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A B S T R A C T   

The COVID-19 pandemic in Germany in 2020 brought many regulations to impede its transmission such as 
lockdown. Hence, in this study, we compared the annual air pollutants (CO, NO, NO2, O3, PM10, PM2.5, and BC) 
in Augsburg in 2020 to the record data in 2010–2019. The annual air pollutants in 2020 were significantly (p <
0.001) lower than that in 2010–2019 except O3, which was significantly (p = 0.02) higher than that in 
2010–2019. In a depth perspective, we explored how lockdown impacted air pollutants in Augsburg. We 
simulated air pollutants based on the meteorological data, traffic density, and weekday and weekend/holiday by 
using four different models (i.e. Random Forest, K-nearest Neighbors, Linear Regression, and Lasso Regression). 
According to the best fitting effects, Random Forest was used to predict air pollutants during two lockdown 
periods (16/03/2020–19/04/2020, 1st lockdown and 02/11/2020–31/12/2020, 2nd lockdown) to explore how 
lockdown measures impacted air pollutants. Compared to the predicted values, the measured CO, NO2, and BC 
significantly reduced 18.21%, 21.75%, and 48.92% in the 1st lockdown as well as 7.67%, 32.28%, and 79.08% in 
the 2nd lockdown. It could be owing to the reduction of traffic and industrial activities. O3 significantly increased 
15.62% in the 1st lockdown but decreased 40.39% in the 2nd lockdown, which may have relations with the 
fluctuations the NO titration effect and photochemistry effect. PM10 and PM2.5 were significantly increased 
18.23% an 10.06% in the 1st lockdown but reduced 34.37% and 30.62% in the 2nd lockdown, which could be 
owing to their complex generation mechanisms.   

1. Introduction 

Air pollution has been one of the major problems in the whole world, 
which severely threatens human health (Kim et al., 2013). According to 
World Health Organization (WHO), every year more than 7 million 

deaths are attributed to air pollutants (https://www.who.int/west 
ernpacific/health-topics/air-pollution). For example, particulate mat
ters (PMs), which refer to tiny particles in the air adsorbing polycyclic 
aromatic hydrocarbons (PAHs), heavy metals, and other volatile organic 
fragments, can be breathed into human lungs leading to pulmonary 
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diseases (Araujo, 2011) and enter blood circulation to induce cardio
vascular diseases (Lawal, 2017). Black carbon (BC) belongs to PMs and is 
generated from incomplete combustion (Liu et al., 2021a), which 
showed potential carcinogenic effects on human (Arif and Parveen, 
2021). O3 is a very reactive and oxidative pollutant, which can damage 
the human skin, eyes, and mucosae (World Health Organization, 2003) 
as well as cause inflammation in bronchia leading to respiratory diseases 
(Kim et al., 2020; Szyszkowicz and Rowe, 2016). CO is toxic and easy to 
combine with hemoglobin, which can block the transmission of oxygen. 
A high level of CO can cause human dizziness and even death (htt 
ps://www.epa.gov/co-pollution). Until now, the study about air pollu
tion on human health has attracted wide attentions. 

In the early 2020, coronavirus (COVID-19) appeared in most of the 
countries and caused huge casualties and deaths (Hu et al., 2021), which 
was firstly reported in November 2019 in Wuhan, China. COVID-19 is a 
kind a coronavirus which spreads by small droplets and particles 
exhaled by human and causes acute respiratory syndrome (Jayaweera 
et al., 2020). In order to suppress the spread of COVID-19, many 
countries used emergency measures to block its transmission, for 
example, wearing masks, social distance, and lockdown. The traffic 
density was greatly attenuated and the human activities were largely 
limited during lockdown (Burns et al., 2021). The emergency rules 
reduced the activities of human but gave a new perspective to study air 
pollutants to understand how human activities contribute to it (Kumari 
and Toshniwal, 2020). For example, Das et al. (2021) showed that the 
air quality was greatly improved in India urban cities during lockdown. 
Improvement of air quality during lockdown were also reported in China 
(Xu et al., 2020), Italy (Gualtieri et al., 2020), Spain (Briz-Redón et al., 
2021), Egypt (Abou El-Magd and Zanaty, 2021), and New Zealand (Patel 
et al., 2020). In Germany, the first COVID-19 case was reported in 
January 27, 2020. The affected population gradually increased and 
multiple regulations were implemented (e.g. lockdown). The first na
tional wide lockdown started from March 16, 2020 to the April 19, 2020 
(1st lockdown). And the second national wide lockdown started from 
November 02, 2020 to December 31, 2020 (2nd lockdown). 

