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Abstract

Rationale and Objectives: The objective of this study was to demonstrate improvement in 

distinguishing between benign lesions and luminal A breast cancers in a large clinical breast 

magnetic resonance imaging database by using quantitative radiomics over maximum linear size 

alone.

Materials and Methods: In this retrospective study, 212 benign lesions and 296 luminal A 

breast cancers were automatically segmented from dynamic contrast-enhanced breast magnetic 

resonance images. Thirty-eight radiomic features were extracted. Tenfold cross validation was 

performed to assess the ability to distinguish between lesions and cancers using maximum 
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linear size alone and lesion signatures obtained with stepwise feature selection and a linear 

discriminant analysis classifier including and excluding size features. Area under the receiver 

operating characteristic curve (AUC) was used as the figure of merit.

Results: For maximum linear size alone, AUC and 95% confidence interval was 0.797 (0.754, 

0.835) compared to 0.846 (0.808, 0.875) (P=.005) and 0.848 (0.811, 0.880) (P=.003) for lesion 

signature feature selection protocols including and excluding size features, respectively. The 

irregularity feature was chosen in 9 of 10 folds and in all folds when size features were included 

and excluded, respectively. AUC for the radiomic signature using feature selection from all 

features was statistically equivalent to using feature selection from all features excluding size 

features, within an equivalence margin of 2%.

Conclusions: Inclusion of multiple radiomic features, automatically extracted from magnetic 

resonance images, in a lesion signature significantly improved the ability to distinguish between 

benign lesions and luminal A breast cancers, compared to using maximum linear size alone. The 

radiomic feature of irregularity appears to play an important but not a solitary role within the 

context of feature selection and computer-aided diagnosis.
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INTRODUCTION

Breast cancer is a significant health concern for women, with one in eight expected to 

be diagnosed with the disease during their lifetime (1). Development of image-based 

computer-assisted diagnosis of breast cancer can support medical decision-making in 

diagnosis and treatment. Quantitative features of breast lesions can be extracted from 

medical images acquired using modalities such as mammography, ultrasound, computed 

tomography, and magnetic resonance imaging (MRI). Machine learning methods can be 

used to classify lesions by using these features to predict the probability of the lesion’s 

status in a classification task, such as likelihood of malignancy. This process is known as 

computer-aided diagnosis (2) or, more recently, radiomics (3,4). In addition to the value of 

radiomics in diagnosis and the prognosis of breast cancer, the use of radiomics in clinical 

decision-making may also reduce overdiagnosis (5) and assist in pre- and post-treatment 

assessment.

Radiomic features, such as those describing size, morphology, and texture, have been shown 

to be useful in the classification of lesions as benign vs malignant (2,6–8). Other studies 

have investigated the correlation of radiomic features extracted from MRI with lesion status, 

such as cancer stage and lymph node involvement (9); luminal B-type cancers (10); human 

epidermal growth factor 2 (HER2) (11); and luminal A, luminal B, HER2+, and basal-like 

classifications (12). Additionally, other studies have used these methods to classify lesions 

according to status as ductal carcinoma in situ and invasive ductal carcinoma (13), triple 

negative status vs other subtype (14), and all molecular subtypes (15).
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In 2012, 74% of diagnosed breast cancers were type luminal A (16), the most of any 

molecular subtype. Therefore, it is of particular interest to identify radiomic signatures that 

aid in the diagnosis and prognosis of luminal A breast cancers. Luminal A lesions typically 

present on images as irregular and spiculated (17,18). Examples of figures from the dataset 

used in this work are shown, with their radiomic feature values for maximum linear size and 

irregularity (Fig 1).

Our investigation was motivated by the frequency of luminal A breast cancers diagnosed, 

and we aimed to develop a quantitative radiomic method to distinguish between benign 

lesions and luminal A subtype cancer. We evaluated the classification of a clinical dataset 

of lesions as benign vs luminal A using three variations of radiomic signatures: using 

maximum linear size alone, using feature selection from a full set of radiomic features, 

and using feature selection from radiomic features excluding those describing size. To the 

best of our knowledge, these methods have not been previously used to evaluate radiomic 

classification performance for distinguishing between benign lesions and luminal A cancers.

