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Abstract

Background and Objective: The contrast of cryo-EM images varies from one to another, 

primarily due to the uneven thickness of the ice layer. This contrast variation can affect the 

quality of 2-D class averaging, 3-D ab-initio modeling, and 3-D heterogeneity analysis. Contrast 

estimation is currently performed during 3-D iterative refinement. As a result, the estimates are 

not available at the earlier computational stages of class averaging and ab-initio modeling. This 

paper aims to solve the contrast estimation problem directly from the picked particle images in the 

ab-initio stage, without estimating the 3-D volume, image rotations, or class averages.

Methods: The key observation underlying our analysis is that the 2-D covariance matrix of the 

raw images is related to the covariance of the underlying clean images, the noise variance, and the 

contrast variability between images. We show that the contrast variability can be derived from the 

2-D covariance matrix and we apply the existing Covariance Wiener Filtering (CWF) framework 

to estimate it. We also demonstrate a modification of CWF to estimate the contrast of individual 

images.

Results: Our method improves the contrast estimation by a large margin, compared to the 

previous CWF method. Its estimation accuracy is often comparable to that of an oracle that 

knows the ground truth covariance of the clean images. The more accurate contrast estimation 

also improves the quality of image restoration as demonstrated in both synthetic and experimental 

datasets.

Conclusions: This paper proposes an effective method for contrast estimation directly from 

noisy images without using any 3-D volume information. It enables contrast correction in the 

earlier stage of single particle analysis, and may improve the accuracy of downstream processing.

Keywords

Contrast estimation; Image denoising; Wiener filtering

*Corresponding author. yunpengs@princeton.edu (Y. Shi). 

Supplementary material
Supplementary material associated with this article can be found, in the online version, at 10.1016/j.cmpb.2022.107018.

HHS Public Access
Author manuscript
Comput Methods Programs Biomed. Author manuscript; available in PMC 2023 September 
01.

Published in final edited form as:
Comput Methods Programs Biomed. 2022 September ; 224: 107018. doi:10.1016/j.cmpb.2022.107018.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

In the past decade, single particle reconstruction (SPR) by cryo-electron microscopy (cryo-

EM) has emerged as a critical technique for high resolution 3-D structure determination 

of macromolecules [1,6,10,26,29,30]. In SPR, the 3-D structure needs to be determined 

from many noisy tomographic projection images with unknown viewing directions. Cryo-

EM images are typically very noisy due to the limited electron dosage required to avoid 

significant radiation damage.

Mathematically, the formation of cryo-EM images can be summarized as follows. Let ϕ(r) 

be the electrostatic potential of a molecule where r = (x, y, z)T ∈ ℝ3. The ith observed raw 

image Ii is modeled as

Ii(x, y) = cihi ∗ ∫ ϕ(Ri
−1r)dz + Ni . (1)

Namely, the molecule ϕ is first rotated by the rotation matrix Ri, and followed by projection 

in the z-direction to form the 2-D clean projection image. Next, the clean image is convolved 

with the 2-D filter hi, often known as the point spread function, or the inverse Fourier 

transform of the contrast transfer function (CTF). The convolved ith clean image is further 

rescaled by its amplitude contrast ci. At last, additive noise Ni is applied to the resulting 

image (translations are omitted from (1) just for the sake of simplicity of exposition). The 

goal of SPR is to estimate ϕ from the set of observed noisy images {Ii}i∈[n], where [n] ≔ {1, 

2, … , n}.

The challenges of SPR lie in several different aspects. First, the noise term Ni typically 

has much larger magnitude than that of the clean signal, making the clean signal hard 

to distinguish from the noise even by the naked eye. As a result, a large number of 

particle images (104 − 106) is often required for reconstruction [6]. Second, the rotations 

{Ri}i∈[n] are unknown. These additional unknown variables make the estimation of the 

3-D volume difficult in the low signal-to-noise-ratio (SNR) regime. The third challenge 

arises from the CTF. Although the CTF can be estimated from the power spectrum of 

the micrograph [12,21,23,38], CTF correction is a challenging deconvolution problem. The 

main reason is that the CTFs are highly oscillatory and have zeros at many frequencies. 

Those zero-crossings completely remove the information of the images at those frequencies. 

As a result, accurate CTF correction requires the usage of several images from different 

defocus groups (namely different CTFs), assuming that those CTFs have non-overlapping 

zero-crossings [4]. Last but not least, the underlying clean signals may have different scaling 

ci. This amplitude variation is mainly due to the unevenness of the ice layers where the 

molecule samples reside [34]. Thicker ice layers increase inelastic scattering of electrons 

by ice, hence decreasing elastic scattering by the molecule and effectively weakening the 

signal, i.e., a smaller scaling coefficient ci. The large variation of ci may cause inaccurate 

image denoising and CTF correction. Moreover, the scale variations may severely affect 

the similarity measures used to detect images from similar viewing directions for 2-D class 

averaging [5,40], 3-D heterogeneity analysis, and the identification of common lines for 3-D 
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ab-initio modeling [2]. In particular, as pointed in Table 2 of [2], the uneven image contrast 

is the most important factor that negatively affects the accuracy of rotation estimation by 

some common line based approaches. At last, scaling variability must be accounted for 3-D 

heterogeneity analysis to prevent artificial classes that correspond to contrast variations [17]. 

In this work, we aim to address the last challenge, contrast estimation, in the ab-initio stage. 

In other words, we are interested in the direct estimation of ci without estimating ϕ and Ri. 

Furthermore, we use the improved contrast estimation to obtain better denoising and CTF 

correction of the images.

2. Related work

There exist several works that estimate the amplitude contrast using estimated ϕ and Ri’s 

[24,27]. Specifically, assuming accurately estimated CTFs and given the estimates ϕ, Ri, 

one can compute the estimated ith CTF-effected clean image I i ≔ hi ∗ ∫ ϕ(Ri
−1r)dz and then 

ci can be estimated as 〈Ii , I i〉 ∕ ‖I i‖2. The estimates of ci, Ri and ϕ are often iteratively 

refined using the EM algorithm [25]. Estimating ci without any knowledge of rotations and 

3-D structure is a challenging task. We refer to this task of contrast estimation as ab-initio 
contrast estimation (ACE). To the best of our knowledge, ACE has not been extensively 

studied in previous works. The mean pixel value of the CTF-corrected and denoised 

images can be used to approximate the contrast. However, [4] only uses the estimated 

contrasts to filter out junk particles (outliers), while the accuracy of contrast estimation itself 

was not tested. There are other contrast-related techniques. Image normalization [25,31] 

rescales the images so that the background noise level is approximately the same across 

the images. However, its normalization factor depends on the noise level, not the amplitude 

contrast. There are also works on contrast enhancement [20,32,37]. These aim to enhance 

the brightness of the underlying signal so that it is more distinguishable from the noise. 

However, they do not directly estimate the amplitude contrast of the clean signal, and in the 

process they alter the image contrast.

There are also several commonly used ab-initio methods for simultaneous image denoising 

and CTF correction, such as traditional Wiener filtering (TWF), and covariance Wiener 

filtering (CWF) [4]. TWF denoises each image using its own information, which suffers 

from low SNR and zero-crossings in CTF. CWF overcomes these issues by estimating the 

population covariance of a set of images. However, its denoising performance degrades 

when the covariance is not accurately estimated. Image restoration can also be done by 

2-D class averaging [9,15,24,40]. These methods require pairwise comparison and alignment 

of images, unlike the preprocessing methods such as [4] and [7]. It is also shown in [7] 

that an appropriate image preprocessing can significantly improve the results of 2-D class 

averaging. Deep learning based methods were recently introduced for image denoising 

and enhancement [3,11,20,33]. Noise2noise [3] requires multiple video frames of the 

same micrograph, which are not always available. Other CNN and GAN based methods 

[11,20,33] require clean projections to form clean-noisy pairs of images to train the model, 

but the clean projections are not available in the ab-initio reconstruction stage, and training 

with clean projections of other molecules may introduce model bias.
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3. Methodology

In this work, we directly estimate the amplitude contrast from the CTF-corrected and 

denoised images in the ab-initio stage of SPR. Our method is based on CWF with 

additional constraints on the covariance matrix which we find realistic and useful for 

contrast estimation.