Although general COVID-related decreases in the concentrations of 
air pollutants have been shown in major Germany cities (Burns et al., 
2021) and around the world (Kumari and Toshniwal, 2020), closer ex
aminations are required to be done on a city-by-city manner. The 
COVID-related air quality changes investigations were mainly focused 
on two fields. One aspect was to compare the air quality during 
anti-COVID measurement implementation to the adjacent periods e.g. 
pre- or post-lockdown (Das et al., 2021; Collivignarelli et al., 2020; 
Tobías et al., 2020; Dantas et al., 2020) or to the previous years’ records 
(Xu et al., 2020; Gualtieri et al., 2020; Abou El-Magd and Zanaty, 2021; 
Patel et al., 2020; Kumari and Toshniwal, 2020). The other aspect was to 
predict air pollutants based on meteorological parameters and other 
factors such as minor- or major-lockdown (Briz-Redón et al., 2021; 
Munir et al., 2021; Wang et al., 2021; Bera et al., 2021) to evaluate the 
reductions of air pollution, however, in those air pollution simulations, 
traffic variable was missing since it was a very important factor for air 
pollutants predictions. In order to accurately predict the air pollutants, 
traffic factor should be considered in the statistical model simulations. In 
addition, the evaluation of air quality changes attributed to lockdowns 
in Augsburg is still not reported. 

Therefore, in this study, we are interested to explore how COVID-19 
pandemic in 2020 impacted on air pollution in Augsburg as well as how 
lockdown impacted air pollutants in Augsburg. Hence, we aimed to 
compare the annual levels of seven air pollutants (CO, NO, NO2, O3, 
PM10, PM2.5, and BC) in Augsburg between 2010 and 2019 and 2020; 
then we built the different models (i.e. Random Forest, K-nearest 
Neighbors, Linear Regression, and Lasso Regression) based on meteo
rological parameters, traffic factor, and human activities variables 
(weekday/weekend/holiday) to simulate and predict the different air 
pollutants in 2020 assuming the lockdown was not implemented; finally, 
we found the Random Forest showed the best fitting effects to predict air 

pollutants in Augsburg and clarified how lockdown impacted on air 
pollutants. In general, the larger data is still required to better investi
gate the impact of lockdown on reduction on air pollutant. 

2. Methodology 

2.1. Geographical study area 

Augsburg is the third largest city and an important traffic junction in 
Bavaria, Germany with 300,000 inhabitants in its metropolitan area. 
Two rivers (Wertach and Lech) flow through the city. It has a semi- 
continental climate with cold winter and warm summer, which sea 
level is above 500 m with the annual temperature of 13.2 ◦C, annual 
precipitation of 750 mm, and annual sunshine duration of 1750 h. The 
fixed air pollutants monitoring stations (Fig. 1 for detecting CO, NO, 
NO2, O3, PM2.5, and PM10) in Augsburg are at Bourges-Platz (48.36◦ N, 
10.91◦ E, located in a park between two streets since 1986 regarded as 
urban background), Karlstraβe (48.37◦ N, 10.90◦ E, located at a four- 
lane with high traffic volume since 2003 regarded as urban traffic), 
Königsplatz (48.36◦ N, 10.90◦ E, located in a strip between two streets 
since 1975 regarded as urban traffic), and BayerischesLandesamt für 
Umwelt (48.32◦ N, 10.90◦ E, located at Bavarian state office for the 
environment since 2000 regarded as suburban background). Mean
while, the monitor station (Fig. 1 for detecting BC) was operated jointly 
since 2004 by Helmholtz Zentrum München (German Research Center 
for Environmental Health, Munich) and Environmental Science Center, 
Augsburg University to monitor the air pollution at the site of University 
of Applied Science (UAS, 48.36◦ N, 10.91◦ E) (Pitz et al., 2008). Traffic 
monitoring stations are distributed in Augsburg on the main roads and 
the typical sites are shown in Fig. 1. Traffic density was counted in each 
monitoring station for every 15 min interval in each direction. We 
summed up four intervals to get the hourly traffic density data. 

2.2. Data collection 

The hourly data of CO, NO, NO2, O3, PM2.5, and PM10 concentrations 
(01/01/2010–31/12/2020) were obtained from the Federal Environ
ment Agency (UBA) (https://www.umweltbundesamt.de/en/) by real- 
time fixed air pollutants monitoring stations distributed in the cities. 
The hourly data of BC concentrations (01/01/2018–31/12/2020) were 
obtained from the site of UAS. Then, the annual air pollutants in 2020 to 
that in 2010–2019 average were compared. The hourly meteorological 
data in Augsburg (01/08/2016–31/12/2020) were available online 
from German Weather Service (Deutscher Wetterdienst). The meteoro
logical observations included pressure, temperature, relative humidity, 
precipitation, wind speed, and wind direction. Hourly traffic density 
data in Augsburg (01/08/2016–31/12/2020) were accessed from data 
recorded by the Augsburg city authorities. Weekday and weekend/ 
holiday (01/08/2016–31/12/2020) were categorized according to the 
local public calendar to distinguish the different human living styles. 