MATERIALS AND METHODS

A large clinical dataset of 508 breast lesions imaged with MRI was used in the present 

study (Table 1). Dynamic contrast-enhanced magnetic resonance images were collected 

retrospectively under Health Insurance Portability and Accountability Act (HIPAA) and 

institutional review board compliance. The benign lesions were either biopsy proven or 

imaged as part of follow-up care, whereas all luminal A cancers were biopsy proven. 

Imaging was performed at 1.5 and 3.0 T using Philips scanners. For the group of benign 

lesions, some subjects were imaged on multiple dates, for example, as a part of a screening 

program, and some subjects presented with multiple lesions. In these situations, a case was 

described as the collection of images for a lesion and the features for a case were averaged, 

resulting in 166 unique cases for the benign lesions and 296 for the luminal A cancers.

The images were segmented using an automated fuzzy C-means method requiring only 

the manual indication of a seed point within a lesion (19). Thirty-eight features describing 

each lesion were extracted from each image, in categories of size, shape, morphology, 

enhancement texture, kinetics, and enhancement-variance kinetics (7,19–22) (Appendix). 

The extracted features used in this work were previously used as part of an investigation 

of deep learning methodologies across multiple modalities in the task of classification of 

benign lesions and malignant cancers (23). The features of the luminal A cancers used here 

are part of a larger dataset of features extracted from breast cancers of all molecular subtypes 

and used in the previous study, and the benign features were used in the previous study as 

well. We note that the work here differs from the previous work in that this investigation 

focuses on classification of a single molecular subtype of breast cancers, utilizes features 

extracted from images from only one modality, and does not implement deep learning 

methodologies.

The Pearson correlation coefficient was determined for each feature against all other 

features, with particular attention given to the correlation of size features to morphology 

features, because of the nature of the proposed protocols. Linear discriminant analysis 
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(LDA) was used as a classifier and we performed 10-fold cross validation in classifier 

training and testing. Lesions were partitioned to training or testing by case.

We investigated three classification protocols. First, classification was performed using 

the maximum linear size alone. Second, classification was performed concurrently with 

stepwise feature selection on all features. Third, classification was performed concurrently 

with stepwise feature selection on all features except those related to size. In each of the 

latter two protocols, feature selection was performed for each training fold. We tabulated 

which sets of features were selected in each fold in the second and third classification 

variations. Posterior probabilities of malignancy for each lesion in each testing set were 

scaled to the prevalence of cancer in the entire dataset (approximately 58%) (24). The scaled 

posterior probabilities of malignancy were then averaged by case.

We used the averaged, scaled posterior probabilities of malignancy by case to compare the 

classification performance using the area under the receiver operating characteristic curve 

(AUC) (25) as the figure of merit in assessing the ability to distinguish between benign 

and luminal A lesions. We used the conventional binormal ROC model (26). The software 

package ROCkit (27) was used to statistically compare the obtained AUC values using 

the two-tailed P values for differences in AUCs and the 95% confidence intervals in the 

difference in AUC for each comparison pair of protocols. The P values were corrected 

for three comparisons using the Holm-Bonferroni method (28). Classification performance 

was considered significantly different when the corrected two-tailed P value from the 

comparisons of AUCs for two protocols was less than .05.

In instances when we failed to reject the null hypothesis (that performances were equal) in 

superiority testing, equivalence testing was performed based on the same 95% confidence 

intervals. Equivalence is defined as having been demonstrated when the difference in AUC 

and the associated confidence interval of this difference falls between ±Δ, where Δ is the 

equivalence margin (29). The determination of Δ is not well established in medical imaging, 

but seven studies summarized by Ahn et al. (29) used equivalence margins between 1.5% 

and 15.0%. In this work, we did not declare an equivalence margin ab initio, but rather 

observed if the calculated equivalence margin fell within the range of equivalence margins 

seen in the selected literature reviewed by Ahn et al.