In order to address the ACE problem, we first derive from (1) a simplified image formation 

model that is independent of Ri and ϕ. We then propose our method to solve the ACE 

problem under this model.

3.1. A Simplified Image formation model

To demonstrate the simplified model, we first reshape the images in (1) as vectors and obtain

yi = ciAixi + ϵi (2)

where yi and xi are respectively the vectors of ith noisy and clean images, Ai is the square 

matrix operator corresponding to the convolution with hi, ϵi is the Gaussian noise vector 

and ci is the contrast to be estimated. In this model, ci, xi and ϵi are unknown. However, 

the power spectral density (PSD) of ϵi is assumed known as it can be estimated from 

the corners of the observed images yi. We assume that Ai and its Fourier transform, the 

CTF, are known, since they can often be accurately estimated in advance from the noisy 

micrographs. Throughout this work, we assume that the CTFs are radially symmetric 

by ignoring astigmatism. Without loss of generality (WLOG) we assume that the noise 

distribution is white Gaussian whose covariance is σ2I. For colored Gaussian noise, one can 

whiten the noise by applying W (noise covariance to the power −1/2) to yi, so that Wyi = 

ciWAixi + Wϵi and the covariance of the whitened noise Wϵi is the identity matrix. The goal 

of ACE is to estimate ci from the observed yi.

Without additional assumptions on xi and ci, the ACE problem is ill-posed due to the scale 

ambiguity of xi and ci. To make it a well-posed problem, WLOG we assume that xi and ci 

are random variables such that for all i ∈ [n],

1. ci and xi are independent of each other.

2. E(ci) = 1.

3. xiT1 = s for some constant s > 0, where 1 is the all-ones vector of the same size as 

xi.

The first assumption is reasonable since the contrast ci primarily depends on the thickness of 

the ice layer, which is indeed independent of the rotation Ri and consequently independent 

of xi. The second assumption is needed to overcome the global scale ambiguity of ci. The 

last assumption states that the sum of pixel values of the clean projection image is the same 

for all clean images. This is a reasonable assumption, because for each i ∈ [n], the sum 

of the elements in xi is approximately ∫ ∫ (∫ ϕ(Ri
−1r)dz)dxdy = ∫ ϕ(r)dr which is a constant 

independent of i. In other words, the sum of pixel values of any 2-D projection image equals 
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the sum of 3-D voxel values. In fact, it is also invariant to translations (i.e., non-perfect 

centering of the images).

We note that our model assumes that ci’s are identically distributed, but it does not require 

the contrasts to be independent of each other. Namely, we allow correlations among ci’s, 

which is often observed in experimental data. For example, two particle images that are 

closely located in the same micrograph often share similar contrasts. In principle, this 

information can be used to improve the contrast estimation, but this is left to future work. 

We refer the reader to Fig. 23 in Section 5.1 for further discussion.

We remark that the estimation of ci remains challenging due to the CTF that affects the sum 

of pixel values and due to the high noise level. Thus, in order to obtain a good estimate of 

ci, it is useful to denoise the image and to correct the CTF effect. A well-known method for 

such image restoration is CWF [4], which is elaborated in the next subsection.

3.2. Preliminaries: Covariance wiener filtering

CWF estimates cixi from yi by minimizing the expected mean squared error given an 

estimated covariance matrix of cixi. Assume that the true covariance matrix of cixi, denoted 

by Σcx, is given by an oracle. Then, under the model yi = Ai(cixi) + ϵi, the linear minimum 

mean squared error (LMMSE) estimator is given by

cixi
CWF = CWF(yi, Ai, Σcx) = arg min

cixi
E(‖cixi − cixi‖2 ∣ yi) (3)

= μ + ΣcxAi
T (AiΣcxAi

T + σ2I)−1(yi − Aiμ), (4)

where μ is the true mean of cixi.

We note that CWF naturally induces an optimal linear estimator of contrast given the true 

covariance Σcx. Indeed, it can be easily shown that :

arg min
1Tcixi

E(‖1Tcixi − 1Tcixi‖2 ∣ yi)

= 1Tμ + 1TΣcxAi
T (AiΣcxAi

T + σ2I)−1 (yi − Aiμ) = 1Tcixi
CWF .

(5)

Namely, 1Tcixi
CWF, the sum of pixel values of the CWF estimate of cixi, is the best linear 

estimator of 1⊤cixi given Σcx. Note that 1⊤cixi = s · ci by the third assumption of our 

model. Therefore, we have obtained the optimal linear estimator of contrast ci up to a global 

constant s. This scale ambiguity can be solved by using the second assumption E(ci) = 1 in 

our model. That is, after obtaining the estimates of s · ci, we normalize the estimates by a 

global constant so that the average of the set {1Tcixi
CWF}i ∈ [n] is 1.
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However, the optimal properties of the aforementioned estimates only hold when Σcx is 

given, which is not true in practice. In [4], the mean of cixi is estimated by minimizing the 

least squares error between the noisy images and the CTF transformed mean. Specifically,

μ = arg min
μ

∑
i = 1

n
‖yi − Aiμ‖2 . (6)

Similarly, the covariance matrix Σcx is estimated by minimizing the squared deviations 

between the sample covariance of yi and the population covariance of Ai(cixi) + ϵi. That is,

Σcx = arg min
Σ

∑
i = 1

n
(yi − Aiμ)(yi − Aiμ)T − (AiΣAi

T + σ2I) F
2 . (7)

By setting the first order derivative of (7) to zero, we end up with the following linear system 

of equations:

∑
i = 1

n
Ai

TAiΣcxAi
TAi = ∑

i = 1

n
Ai

T (yi − Aiμ)(yi − Aiμ)TAi + σ2 ∑
i = 1

n
Ai

TAi . (8)

We note that the first term on the right hand side (RHS) of (8) corresponds to the sample 

covariance of Ai
Tyi. However, yi often has dimension > 104 which is comparable to the 

number of images. In this high dimensional setting, the sample covariance is not a consistent 

estimator of the population covariance. As a result, an eigenvalue shrinkage method is 

applied to the RHS of (8) to improve the covariance estimation. At last, (8) is solved by 

applying the conjugate gradient method. We refer the readers to [4] for more details.

We remark that under low SNR or insufficient number of samples, Σcx could be poorly 

estimated. In such a case, the CWF method and its induced contrast estimator (5) are 

far from being optimal. Therefore, there is still room for improvement on the CWF-

based contrast estimation. Indeed, the CWF-estimator does not fully exploit our model 

assumptions. As we show in the next subsection, the three assumptions of our model imply 

novel constraints on Σcx which turn out to significantly improve contrast estimation.

3.3. Novel constraints on the covariance matrices

The new constraints on the covariance matrix are stated in the following proposition. Let Σx 

be the true covariance of xi and Var(c) be the variance of each ci.

Proposition 1. If the three assumptions for the model (2) are satisfied, then the following 
two constraints hold:

1.
Σcx = (Var(c) + 1) Σx + Var(c)μμT (9)

Shi and Singer Page 6

Comput Methods Programs Biomed. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.
Σx1 = 0 . (10)

This proposition suggests that the true covariance of cixi is the combination of two 

components, one corresponds to the covariance without contrast variability whose 

eigenvectors are perpendicular to the all-ones vector, and the other corresponds to a rank-one 

matrix whose eigenvector is the mean. The derivation of the two constraints is simple. To 

prove the first constraint, we use the identity that for any independent scalar random variable 

c and random vector x, Cov(cx) = E(c2)Cov(x) + Var(c)E(x)E(x)T. By letting c = ci and x = xi, 

we obtain that for any i ∈ [n]

Σcx = Cov(cx) = E(c2)Cov(x) + Var(c)E(x)E(x)T

= (Var(c) + E2(c)) Σx + Var(c)μμT .

