass of rRNA not in the ribosome by
the ribosome mass.

● Average GTPase inhibition: the model produces counts of ppGpp and a
conversion factor to convert from counts to molar concentration (based
on Avogadro’s number and the current cell volume). These values are
multiplied together to produce the concentration ([ppGpp]) for the
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calculation below with parameters KI and H:

inhibition ¼ 1� 1

1þ ½ppGpp�
KI

� �H (79)

● Total AA conc: the model produces counts of amino acids in the cell and
a conversion factor to convert from counts to molar concentration
(based on Avogadro’s number and the current cell volume). These
values are multiplied together to produce the concentration summed
over all amino acids.

● Average allosteric inhibition: the model produces counts of amino acids
in the cell and a conversion factor to convert from counts to molar
concentration (based on Avogadro’s number and the current cell
volume). These values are multiplied together to produce the
concentration (AAi) used with the inhibition constant for each amino
acid (KI,i) to calculate inhibition for each amino acid pathway as shown
below. The mean of this value for all amino acids is reported on the plot.

inhibitioni ¼ 1� 1

1þ ½AAi �
KI;i

(80)

Panel g: Simulation data comes from Simulation set 11 (Con) and
Simulation set 12 (Enz, Rib) (excluding the first 2 generations to allow for
normalization to the adjusted ppGpp concentration). The model produces
growth rate, which is averaged over all time steps.
Panel j: Simulation data comes from Simulation set 11 (Con), Simulation

set 13 (Enz), Simulation set 14 (Rib), Simulation set 15 (GTP and Rib/GTP)
(excluding the first 2 generations to allow for normalization to the adjusted
ppGpp concentration). The model produces growth rate, which is
averaged over all time steps.

Figure 4. Panel b: Experimental data comes from Fig. 2b and supplement
from Sander et al.35. Simulation data comes from Simulation set 17. The
model produces counts of amino acids in the cell and a conversion factor
to convert from counts to molar concentration (based on Avogadro’s
number and the current cell volume). These values are multiplied together
to produce the concentration.
Panel c: Simulation data comes from Simulation set 17. The model

produces counts of amino acids in the cell and a conversion factor to
convert from counts to molar concentration (based on Avogadro’s number
and the current cell volume). These values are multiplied together to
produce the concentration. Time series data are trimmed to 5 h. After
calculating the concentration in each cell, the mean is taken across all cells
that were simulated.
Panel d: Simulation data comes from Simulation set 17. The model

produces counts of amino acids in the cell and a conversion factor to convert
from counts to molar concentration (based on Avogadro’s number and the
current cell volume). These values are multiplied together to produce the
concentration. Wildtype represents the amino acid concentrations for all
the amino acids listed from the wildtype simulations without enzyme
modification. The mutant for each amino acid comes from a different set of
sims representing the modified enzyme corresponding to the amino acid
listed (Arg: ArgA mutant, Trp: TrpE mutant, His: HisG mutant, Leu: LeuA
mutant, Thr: ThrA mutant, Ile: IlvA mutant, Pro: ProB mutant).
Concavity changes are calculated from each individual cell trajectory. First

concentrations are binned and averaged over every 5 timesteps. Next, a
moving average is applied to the downsampled concentrations with a
window of 60 timesteps (5min). Then, we calculate a cubic spline
interpolation and take the second derivative to represent the concavity of
the concentration time series. Finally, we take a moving average of the second
derivative and calculate number of times this value changes sign. This number
of changes is divided by the simulation length in hr to get the rate of change.
This value is averaged over all cell trajectories and shown in the figure.
Panel e: Experimental data comes from Fig. 2b and supplement from

Sander et al.35 and is the concentration of the amino acid in the
corresponding mutant (Arg: ArgA mutant, Trp: TrpE mutant, His: HisG
mutant, Leu: LeuA mutant, Thr: ThrA mutant, Ile: IlvA mutant, Pro: ProB
mutant) divided by the amino acid concentration in the wildtype.
Simulation data comes from Simulation set 16. The model produces counts
of amino acids in the cell and a conversion factor to convert from counts to
molar concentration (based on Avogadro’s number and the current cell
volume). These values are multiplied together to produce the concentration
at each time step. The mean concentration across all time steps within
wildtype simulations and for simulations with each level of inhibition in the
mutants (adjusted KI is 2x, 5x, 10x, 100x, or ∞x the original KI). A cubic
spline interpolation in log space for the plotted x and y points is calculated

for each concentration. This interpolation is plotted as the solid line and
used to calculated the predicted Original KI / adjusted KI based on the
experimentally observed fold change.
Panel f: Wildtype KI parameters come from literature. Mutant KI values are

calculated form the wildtype KI values by dividing by the predicted original
KI / adjusted KI calculated in (e).

Figure 5. Panels a, b and c: Literature data (dashed line) comes a linear fit
to data in Bremer et al.30. Simulation data for minimal and rich media
references (single points) comes from Simulation set 9 (excluding the first
6 generations). Simulation data for the trajectories comes from Simulation
set 1 for a, Simulation set 2 for b, and Simulation set 3 for c. Growth rate
comes directly from simulation output. RNA/protein mass ratio is
determined by the RNA mass divided by protein mass at each time step.
A moving average is applied to each cell trajectory data series (multiple
generations from a single starting seed) with a window of 200 time points.
The mean and standard deviation for the reference points is then
calculated, with error bars representing a standard deviation.
Panels d, e and f: Simulation data comes from Simulation set 1 for d,

Simulation set 2 for e, and Simulation set 3 for f. The model provides total
RNA and protein mass at each time step. The change in mass in each time
step is used to calculate the growth rate as below. The data plotted is
downsampled from the raw data by binning growth rates every 10 time
steps and taking the average from the 10 time steps.

growth ¼ masstþ1 �masst
masst � Δt (81)

Panel g, h and I: Simulation data comes from Simulation set 1 for All
regulation and Simulation set 3 for No ppGpp.

● RNAP output: the model produces counts of nucleotides elongated by
RNAPs and a conversion factor to convert from counts to molar
concentration (based on Avogadro’s number and the current cell
volume). These values are multiplied together to produce the concentra-
tion and normalized by the time step to produce a rate.

● RNA degradation rate: the model produces a mass of total RNA degraded
in a time step and the total RNA mass. These values are used with the
time step size to calculate the rate as below:

rate ¼ massdeg
massrna � Δt (82)

● mRNA:rRNA ratio: the model produces a total mass of mRNA and rRNA at
each time step. These values are divided to produce the ratio between
mRNA and rRNA.
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