RESULTS

Box plots by cancer status of selected features demonstrate a separation in the median for 

benign or luminal A cancer, according to lesion status (Fig 2). Of note is the substantial 

number of outliers for the size feature shown here (maximum linear size) as calculated for 

this dataset, compared to the more consistent feature values for the irregularity feature by 

biopsy-proven classification of the lesions as benign or luminal A.

The Pearson correlation coefficients of the feature of irregularity were 0.42, 0.73 0.60, and 

0.80 with the features of lesion volume, effective diameter, surface area, and maximum 

linear size, respectively.
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Feature selections for the scenarios of using all features and all features except those 

relating to size demonstrate the importance of the lesion shape (irregularity) and the 

enhancement texture features (Fig 3). The AUCs for each classification protocol demonstrate 

the performance of the three classification protocols in the clinical task of distinguishing 

between benign lesions and luminal A breast cancers (Fig 4).

The AUC for maximum linear size alone was significantly different from the AUCs for both 

feature selections using all features (P=.005) and without size features included (P=.003). 

However, the AUC curves for both feature selections with and without size features included 

failed to show a significant difference from each other (P=.664). The AUC values do not 

approach nonequivalence until the statistical equivalence margin is less than 2% (Table 2).

DISCUSSION

The large number of actual lesions in the present study (over 500) and the emphasis of 

comparing benign lesions to a specific breast cancer subtype (luminal A) offer a focused 

investigation into radiomic features useful for the clinical task of malignancy classification, 

as a majority of breast cancers are of luminal A type. The segmentation of lesions by an 

algorithm that required only a single seed point per lesion contributed objectivity to the 

feature extractions, whereas the use of LDA allowed for consideration of multiple features 

for the classification task, resulting in a lesion signature.

A previous study reported that luminal A cancers were strongly associated with the Breast 

Imaging Reporting and Data System (BI-RADS) (30) descriptors of “irregular shape,” 

“spiculation,” “irregular margin,” “rim enhancement,” and “dark internal septation” (31). 

Using stepwise feature selection and LDA demonstrated that the radiomic feature of 

irregularity, which describes the so-called roughness of a lesion (20), played a prominent 

role in the classification of benign lesions and luminal A breast cancers, regardless 

of whether or not features related to size were included in feature selection. Notably, 

classification using the radiomic feature of irregularity alone resulted in an AUC of 0.782 

(0.760, 0.804) and failed to show a significant difference in performance compared to 

using maximum linear size alone (P=.38). Despite this and the substantial correlation of the 

irregularity feature to size features (correlation coefficients between 0.42 and 0.8), feature 

selection demonstrated the additive benefit of using irregularity and a few other features 

related to texture over using only size in classification. This work suggests that the degree 

of roughness is particularly but not uniquely important in the classification of lesions as 

benign lesions or luminal A cancers. Texture features describe spatial variation in the signal 

intensity of a collection of pixel values (22). At least one texture feature was selected in 8 

of 10 folds when features related to size were considered for feature selection and in 7 of 10 

folds when features related to size were excluded from feature selection. The texture features 

of difference variance and maximum correlation coefficient were selected three and two 

times, respectively. In all, the increased classification performance compared to using solely 

the most prominent feature alone identified through a stepwise feature selection, irregularity, 

emphasizes the utility of using stepwise feature selection and LDA with a collection of 

radiomic features.
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The present study does not separate cases according to their imaging status as pre- or 

postbiopsy, but previous work by our laboratory (32) found that AUC performance in this 

classification question compared by biopsy status failed to show a significant difference 

across all radiomic features.