By using the assumption E(ci) = 1, we conclude the first constraint. The second constraint 

states that the variation of the sum of elements in xi is 0, namely the contrast variability 

of clean signals is 0. It can be verified easily by using the third assumption of our model. 

Specifically,

Σx1 = E (xi − μ)(xi − μ)T 1 = E (xi − μ)(xiT1 − μT1) = 0,

where the last equality follows from the assumption that : xiT1 = μT1 = s. In the next 

subsection, we propose two methods that use the two covariance constraints to refine the 

estimated covariance Σcx.

3.4. Refinement of covariance matrices

We first use the two covariance constraints (9) and (10) to estimate the contrast variance 

Var(c). By combining the two constraints,

Σcx1 = (Var(c) + 1) Σx1 + Var(c)μμT1 = Var(c)μμT1, (11)

where the second equality follows from the second covariance constraint. We note that (11) 

relates Var(c) to Σcx and μ, where the latter two can be estimated from the noisy data. Given 

the estimated Σcx and μ, the variance of the image contrast can be estimated by least squares 

as follows.

Var(c) = arg min
Var(c)

‖Σcx1 − Var(c)(μT1)μ‖2
2 = μTΣcx1

‖μ‖2μT1
. (12)

We remark that the initially estimated Σcx often does not satisfy the constraints in 

Proposition 1. Therefore, we introduce two methods to enforce the covariance constraints 

using the estimated Var(c). We refer to the first method as semi-definite programming (SDP).
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SDP: We seek to find the closest positive semidefinite matrix to the initially estimated Σcx
such that the two covariance constraints are satisfied. Namely, we seek a solution of the 

following SDP problem.

Σcx
SDP = arg min

ΣcxSDP
Σcx

SDP − Σcx F
2

(13)

subject to Σcx
SDP = (Var(c) + 1) Σx

SDP + Var(c)μμT

ΣcxSDP ≻ 0
ΣxSDP ≻ 0

ΣxSDP1 = 0 .

Since Σcx
SDP = (Var(c) + 1) Σx

SDP + Var(c)μμT, Σcx
SDP is positive semidefinite when Σx

SDP is so. 

Thus, one can drop the constraint Σcx
SDP ≻ 0, and plug in the first constraint of (13) to Σcx

SDP

in its objective function. This yields the following SDP fomulation that optimizes for Σx
SDP.

Σx
SDP = arg min

ΣxSDP
Σx

SDP − Σcx − Var(c)μμT

Var(c) + 1 F

2
(14)

subject to Σx
SDP1 = 0

ΣxSDP ≻ 0 .

After solving Σx
SDP

, we immediately obtain Σcx
SDP = (Var(c) + 1) Σx

SDP + Var(c)μμT. Next, we 

introduce a faster but heuristic alternative that uses the Gram-Schmidt (GS) process to 

approximately solve (14).

Gram-Schmidt (GS) Process: We first note that the constraint Σx
SDP1 = 0 in (14) is 

equivalent to that all the eigenvectors of Σx
SDP are orthogonal to 1. Similar to (14), we seek a 

positive semidefinite matrix Σx
GS that is close to Σx ≔ (Σcx − Var(c)μμT) ∕ (Var(c) + 1) whose 

eigenvectors are orthogonal to 1.

Let Σx = V DV T be the eigenvalue decomposition of Σx, where V  is the eigenmatrix whose 

columns are eigenvectors of Σx, and D is the diagonal matrix of its eigenvalues. We seek 

a refined covariance Σx
GS = UΛUT with refined eigenvalues and eigenvectors such that Λ

is nonnegative (so that Σx
GS ≻ 0) and UT1 = 0 (so that (Σx

GS)T1 = 0), and Λ and U are 

respectively close to D and V .
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The solution of Λ is obtained by simply thresholding the negative values in D. That is, 

Λ = max(D, 0). The solution of the eigenmatrix U is trickier, due to the nonconvex constraint 

UTU = I, namely the columns of U (the eigenvectors of Σx
GS

) form an orthonormal basis. It 

asks to solve the following nonconvex optimization problem.

U = arg max
U

Tr(V TU) (15)

subject to U⊤U = I

UT1 = 0 .

Instead of directly solving (15), we argue that a simple Gram-Schmidt process on V  is often 

sufficient to obtain a satisfying solution. Let V = [v1, v2, …, vp] where p is the dimension of 

each xi, and the eigenvectors are placed in descending order of eigenvalues.

Let U ≔ [u1, u2, …, up] and [1, V −p] ≔ [1, v1, v2, …, vp − 1] be p-by-p square matrices. 

Application of Gram-Schmidt orthogonalization to [1, V −p] yields a new orthogonal matrix 

[1, U−p] ≔ [1, u1, u2, …, up − 1]. That is, u1 is computed by projecting v1 onto the orthogonal 

complement of 1 and then normalize to unit vector. Once ui − 1 for 1 ≤ i ≤ p − 1 are 

computed, ui is computed by projecting vi onto the orthogonal complement of linear 

subspace spanned by 1, u1, …, ui − 1 and then normalize. At last, the solution U is obtained by 

finding the orthogonal complement of U−p to complete its missing column up. In this way, 

the columns of U form an orthonormal basis, and its first p − 1 columns are orthogonal to 1. 

Although up may not necessarily be orthogonal to 1, its eigenvalue is 0 in most of the cases 

and thus won’t affect the solution of Σx
GS

. In practice, the GS process is done by the QR 

decomposition for its better numerical stability.

Iterating from the top eigenvectors has two benefits. First, the top eigenvectors of Σx are 

more robust to the noise. That is, the top eigenvectors v1, v2, … of Σx are often closer to 

those of the true Σx. Due to the constraint Σx1 = 0, the top eigenvectors of Σx often have 

smaller correlation with 1. In other words, the top eigenvectors are cleaner and thus their 

refinement is easier and more accurate, and therefore they should be put at the earlier stage 

of the sequential projection procedure to reduce error accumulation. Second, iterating from 

the top eigenvectors makes them more accurately projected to the orthogonal complement 

of 1 with minimal changes to their original values. This is beneficial for contrast estimation 

since these top eigenvectors are more important for explaining the contrast variations.

3.5. Ab-initio contrast estimation and denoising

After applying the aforementioned SDP or GS method to the initial covariance matrix Σcx, 

we obtain the refined covariance Σcx
RF = Σcx

SDP
 or Σcx

GS
.
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Recall that the CWF estimator of cixi is defined in (3). Our refined estimate of cixi for each i 
∈ [n] is

cixi
RF = CWF yi, Ai, Σcx

RF . (16)

Then, by applying our model assumptions that 1⊤xi = s for all i ∈ [n] and E(ci) = 1, we 

obtain our refined estimate of ci as

ci
RF = 1Tcixi

RF

1
n ∑i = 1

n 1Tcixi
RF , (17)

where the numerator is the contrast estimator up to s. The denominator is the normalization 

factor to remove the scale ambiguity and enforce the average of ci
RF to be 1.

After estimating the contrasts, we present two methods for estimating the clean image xi: the 

image normalization and 2-stage CWF.

Image Normalization—In the first approach, we estimate xi as

xi
RF = cixi

RF

ci
RF . (18)

That is, we simply normalize the estimated cixi by the estimated contrast ci, so that the 

resulting images all share the same sum of pixel values.

2-Stage CWF—In the second method, we apply an additional CWF estimator to directly 

estimate xi. Recall that the original version of CWF aims to estimate cixi. It treats cixi as a 

single variable and considers the model yi = Ai(cixi) + ϵi. In order to directly estimate xi, we 

treat ci as known and absorb it into the CTF term, and consider the model yi = (ci
RFAi)xi + ϵi. 