2.3. Simulation and application of models 

In the processes of setting up models, the hourly meteorological and 
traffic data (01/08/2016–30/09/2019) were used as variables to 
simulate models. Due to the holiday effect (Adame et al., 2014), 
pollutant concentrations differed between weekday and holiday (Sat
urday, Sunday, and holiday). Hence the input factors of weekday and 
weekend/holiday were differently regarded as 1 and 2, respectively, 
based on the date in 01/08/2016–30/09/2019 according to the local 
public calendar. The simulated air pollutants were shown as the 
following equation. 

Estimated pollutants = Yj ∼ Xi (1)  

where Yj represents the concentration of hourly BC, CO, NO, NO2, O3, 
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PM10, and PM2.5, respectively. Xi represents the hourly value of pressure, 
air temperature, relative humidity, precipitation, wind speed, wind di
rection, weekday/weekend/holiday, and traffic density. 

The results of the simulations were operated by Python scripts. We 
compared four different simulation models, including Random Forest (a 
supervised and powerful machine learning algorithm based on decision 
trees, which can be used for both classification and regression) （Gar
iazzo et al., 2020）, K-nearest Neighbors (the most widely used algo
rithm for both classification and regression based on the idea that 
similar things are near together) (Aini and Mustafa, 2020), Linear 
Regression (the mostly used algorithm to find the relationships between 
dependent and independent variables) (Yuchi et al., 2019), and Lasso 
Regression (improved from linear regression using the regularization 
way to reduce overfit) (Sethi and Mittal, 2021). The dependent variables 
(air pollutants) and independent variables (meteorological indicators, 
traffic data, holidays, etc.) (01/08/2016–30/09/2019) were input to 
each model to simulate pollutant concentrations separately, and the 
models were compared by the evaluation parameters, i.e. correlation 
coefficient (R2), the mean squared error (MSE), root mean square error 
(RMSE), mean absolute error (MAE), and mean absolute percentage 
error (MAPE). 

At the beginning of setting models, the training and testing data 
splitting proportions were set as 50:50, 70:30, and 90:10 for each model 
to select the best splitting proportion for machine learning. In order to 
avoid over-fitting, five-fold cross-validation was used for the establish
ment of models (Fig. S1). The best fitting model i.e. Random Forest (the 
detailed hyper-parameters of Random Forest shown in Table S1) was 
further used to predict air pollution concentrations without lockdown. 

The hourly meteorological data in two lockdowns were used for the 
Random Forest prediction. We assumed the traffic density during two 
lockdown periods were similar to the corresponding periods in the re
cord date in 16/03–19/04 and 02/11–31/12 (2016–2019), which were 
used for the prediction. 

2.4. Data analysis 

The air pollutants data were reported as an average concentration ±
standard deviation (SD), which significant difference was evaluated by 
the analysis of variance (ANOVA) using SPSS software (IBM SPSS Sta
tistics 25, Chicago, IL, USA). The Pearson correlations between hourly 
average of different air pollutants (CO, NO, NO2, O3, PM2.5, PM10, and 
BC) and meteorological data (pressure, temperature, relative humidity, 
wind speed, and wind direction) as well as traffic data and weekdays and 
weekends/holidays were calculated (Table S2) by using SPSS software 
(IBM SPSS Statistics 25, Chicago, IL, USA). Only the data (meteorolog
ical data, traffic data, and weekdays and weekends/holidays) with sig
nificant (p < 0.05) Pearson relationships to the air pollutants were used 
for the model simulation. Wind flow diagrams presented on radius 
graphs were made by Origin analysis software based on PM10, PM2.5, 
and BC with wind direction and wind speed data. 