One limitation of the present study was that, although a large number of clinical cases were 

used, the cases may not truly represent the full population of luminal A breast cancer cases. 

However, because all images were acquired at the same medical center, the imaging protocol 

was likely more consistently administered than if images were collected from multiple 

institutions, reducing one source of variability in image acquisition. Second, the images 

used in the study were acquired at two different magnetic field strengths. Our group is 

currently investigating the impact of field strength difference on this particular classification 

task (33). At the same time, our inclusion of features extracted from images at both field 

strengths enabled us to maximize statistical power, and our aim for this work was to describe 

classification performance for clinical populations, for which imaging can be conducted 

at the two field strengths used here. Third, in addition to quantitative measurements of 

lesion size that are produced during case workup, radiologists use the BI-RADS4 lexicon 

descriptions of lesion appearance, such as margin or shape, in their evaluation of lesions. 

In this work, we chose to focus on comparing the AUC performance of radiomics of 

maximum lesion size against feature selection methods, and our work did not compare 

the performance of radiomics against readings by radiologists for this classification task, 

nor did it investigate how the availability of radiomic information may affect radiologist 

performance for this classification task. Such a comparison will be the focus of future 

studies. Fourth, the 10-fold cross-validation method can, by nature, result in some variability 

of feature selection, but in our experience, the variability did not show notable differences in 

the selection of features for classification, particularly in the selection of irregularity. Finally, 

the present study focused on the issue of classification of benign lesions vs luminal A breast 

cancers. Although a majority of breast cancers are of subtype luminal A, it would certainly 

be useful to investigate radiomic signatures for other subtypes and to extend the analysis to 

make use of deep learning techniques.

CONCLUSIONS

This work demonstrated that in the clinical task of distinguishing between benign lesions 

and luminal A breast cancers, a radiomic signature using the features described here, 

quantitatively extracted from MR images, significantly improved the ability to classify the 

lesions. The radiomic feature of irregularity appears to be particularly useful in classifying 

lesions as benign or subtype luminal A. Furthermore, excluding features related to size 

from classification resulted in a radiomic signature that was statistically equivalent in terms 

of AUC to the radiomic signature using all features. This finding is notable, given the 

importance of size in the routine visual assessment of lesions on clinical images.
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APPENDIX.: RADIOMIC FEATURES EXTRACTED FROM BREAST DYNAMIC 

CONTRAST-ENHANCED MAGNETIC RESONANCE IMAGES

Image Feature Description

Size

Volume (mm3) Volume of lesion

Effective greatest dimension (mm) Greatest dimension of a sphere with the same volume as the lesion

Surface area(mm2) Lesion surface area

Maximum linear size(mm) Maximum distance between any two voxels in the lesion

Shape

Sphericity Similarity of the lesion shape to a sphere

Irregularity Deviation of the lesion surface from the surface of a sphere

Surface area-to-volume ratio(1/mm) Ratio of surface area to volume

Morphology

Margin sharpness Mean of the image gradient at the lesion margin

Variance of margin sharpness Variance of the image gradient at the lesion margin

Variance of radial gradient histogram Degree to which the enhancement structure extends in a radial pattern 
originating from the center of the lesion

Enhancement texture

Angular second moment(energy) Image homogeneity

Contrast Location image variations

Correlation Image linearity

Entropy Randomness of the gray levels

Sum of squares(variance) Spread in the gray-level distribution

Difference entropy Randomness of the difference of neighboring voxels’ gray levels

Difference variance Variations of difference of gray levels between voxel pairs

Inverse difference moment Image homogeneity

Sum average Overall brightness

Sum entropy Randomness of the sum of gray levels of neighboring voxels

Sum variance Spread in the sum of the gray levels of voxel-pair distribution

Information measure of correlation 1 Nonlinear gray-level dependence

Information measure of correlation 2 Nonlinear gray-level dependence

Maximum correlation coefficient Nonlinear gray-level dependence

Kinetic curve assessment

Maximum enhancement Maximum contrast enhancement

Time to peak(s) Time at which the maximum enhancement occurs

Uptake rate(1/s) Uptake speed of the contrast enhancement

Washout rate(1/s) Washout speed of the contrast enhancement

Curve-shape index Difference between late and early enhancements

Enhancement at first postcontrast time point Enhancement at first postcontrast time point