Given this model, a natural estimate of xi is

xi
RF = CWF yi, ci

RFAi, Σx
RF . (19)

Since the refined Σx
RF

 satisfies the constraint Σx
RF1 = 0, the resulting recovered image xi

RF

automatically has the same sum of pixel values. Ideally, if ci
RF = ci and Σx

RF = Σx, then (19) 

is the optimal linear estimator of xi.

3.6. Computational issues and steerable basis

Although our model and methodology were presented in real image space for simplicity, in 

practice, implementing the CWF-based methods in real image domain is computationally 

intractable and memory demanding. For images of size L × L, the dimension of xi is of order 
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O(L2), and the covariance of xi in real space has O(L4) entries. This leads to high time and 

space complexities that make the computation impractical.

Therefore, we follow [4] and expand the Fourier transformed images ℱ(Ii) in the Fourier-

Bessel basis

ψrk, q(θ, ξ) = Nk, qJk(Rk, qξ ∕ r)e1kθ ξ ≤ r
0 otherwise,

(20)

where 0 < r ≤ 1/2 is the band-limit radius of images (default = 1/2), k, q are respectively 

angular and radial frequencies, (ξ, θ) are the polar coordinates in Fourier domain, Jk 

is the Bessel function of the first kind of order k, Rk,q is the qth root of Jk, and 

Nk, q = (r π ∣ Jk + 1(Rk, q) ∣ )−1 is the normalization factor. We refer the readers to [39] for 

details of the expansion.

Denote the image formation model in the Fourier-Bessel basis as

yiFB = ciAiFBxiFB + ϵi

where Ai
FB, xiFB yiFB are respectively the CTF, and the clean and noisy Fourier transformed 

images in the Fourier-Bessel basis. Expanding images in Fourier-Bessel basis (or other 

steerable basis) enjoys some nice properties. For example, image rotation in the Fourier-

Bessel domain is easy. Indeed, rotation of images corresponds to phase modulation of 

their corresponding Fourier-Bessel coefficients. This relationship between rotation and phase 

modulation enables easy and fast computation of the covariance matrix of any set of images 

that are augmented by all their possible in-plane rotations and reflections. More importantly, 

as shown in [39], the resulting covariance matrix of the augmented images is block diagonal, 

where blocks are indexed by the angular frequency k. That is, the ((k1, q1), (k2, q2))th entry 

of the covariance matrix is nonzero only when the angular frequencies are equal, namely k1 

= k2. This reduces the number of variables in the covariance matrix from O(L4) to O(L3) 

which is a significant saving of computation time and memory usage. Similarly, a radially 

symmetric CTF in the Fourier-Bessel basis is also block diagonal and has the same block 

structure as that of the covariance. As a result, the estimation of each diagonal block of 

xiFB is completely independent and decoupled from the rest of the blocks. Thus, the task of 

estimating xiFB is divided into O(L) independent tasks of much smaller sizes, which enables 

faster and parallelized computation.

Although the Fourier-Bessel expansion facilitates fast computation of CWF, our model and 

covariance refinement method require more careful adaptation to the Fourier Bessel domain. 

The main issue is that the Fourier-Bessel transform preserves the ℓ2 norm by Parseval’s 

identity, but not the sum of pixel values. As a result, 1TxiFB = s and Σx
FB1 = 0 are not 

necessarily satisfied.

To address this issue, we observe that
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1Txi = 1TF ∗FB
∗FBFxi = 1FB

T xiFB, (21)

where F, FB are the matrix operators of the Fourier and Fourier-Bessel transforms, F*, FB
∗

denote their corresponding adjoint operators, 1FB = FBF1 is the Fourier-Bessel transform of 

the Fourier-transformed all-ones image. Therefore, the new constraints in the Fourier-Bessel 

domain are 1FB
T xiFB = s and Σx

FB1FB = 0. By replacing every 1 in the previous formulation by 

1FB, exactly the same argument automatically follows in the Fourier-Bessel domain.

We finally remark that 1FB is only nonzero in the zero-th angular frequency. Indeed, F1 is 

the dirac delta image Iδ whose only nonzero pixel is located at the origin. Let 1k,q be the (k, 
q)th coefficient of 1FB.

1k, q = ∫ ∫ Iδ(θ, ξ)ψrk, q(θ, ξ)ξ dξ dθ = ψrk, q(0, 0) = Nk, qJk(0) (22)

=
N0, q = 1

r π ∣ J1 (R0, q) ∣ for k = 0,

0 otherwise,
(23)

where the last equality follows from that: Jk(0) = 1 when k = 0 and Jk(0) = 0 for k ≠ 0. In 

view of (21) and (23), the contrasts of the real images are only determined by the zero-th 

angular blocks of their Fourier-Bessel expansion. This is a favorable property from the 

computational aspect. For example, when computing the numerator of (17), one can simply 

take the dot product between the zero-th angular frequency block of the Fourier-Bessel 

coefficients of 1 (denoted by 10) and cixi
RF, without the need to access the entire vectors.

3.7. Summary of the algorithm and computational complexity

Our ACE and image restoration methods are respectively summarized in Algorithms 1 and 

2.

We comment on the computational complexity of our methods. From Bhamre et al. [4], the 

overall complexity for the original CWF is O(TDL4 + nL3). The first term corresponds 

to covariance estimation, where T is the number of conjugate gradient iterations for 

estimating Σcx and D is the number of defocus groups. The second term corresponds to 

denoising by Wiener filtering. Our contrast estimator takes two additional steps that cost 

extra computation. The covariance refinement by GS process takes O(L3) operations due 

to the eigenvalue decomposition of the diagonal block of Σx corresponding to the zero-th 

angular frequency. This step is negligible compared to the computational complexity of 

CWF. In contrast, the SDP method suffers from much higher complexity. For both splitting 

conic solver (SCS) [19] and interior point method [13], the periteration complexity is O(m3) 

where m = L2 is the number of variables in the diagonal block of Σx corresponding to 

the zero-th angular frequency. Therefore, the total complexity of our SDP method (using 

the aforementioned solvers) is O(L6). Nevertheless, in our synthetic and experimental data 

L < 400 so empirically we observe that SDP can still be implemented in less than one 
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hour. The step of estimating the image contrasts using the Fourier-Bessel basis (Eq. (21)) 

requires O(nL) operations, which is negligible compared to the cost of CWF. In summary, 

our method with GS-refinement of covariance has similar complexity to that of the original 

CWF. Our method with SDP-refinement of covariance has higher complexity but it is still 

practical.

4. Results for synthetic data

In this section, we compare our method with the original CWF method for contrast 

estimation and image denoising using synthetic data. To generate the synthetic data, we 

create the 2-D clean images by projecting a 3-D volume from uniformly distributed viewing 

directions. The images are downsampled to size 256 × 256. We use the 3-D volume of 

the P. falciparum 80S ribosome bound to E-tRNA, which can be freely obtained from the 

Electron Microscopy Data Bank (EMDB) with ID number EMD-2660 [35]. We apply 10 

different CTFs to the projected clean images, whose defocus values range from 1 μm to 4 

μm. For all CTFs, we choose the voltage as 300 kV, the amplitude contrast as 7%, and the 

spherical aberration as 2 mm. We then rescale the clean CTF-transformed images by image 

amplitude contrasts that are i.i.d. uniformly distributed in [0.5, 1.5]. At last, we add additive 

white or colored Gaussian noise. For the colored noise, we choose the noise power spectrum 

as 1 ∕ k2 + 1 up to a constant, where k is the radial frequency (in 1/(128 pixel size)) in 

the Fourier domain. The pixel size is set as 1.34 × 360/256 Å, where 360 is the original 

dimension of the volume before downsampling.
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Algorithm 1 Ab-initio Contrast Estimation.

Input:{Ai}i ∈ [n], {yi}i ∈ [n], option = SDP or GS
Ai, 0 extract the zero‐th angular frequency diagonal block of Ai
for i ∈ [n]
yi, 0 extract the entries of yi corresponding to the zero‐th an‐
gular frequency for i ∈ [n]

u0 arg minu∑i = 1
n ‖yi, 0 − Ai, 0u‖2

Σcx, 0 arg minΣ∑i = 1
n (yi, 0 − Ai, 0u0)(yi, 0 − Ai, 0u0)T

−(Ai, 0ΣAi, 0
T + σ2I) F

2

Var(c) u0
TΣcx, 010 ∕ (‖u0‖2u0

T10)

Σx, 0 (Σcx, 0 − Var(c)u0u0
T) ∕ (Var(c) + 1)

if option = SDP then

Σx, 0
RF arg minΣx, 0

SDP Σx, 0
SDP − Σx, 0 F

2
subject to Σx, 0

SDP10 =

0 Σx, 0
SDP ≻ 0

else

(di, vi)i = 1
p pairs of eigenvalues/eigenvectors of Σx, 0 sorted in

descending order
D0 diag(max(di, 0))

V 0 [10, v1, v2, …, vp − 1]

[10, U0] Gram‐Schmidt(V 0)

U0 [U0, vp]

Σx, 0
RF U0D0U0

T

end if

Σcx, 0
RF (Var(c) + 1) Σx, 0

RF + Var(c)u0u0
T

cixi, 0RF CWF yi, 0, Ai, 0, Σcx, 0
RF

ci
RF n10

Tcixi, 0
RF ∕ ∑i = 1

n 10
Tcixi, 0

RF

Output:{ci
RF}i ∈ [n]
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Algorithm 2 Ab-initio Image Restoration.

Input:{Ai}i ∈ [n], {yi}i ∈ [n], option = normalization or 2‐stage

μ, Σcx by solving (6), (7)

{ciRF}i ∈ [n], Σcx, 0
RF , Σx, 0

RF by implementing Algorithm 1

ΣcxRF replace the zero‐th angular frequency diagonal block of

Σcx by Σcx, 0
RF

ΣxRF replace the zero‐th angular frequency diagonal block of

Σcx by Σx, 0
RF

if option = normalization then

cixi
RF by (16)

xiRF by (18)
else

xi
RF by (19)

end if

Output:{xi
RF}i ∈ [n]

We implement all algorithms on a cluster with 750GB shared memory and 72 cores running 

at 2.3 GHz, where 20 cores were used. We implement CWF using the ASPIRE package 

[36] with its default setting. As for our methods, the SDP covariance refinement formulation 

is solved in CVXPY [8] by its default solver SCS [19]. Our Python code is available at 

https://github.com/yunpeng-shi/contrast-cryo, and is planned to be integrated into ASPIRE.

We next comment on the runtime of the algorithms. The Fourier-Bessel expansion for a 

batch of 1000 images takes 110 s. With 10 defocus groups, the covariance estimation by 

CWF takes 1780 s for white noise and 2040 s for colored noise. The covariance refinement 

by SDP takes 1.5 s, whereas for GS it is less than 1 s. Image denoising by Wiener filtering of 

1000 images takes 84 s. For the same images, the runtime for computing contrasts from the 

Fourier-Bessel coefficients is less than one second which is negligible.

4.1. Synthetic data with white noise

Figure 1 shows an example of a clean image and its noisy counterparts at different SNRs.

We next examine the performance of our estimator of contrast variance (12) under different 

SNRs and number of images. Since our simulated contrasts are uniformly distributed on 

[0.5, 1.5], the ground truth variance is 1/12, and thus ideally the line plots in Fig. 2 should 

align with the horizontal line y = 1. For small number of images n = 1000, our method 

often underestimates the variability of contrast, especially under low SNR. In this regime, 

our method mainly captures the magnitude of image noise, which is indeed assumed as 

approximately a constant (so variance is small) across images. For medium size of n, namely 
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n = 10000, our method gives good estimate of contrast variance at SNR= 1, 0.1, but tends 

to overestimate it when SNR goes lower. In this regime, the overestimation is mainly due to 

the inaccurate estimation of μ and Σcx. Ideally, in the absence of noise, μ and Σcx1 should 

be parallel to each other due to (11). When μ and Σcx1 are far from being parallel, then one 

would expect a larger Var(c) to minimize the energy in (12). We finally remark that when n 
= 105, we are able to accurately estimate Var(c) for SNR as low as 1/100.

We next check the estimation of the covariance matrix Σcx. In Fig. 3, we present the line 

plot of the normalized estimation error eΣ ≔ ‖Σcx − Σcx‖F
2 ∕ ‖Σcx‖F

2 . We observe from Fig. 3 

that the estimation error of the refined covariance matrix strongly depends on the estimation 

error of Var(c). Indeed, when n = 10000 and SNR= 1/50 and 1/100, eΣ of CWF-GS and 

CWF-SDP are both significantly larger than that of CWF. This large error is mainly due 

to the inaccurate estimation of the contrast variance at those SNRs. Our refined covariance 

matrices are more accurate under low SNR and large n, such as SNR= 1/100 and n = 105 

where Var(c) is accurately estimated. We show in Figs. 3-6 that although the refinement of 

covariance matrices does not necessarily reduce the estimation error, it plays a critical role 

for accurate contrast estimation.

To visualize the quality of contrast estimation by different methods, we present scatter plots 

of estimated contrasts v.s. ground truth ones. Ideally, the points in scatter plots should align 

well with the line y = x. We first show in Fig. 4 the scatter plots of different methods when 

n = 10000 and SNR = 1. “CWF-Oracle” refers to the CWF method with ground truth mean 

and covariance. We note that the oracle is the best linear estimator of the contrast. Our 

CWF-GS and CWF-SDP perform similarly and both of them achieve near-oracle accuracy 

for contrast estimation, and they are significantly better than the plain CWF.

Next, in Fig. 5 we keep the number of images fixed and lower the SNR to 0.1. All 

algorithms perform significantly worse than the results of SNR = 1. However, CWF-GS 

and CWF-SDP produce more accurate contrast estimates than those of plain CWF and are 

comparable to the oracle, which is consistent with Fig. 4.

Next, we show that the number of images often does not significantly affect the performance 

of our methods. That is, unlike CWF, our method does not require a large sample size for 

estimating the contrasts. In Fig. 6, we reduce the number of images to 1000 while keeping 

SNR = 0.1. The contrast estimation by the plain CWF is much less accurate after reducing 

the number of images. In contrast, our methods better maintain the quality of contrast 

estimates after reducing n. This suggests that our method is more robust to inaccuracies of 

the estimated covariance matrix.

In Fig. 7 we compare the contrast estimation error of different methods under different SNRs 

and number of images. We use the averaged relative error

ec = 1
n ∑

i = 1

n c i − ci
ci

(24)
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to measure the performance of the contrast estimation. We limit the y-axis of the line 

plot on the interval [0, 0.28] since any contrast estimation error above 0.28 is regarded 

as non-informative. Indeed, a trivial contrast estimator that estimates every ci as 1 would 

give the error close to 0.28 in expectation. We observe that when n = 10000, although 

the covariance matrices are not very accurately estimated, CWF-GS and CWF-SDP both 

achieve performance that is comparable to the oracle. However, CWF needed 100000 

samples to reduce the gap to the oracle. Even with n = 100000, CWF is still slightly 

worse than the oracle and our methods. Therefore, the key factor that determines the quality 

of contrast estimation is not how covariance is close to the true one, but is whether the 

covariance is enforced to satisfy the constraints stated in Proposition 1.

Next, we test the performance of the algorithms on image denoising. We compare the plain 

CWF and the ones with our refined covariances. We also compare the denoised images with 

image normalization and our 2-stage CWF procedure, introduced in Section 3.5. The two 

previous methods we compare are CWF and CWF-norm [4]. The latter one is the CWF with 

an image normalization step. The labels “-GS” and “-SDP” refer to usage of the refined 

covariance matrix (estimated by our GS procedure and SDP method) for CWF.