Signal-to-enhancement ratio Ratio of the initial enhancement to the overall enhancement

Volume of most enhancing voxels(mm3) Volume of the most enhancing voxels

Total rate variation(1/s2) How rapidly the contrast will enter and exit from the lesion

Normalized total rate variation(1/s2) How rapidly the contrast will enter and exit from the lesion
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Image Feature Description

Enhancement-variance kinetics

Maximum variance of enhancement Maximum spatial variance of contrast enhancement over time

Time to peak at maximum variance(s) Time at which the maximum variance occurs

Enhancement-variance increasing rate(1/s) Rate of increase of the enhancement variance during uptake

Enhancement-variance decreasing rate(1/s) Rate of decrease of the enhancement variance during washout
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Figure 1. 
Postcontrast dynamic contrast-enhanced magnetic resonance images of a benign lesion (left) 
and a luminal A cancer (right). The position of the lesion and the cancer is indicated by 

a white arrow. Each image was acquired at 1.5T and is 125 × 125 mm2 in size, cropped 

from the full image. Slice thickness for each image was 2 mm. The maximum linear size for 

the benign lesion is 20.1 mm and the irregularity is 0.50. The maximum linear size for the 

luminal A cancer is 13.4 mm and the irregularity is 0.78.
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Figure 2. 
Box plots for three lesion features from the dataset: size (maximum linear size), shape 

(irregularity), and enhancement texture (maximum correlation coefficient). The width of the 

notches in a given box is proportional to the interquartile range of the data and provides 

a visual indication of possible difference in groups. The horizontal lines within the boxes 

indicate the median of the set, whereas the edges of the boxes indicate the 25th and the 75th 

percentiles. The crosses indicate outliers.
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Figure 3. 
Use of features for each fold, with and without the features of size available to the linear 

discriminant analysis classifier algorithm for feature selection. The number in each square 

indicates for a given fold how many features from the associated category were selected for 

classification. The feature of irregularity was selected in 9 of 10 folds when feature selection 

drew from all features, including those describing size; the feature of irregularity was chosen 

in all folds when features describing size were excluded from feature selection.
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Figure 4. 
Receiver operating characteristic curves for the three different classification protocols from 

the 10-fold cross-validation, using maximum linear size alone, radiomics lesion signature 

obtained through nested feature selection, and radiomics lesion signature obtained through 

nested feature selection excluding size features, in the task of distinguishing between benign 

lesions and luminal A cancers. The legend gives the AUC for each with the 95% confidence 

interval in brackets. AUC, area under the receiver operating characteristic curve.
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TABLE 1.

Overview of the Magnetic Resonance Imaging Database of Benign Lesions and Luminal A Cancers

Type of Lesion Number of Lesions
Number of Unique 

Cases Mean Age of Subjects (y)*
Age of Subjects (Minimum, 

Maximum) (y)

Benign 212 166 49.5±11.8 (25, 78)

Luminal A 296 296 58.0±12.5 (28, 85)

*
For some subjects, only the decade of age was available (eg, “40s” or “60s”) as part of the patient information deidentification process. In these 

situations, the middle of the decade was used for the calculation of the mean subject age. For example, if a subject’s age was given as 40s, the 
subject’s age was entered as “45” for the calculation. For the benign lesions, the age of 5 subjects was adjusted, whereas for the luminal A lesions, 
the age of 19 subjects was adjusted in this way. Subject age was not available for 47 benign lesions. In the situation of the same subject being 
imaged at multiple time points, the patient’s age at the time of imaging was used to calculate the age of the subjects for the group of lesions.
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