Before presenting the estimation errors, we show an example of clean and noisy images and 

denoised ones by different methods. In this example, SNR = 0.1 and n = 10000. From the 

result of Fig. 8, the denoised image by the original CWF with normalization looks similar 

to the ones by our normalization methods, although they have slightly different contrasts. 

The denoised images by our 2-stage methods have clearer fine details than those that are 

denoised by other methods.

We evaluate the denoising performance by the normalized root mean squared error 

(NRMSE) within a circular mask whose radius is half the image size. From Fig. 9, CWF 

with image normalization often gives large errors under low SNR and small to medium n. 

Our image normalization and 2-staged methods consistently perform better than CWF and 

CWF-normalization, where 2-staged methods are slightly better. We also observe that our 

GS and SDP refinement yield similar estimation errors, where GS is slightly better under 

low SNRs.

We further examine the contrast estimation error in each defocus group. In Fig. 10 we 

compare the contrast estimation errors of different methods in each of the 10 defocus 

groups for n = 10000 and SNR = 0.1. The defocus groups are sorted by defocus values in 

ascending order. In addition to the previously tested methods, we include a stronger oracle 

that knows the true clean images (not just true covariance). It estimates the contrast by 

ci = 〈yi, Aixi〉 ∕ ‖Aixi‖2
2. We refer to this method as “Oracle”. On the right panel of Fig. 10 

we test the contrast estimation when the observed noisy images are randomly shifted by 1–5 

pixels in x and y directions. From Fig. 10, the contrast estimation errors of both CWF and 

our methods tend to decrease when the defocus value increases. This makes sense, since 

CTFs with larger defocus values have higher absolute values around the zero-th frequency, 

and thus enjoy higher SNRs at low frequencies. When all images are centered, the “oracle” 

indicates the best possible contrast estimation that a template-based method can achieve, 

which obviously outperforms all other methods including the CWF-oracle. We remark that 
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“oracle” knows the true manifold of the clean images, whereas “CWF-oracle” assumes a 

linear approximation of it. However, the new oracle is not robust to shifts, unlike other 

methods. When the noisy images are shifted, the oracle, assuming it does not know the shifts 

in the observation and only computes the dot product between the shifted yi and centered 

Aixi, gives poor contrast estimation. To mitigate this issue, a low pass filter to yi and Aixi is 

often needed.

At last, in the left panel of Fig. 11, we compare the NRMSE of the denoised images by CWF 

with image normalization and our methods for each defocus group. On the right panel we 

show the relationship between the NRMSE of the denoised images and their contrast values. 

In particular, we divide the images into 10 groups by their true contrast values. Namely, 

the images with contrasts between 0.5 and 0.6 are classified as the first contrast group, and 

those with contrasts 0.6-0.7 are considered the second group and so on. We do not show 

CWF with image normalization since it has significantly higher NRMSE than other methods 

and will screw the scale of the y-axis. From the figure, for all methods, the NSMSEs often 

decrease when defocus values and contrast values increase. This agrees with our argument 

that higher defocus and contrast correspond to higher SNRs at low frequencies. However, 

with higher defocus values, more energy of clean signals is spilled outside of the image 

disk [28], and CTFs have more zero-crossings, which may have negative effects on image 

denoising. Indeed, we notice that when defocus values approach 4 μm, the NRMSEs slightly 

increase. Overall, the 2-stage methods perform significantly better than other methods.

4.2. Synthetic data with colored noise

We retest different methods on synthetic data with colored noise. The data generation 

procedure is exactly the same as before, except that now we use colored noise whose power 

spectrum decays with the radial frequency. Colored noise is more realistic in the sense 

that it better mimics the noise statistics observed in experimental images. Our choice of 

colored noise makes contrast estimation more challenging. Indeed, given the noise spectrum 

1 ∕ k2 + 1 (up to a constant) where k is measured in 1/(128 pixel size), under the same SNR, 

the noise power spectrum in the zeroth frequency is expected to be 40 times larger than that 

of the white noise. Since contrast (mean of the pixels) is all about the zeroth frequency, the 

high noise at low frequencies poses a serious challenge.

Figure 12 shows an example of a clean image and noisy ones at different SNRs. Comparing 

with Fig. 1, the particles are harder to identify by human eyes than in the case of white 

noise. Indeed, starting from SNR=0.1, it already becomes hard to visually distinguish the 

particle from the colored noise in the background.

We next test the variance estimation for the contrasts. As shown in Fig. 13, the performance 

of the variance estimation is indeed worse than that for images with white noise. For n 
= 1000, our method consistently underestimates the variance. For n = 10000, there is an 

interesting transition from overestimation to underestimation between SNR= 1/50 and 1/100. 

This is likely due to that at SNR= 1/100, our method starts to learn the variance of the 

average pixel values of noise which is close to 0. However, for n = 100000, we are able to 

reliably estimate Var(c) up to SNR = 0.1.
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Figure 14 shows the covariance estimation error for the different methods. Similar to the 

white noise case, the large errors of our methods when n = 10000 are mainly due to 

overestimation of Var(c), We notice a slight drop of covariance estimation error at SNR= 

0.01 when n = 10000. This is due to the reduced error of contrast variance estimation (see 

the orange line in Fig. 13). However, as we show next, these refined covariance matrices are 

key for accurate contrast estimation.

As before, we assess the quality of the contrast estimation through scatter plots. From the 

result of Fig. 15, all methods perform significantly worse than in the white noise case. 

However our methods are still comparable to the oracle one and are considerably better than 

the original CWF.

Next, we fix n and decrease SNR to 0.1. In Fig. 16, the original CWF almost fails since there 

is no clear linear association between its estimated contrasts and the true ones. However, one 

can see a clear trend between the contrasts estimated by our methods and the ground truth 

ones. Again, our methods achieve comparable accuracy to the oracle one.

We next keep the SNR and reduce the number of images to 1000. In Fig. 17, the 

performance gap between our methods and CWF is even larger, and our methods are still 

comparable to the oracle. In both Fig. 16 and 17 the scatter plots of our methods tend 

to follow a straight line with a smaller slope, due to the high noise. Indeed, consider the 

extreme case of pure noise images, the estimated contrasts should follow a horizontal line.

In Fig. 18 we compare the contrast estimation error of different methods under different 

SNRs and number of images. We observe that the CWF-GS and CWF-SDP both perform 

comparably to the oracle for n ≥ 10000. They also perform close to the oracle for the small 

sample size n = 1000, which indicates their robustness to the sample size unlike CWF. When 

n = 1000, the error of CWF is always above 0.28, thus it does not appear in the plot. There is 

still a large gap between CWF and our methods (and oracle) when n = 100000.

As for image denoising, we first show an example of clean and noisy images and denoised 

ones by different methods. In this example, SNR = 0.1 and n = 10000. From the result 

of Fig. 19, the denoised image by the original CWF with normalization gives much lower 

contrast than the ones by our normalization methods. The denoised images by our 2-stage 

methods seem to have clearer fine details than those that are denoised by other methods.

Next, we compare the NRMSE of the denoised images by the different algorithms. From 

Fig. 20, CWF with image normalization is very unstable. It does not appear in the first 

subplot due to exceeding the y-axis limit. Similar to the white noise case, our image 

normalization and 2-staged methods often have smaller errors than other methods, where 

2-staged methods are slightly better. Similar to the white noise case, our GS refinement 

yields slightly smaller estimation errors than the SDP method under low SNRs.

Similar to the white noise case, we examine the relationship between contrast estimation 

errors and the defocus values of the corresponding CTFs. In Fig. 21 we compare the 

average contrast estimation errors of different methods in each of the 10 defocus groups. 

The defocus groups are sorted by defocus values in ascending order. On the right of Fig. 
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21 we test the contrast estimation when the observed noisy images are randomly shifted by 

1–5 pixels in the x and y directions. From Fig. 21, the contrast estimation errors of both 

CWF and our methods tend to decrease when defocus value increases. The instability of the 

“oracle” method to the shifts of images is also observed.

Same as the white noise case, in the left panel of Fig. 22, we compare the NRMSE of 

the denoised images by CWF and our methods within each defocus group. The right panel 

shows the relationship between NRMSE of denoised images and their contrast values. From 

the figure, for all methods, the NSMSE often decreases when defocus value and contrast 

value increase. The results of this section suggest that the 2-stage methods outperform the 

other CWF-based methods, and we therefore expect them to be the method of choice also for 

experimental data.

5. Results for experimental data

We compare our methods with CWF on three experimental datasets, which are freely 

downloadable from the Electron Microscope Pilot Image Archive (EMPIAR) database [14]. 

We chose these datasets for a purely technical reason, as each micrograph in these datasets 

has a single CTF, which reduces the total number of CTFs and runtime of our method. 

For the datasets where each image has its own CTF, it is possible accelerate our method 

by implementing in 2-D Fourier space the operations that involve the CTFs. However, to 

keep the idea of this work clean and focused, we leave this modification to future work. 

Due to the similar performance of our methods on the the three datasets, in this section we 

only present the result for EMPIAR-10028 [35], and refer the reader to the supplementary 

material for the results for EMPIAR-10005 [16] and EMPIAR-10073 [18].

For all datasets, we first normalize each individual image by the standard deviation (std) of 

the pixel values at the image corners that are located outside a circular mask with radius 

0.45L, where L is the dimension of the square image. Next, for each defocus group we 

estimate the PSD of the noise in the normalized images, using the pixel values outside of 

the same mask. We then perform background subtraction by subtracting the mean of pixel 

values outside the mask. For each defocus group, the images are whitened by applying the 

single whitening filter that equals to the −0.5 power of the estimated noise PSD of that 

defocus group. By doing this, we are assuming that the images in the same micrograph 

have similar noise PSDs, in order to reduce the estimation error of the noise PSD which 

could be quite large for a single image. Moreover, whitening by defocus group accelerates 

our algorithm. In particular, given the whitened image formation model Wiyi = ciWiAixi 

+ Wiϵi, to recover xi we use the whitened CTFs WiAi. Using distinct whitening filter Wi 

for all images increases the number of distinct CTFs and the computational complexity 

of the existing implementation of CWF. We also note that we have to estimate the PSD 

before the background subtraction, otherwise the estimated PSD will vanish at the zeroth 

frequency and cause numerical issues when whitening the image. The possibly inaccurately 

estimated PSD, together with imperfect centering of particles and the ignored astigmatism 

in CTF, may cause imperfect CTF correction and additional blurring in the restored images. 

However, we demonstrate in our experimental results that our methods are more robust to 

these factors than the original CWF, especially for contrast estimation. The machine and the 
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number of cores we used for the experimental datasets are the same as those of the synthetic 

simulations.

5.1. EMPIAR-10028

We test the algorithms on a dataset of the Plasmodium falciparum 80S ribosome 

bound to the anti-protozoan drug emetine. The picked particles are downloadable from 

EMPIAR-10028 [35]. Its 3-D reconstruction can be found on EMDB as EMD-2660 [35]. 

The dataset consists of 105247 motion corrected and picked particle images of size 360 × 

360 with 1.34 Å pixel size, from 1081 defocus groups. We estimate the covariance using 

all images, and use 21 defocus groups to estimate the contrast of individual images and 

then denoise the selected images. The background subtraction, whitening, Fourier-Bessel 

expansion and covariance estimation took 10 h. It took 5 s for SDP covariance refinement 

and less than 1 s for the GS one. We apply Wiener filtering to 21 defocus groups, which take 

11 min. Contrast estimation from the Fourier-Bessel coefficients took less than one second.

We first examine the relationship between the contrasts of particle images and their locations 

in a micrograph. Since the ground truth clean contrasts are not available, we use the 

approximate ground truth contrasts that are obtained from template matching with clean 

projections of the 3-D volume estimated by RELION (available in EMD-2660). In order to 

do this, we first generate 1000 clean templates that are projected from uniformly distributed 

viewing directions. Next, for each particle image, we find its viewing direction, 2-D in-plane 

rotation and shift by aligning its CWF-denoised image with each of the clean template by 

the method of [22]. We found that using the denoised images often provide more accurate 

alignment than using the raw images. To compute the oracle contrast of each noisy image Yi, 

we apply its CTF to the aligned clean template and obtain Y i
∗. However, the contrast directly 

computed by

ci∗ = 〈Y i, Y i∗〉 ∕ ‖Y i∗‖F
2

can be sensitive to even slight errors in alignment, as we demonstrated in Figs. 10 and 21 in 

synthetic data simulations. To mitigate this issue, we apply Gaussian smoothing to both Yi 

and Y i
∗ before computing the “ground truth” contrast using the above formula. We choose 

an envelope function with a B-factor 1000 as our Gaussian filter. We remark that the clean 

projections are only used to generate approximate ground truth for evaluation, and are not 

used in CWF and our methods.

Each subplot of Fig. 23 corresponds to one micrograph, where each dot represents a picked 

particle image in that micrograph. The location of the dots are the location of the particle 

images in that micrograph, whose color represents the oracle contrast by template matching. 

The defocus values of the three micrographs (from left to right) are respectively 0.8131 μm, 

1.9676 μm, and 2.6643 μm. Figure 23 suggests the existence of local correlations of image 

contrasts. Indeed, many pairs of nearby particles have very similar contrasts. However, the 

correlation of contrasts is only present within very small sub-regions of the micrograph.
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We next present a box plot of both oracle contrasts (top subplot) and the contrasts estimated 

by CWF-GS (bottom subplot) for each of the 21 defocus groups in Fig. 24. We ignore the 

result from CWF-SDP as it is very similar to the one of CWF-GS. We also ignore the result 

from CWF, since its contrast estimation is not accurate (see later in Fig. 25) and thus its 

box plot is not informative. From left to right in each subfigure, the defocus values are 

sorted in ascending order, ranging from 0.8131 μm to 2.6643 μm. In each box plot, the 5 

horizontal lines, from top to bottom, respectively correspond to max value, 75% quantile, 

median, 25% quantile and min value. The two box plots are similar, even though their 

contrasts are estimated using completely different methods. One can also see a clearer trend 

from the second subfigure (our method) that micrographs with higher defocus values tend 

to have higher contrast. This makes sense, as CTFs with higher defocus values preserve 

more low frequency information, which yields higher SNR in low frequencies. Interestingly, 

both subfigures show that contrast variation within each micrograph is often larger than the 

variance of the median contrast of each micrograph (the variance of the y-values of the 

orange lines). This possibly indicates that using a single contrast value per micrograph, as 

assumed in the 3-D iterative refinement stage, is not appropriate.

Next, we present the scatter plot between the estimated contrasts and the oracle contrast.

It is clear from Fig. 25 that our estimates have much better correlation with the oracle. We 

remark that we do not expect a strong correlation in any case, since the oracle itself is noisy 

and suffers from imperfect alignment. However, this is strong evidence that our methods 

provide much better contrast estimates than CWF.

We next compare the image denoising performance by CWF and the ones with our 

refined covariance matrix. Since image normalization only affects the global scale of the 

image and normalized CWF performs poorly, we only show the denoised images without 

normalization. We also found that the 2-stage CWF often performs worse than the 1-stage 

version, possibly due to violation of assumptions in our synthetic model, such as imperfect 

centering and astigmatism in CTF. Thus, we recommend applying the one-stage algorithm 

for experimental datasets, and we compare their denoised images as follows. From Fig. 

26, all methods produce dark areas around the boundary of the particle. These dark rings 

are likely due to the imperfect CTF correction by CWF. The denoised images by our 

methods have less dark areas, comparing to that of CWF. Since negative pixel values are 

often observed in CTF-affected clean images, these dark rings in CWF-denoised images 

are possibly due to inaccurate CTF-correction, which suggests better CTF correction by 

our methods. Furthermore, we observe better denoised images by our methods with closer 

contrast to the clean templates (Fig. 27).

At last, to quantitatively compare the denoising results of different methods, we compute 

the Fourier ring correlations (FRC) between the denoised images and their aligned clean 

templates. That is, for each pair of two images I1 and I2 and their Fourier coefficient vectors 

f1,r, f2,r at radial frequency r, we compute

FRC(r) =
ℜ(f1, r

∗ f2, r)
‖f1, r‖‖f2, r‖ ,
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where R denotes taking the real part of a complex number. For each method, we compute 

the average FRC between the denoised images and the clean templates over the 2015 

images from 21 defocus groups. We notice that FRC is very sensitive to image rotations 

and shifts. With slight error in image alignment, the FRC of all methods decreases rapidly 

as r increases. As a result, when alignment errors are present, FRC may not reflect the 

true image quality. However, even from the first few frequencies, the FRCs of CWF-based 

methods are much higher than that of the naïve phase flipping method. We also notice 

that CWF-denoised images have large errors in the first two frequencies, mainly due to 

its limitations in handling contrast variations. Since the clean templates are only aligned 

and registered with CWF-denoised images, the comparison is a bit unfair to our methods, 

as our methods may suffer from larger alignment errors. However, even in this scenario, 

our methods achieve much better FRC at the first two radial frequencies due to the better 

contrast estimation.

6. Conclusion

We introduced an effective algorithm for estimating the amplitude contrast of individual 

images and the overall contrast variability in the ab-initio stage. Our method refines the 

initial estimated covariance so it satisfies additional constraints that follow from the image 

formation model by tomographic projection. Results for both synthetic and experimental 

datasets indicate consistently better contrast estimation by our methods than CWF. On 

synthetic data, the contrast estimation errors of our methods are comparable to those 

of an oracle, even with small number of images. We also demonstrate that our method 

improves the image denoising result of CWF. Among the various contrast estimation and 

image denoising techniques that were considered in this paper, following the results for 

experimental datasets we recommend using CWF-GS (see Algorithm 1 with option=GS 

in Section 3.7) for contrast estimation and CWF-GS with image normalization for image 

denoising (see Algorithm 2 with option=normalization in Section 3.7). There are also some 

interesting future directions. For example, one can try techniques based on common-lines to 

directly estimate the rotations of molecules by using the denoised and normalized images 

from our methods with rudimentary 2-D class averaging [2]. Normalizing the images 

may also lead to improvement of 2-D class averaging procedures. An-other interesting 

application of our method is to use our estimated contrasts to initialize their values in the 

iterative refinement procedure of RELION [24]. As for the computational aspect, one can 

modify the original CWF method so it can more efficiently handle per-image CTF, rather 

than a small number of defocus groups. Our Python code is available at https://github.com/

yunpeng-shi/contrast-cryo which is planned to be integrated into ASPIRE [36].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An example of clean and noisy images with white noise. The defocus value for the CTF of 

the noisy images in this example is 2.67 μm.
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Fig. 2. 
The estimated variance of contrasts with varying SNR and number of images n. The image 

noise is white Gaussian. The ground truth value of the y-axis is 1, because the image 

contrasts are sampled from the uniform distribution on [0.5,1.5].
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Fig. 3. 
Normalized error of covariance estimates by different methods. The image noise is white 

Gaussian.
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Fig. 4. 
Scatter plots of estimated contrasts v.s. true contrasts. n = 10000, SNR = 1. The image noise 

is white Gaussian. Ideally each scatter plot should align well with the line y = x.
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Fig. 5. 
Scatter plots of estimated contrasts v.s. true contrasts. n = 10000, SNR = 0.1. The image 

noise is white Gaussian. Ideally each scatter plot should align well with the line y = x.
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Fig. 6. 
Scatter plots of estimated contrasts v.s. true contrasts. n = 1000, SNR = 0.1. The image noise 

is white Gaussian. Ideally each scatter plot should align well with the line y = x.
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Fig. 7. 
Contrast estimation error under different SNRs and number of images. The image noise is 

white Gaussian.
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Fig. 8. 
Clean, noisy and denoised images with SNR = 0.1 and n = 10000. The image noise is white 

Gaussian.
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Fig. 9. 
NRMSE of the denoised images under different SNRs and the number of images. The image 

noise is white Gaussian.
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Fig. 10. 
Average error per defocus group of contrast estimation by different methods. n = 10000, 

SNR = 0.1. The image noise is white Gaussian. The left figure panel uses centered noisy 

images. In the right panel, we randomly shifted the noisy images by 1–5 pixels in the x 

and y directions independently. In both panels, the two lines corresponding to CWF-GS and 

CWF-SDP overlap with each other.
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Fig. 11. 
Average NRMSE of denoised images from different methods, per defocus group (left figure) 

and per contrast group (right figure). n = 10000, SNR = 0.1. The image noise is white 

Gaussian. In the right panel, the red and purple lines overlap with each other.
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Fig. 12. 
An example of clean and noisy images with colored noise. The defocus value for the CTF of 

the noisy images in this example is 2.67 μm.
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Fig. 13. 
The estimated variance of contrasts with varying SNR and n. The image noise is colored 

Gaussian with decaying PSD. The ground truth of the y-axis is 1.
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Fig. 14. 
Normalized error of covariance estimates by different methods. The image noise is colored 

Gaussian with decaying PSD. The line of CWF does not appear in the left panel due to its 

high error. In the right panel, the line of CWF overlaps with the lines of other methods.
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Fig. 15. 
Scatter plots of estimated contrasts v.s. true contrasts. n = 10000, SNR = 1. The image noise 

is colored Gaussian with decaying PSD.
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Fig. 16. 
Scatter plots of estimated contrasts v.s. true contrasts. n = 10000, SNR = 0.1. The image 

noise is colored Gaussian with decaying PSD.
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Fig. 17. 
Scatter plots of estimated contrasts v.s. true contrasts. n = 1000, SNR = 0.1. The image noise 

is colored Gaussian with decaying PSD.

Shi and Singer Page 43

Comput Methods Programs Biomed. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 18. 
Contrast estimation error under different SNRs and number of images. The image noise is 

colored Gaussian with decaying PSD.
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Fig. 19. 
Clean, noisy and denoised images with SNR = 0.1 and n = 10000. The image noise is 

colored Gaussian with decaying PSD.
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Fig. 20. 
NRMSE of the denoised images under different SNRs and number of images. The image 

noise is colored Gaussian with decaying PSD.

Shi and Singer Page 46

Comput Methods Programs Biomed. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 21. 
Average error per defocus group of contrast estimation by different methods. n = 10000, 

SNR = 0.1. The image noise is colored Gaussian with decaying PSD. The left panel uses 

centered noisy images. In the right panel, we randomly shift noisy images by 1–5 pixels in 

the x and y directions independently. In the right panel, the lines corresponding to CWF-GS 

and CWF-SDP overlap with each other.
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Fig. 22. 
Average NRMSE of denoised images from different methods, per defocus group (left panel) 

and per contrast group (right panel). n = 10000, SNR = 0.1. The image noise is colored 

Gaussian with decaying PSD.
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Fig. 23. 
Demonstration of the relationship between the contrast of picked particle and their locations 

in the micrographs of EMPIAR-10028. Each dot corresponds to a particle image, whose 

color represents its estimated contrast.
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Fig. 24. 
Box plot of the oracle contrasts (top) and our estimated contrasts (bottom) in 21 defocus 

groups of the dataset EMPIAR-10028. The defocus values are sorted in ascending order, 

ranging from 0.8131 μm to 2.6643 μm.
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Fig. 25. 
The scatter plots of the estimated contrast v.s. the oracle contrast for three defocus groups in 

the dataset EMPIAR-10028. The dashed line corresponds to the function y = x.
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Fig. 26. 
Denoising results of EMPIAR-10028.
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Fig. 27. 
The average Fourier ring correlation between denoised images and the aligned clean 

templates over 2015 images from EMPIAR-10028.
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