3. Results and discussion 

3.1. Annual air pollution during study periods in augsburg 

The average of air pollutants was significantly different in different 

Fig. 1. The geographical features of Augsburg and the distributions of air pollutants and traffic monitors in Augsburg.  
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seasons during 2010–2019. Briefly, the seasonal fluctuations of CO in 
2010–2019 (Table S3) were higher in autumn (0.37 ± 0.06 mg/m3) and 
winter (0.45 ± 0.06 mg/m3) than in spring (0.35 ± 0.06 mg/m3) and 
summer (0.27 ± 0.01 mg/m3). NO in 2010–2019 (Table S3) were also 
higher in autumn (25.51 ± 8.66 μg/m3) and winter (26.84 ± 8.23 μg/ 
m3) than that in spring (16.54 ± 5.25 μg/m3) and summer (11.45 ±
1.57 μg/m3). This could be due to the residential heating in winter time 
(Zhang et al., 2009) and low temperature and precipitation (Li et al., 
2017), since the high temperature can promote the volatilization of air 
pollutants, and rainfall can deposit the air pollutants (Xu et al., 2016). 
This result was also supported by our meteorological data (Table S4) 
where the temperature and precipitation in autumn (9.44 ± 6.24 ◦C and 
14.28 ± 22.96 mm) and winter (0.65 ± 4.89 ◦C and 7.24 ± 17.82 mm) 
were lower than that in spring (9.64 ± 6.53 ◦C and 20.32 ± 25.02 mm) 
and summer (18.72 ± 5.26 ◦C and 28.02 ± 25.83 mm). The seasonal 
fluctuations of O3 in 2010–2019 was higher in spring (55.62 ± 8.55 
μg/m3) and summer (64.19 ± 5.87 μg/m3) than that in autumn (27.05 
± 9.95 μg/m3) and winter (30.46 ± 6.37 μg/m3). It attributed to O3 
formation where the volatile organic compounds (VOCs) and NOX react 
to produce O3 under high temperature and long sunlight (photochem
istry) (Balmes et al., 2019). 

In comparison, the annual of air pollutants (CO, NO, NO2, PM10, 
PM2.5, and BC) in 2020 was significantly (p < 0.001) lower than that in 
2010–2019 (Fig. 2 and Table S5), which indicated that anti-COVID-19 
measures during COVID-19 pandemic in 2020 (e.g., limitation of 
traffic and human activities) greatly reduced CO, NO, NO2, PM10, PM2.5, 
and BC emissions. While, O3 was significantly (p = 0.02) higher in 2020 
than that in 2010–2019, which indicated that O3 pollution was also 
affected by those measures. These phenomena were also comparable 
with previous studies (Balamurugan et al., 2021; Cazorla et al., 2021; 
Sicard et al., 2020). 

3.2. The best fitting model and its driving factors 

3.2.1. The best fitting model 
The splitting proportion of training data and test data were set as 

50:50, 70:30, and 90:10 for four models. The fitting effects were 
compared and summarized in Table 1, based on R2, MSE, RMSE, MAE, 
and MAPE for test data (Table S6). As a result, Random Forest showed 
the best fitting effects than the other three models for all air pollutants. 
In addition, Random Forest showed different fitting effects for each air 
pollutant by using different splitting proportions. Based on the opti
mized fitting effects, 90:10 was chosen as the best splitting proportion 
for CO, NO, NO2, O3, PM10, and PM2.5, with R2 of 0.585, 0.526, 0.585, 
0.747, 0.559, and 0.613, respectively. While 70:30 splitting proportion 
was selected for BC with R2 of 0.452. 

3.2.2. Driving factors for each variable 
The uneven distributions of air pollutants were influenced by 

meteorological factors and human activities (e.g., traffic emission, 
heating activities) (Liu et al., 2021b). Once pollutants were emitted into 
the atmosphere, their dispersion, transportation, and transformation 
were largely dependent on related meteorological conditions. However, 
the effects of meteorological factors on air pollution were typically 
discussed in qualitative methods (Chen et al., 2008; Wang et al., 2010). 
Therefore, the quantitative analysis between air pollutants concentra
tions and meteorological factors was discussed in this section. In 
Random Forest, driving factor is used to reflect the effect of each vari
able, which is helpful to recognize the most important variables. In 
Fig. 3, air temperature and wind speed were the two most important 
variables which were higher than 0.19 and 0.15 for all air pollutants, 
respectively. Since low temperature impacts air mass movement and 
tends to trap air pollutants near the ground (Zhang et al., 2018). Espe
cially, the emission of BC from gasoline and diesel-powered vehicles 
may increase under low temperatures condition due to incomplete 
combustion (Krecl et al., 2020). Strong wind is effective to blow out air 

pollutants, since the particles are impeded to accumulate (Liu et al., 
2021b). Conversely, air pollutants accumulate under low and calm 
winds (Begam et al., 2016), where indicating the pollution is highly 
dependent on local emissions (Liu et al., 2020b; Shen et al., 2015). In our 
study, CO, NO, NO2, and BC were lower in the 1st lockdown in 2020 
than that in the corresponding period in 2016–2019 (Table S7). All air 
pollutants in the 2nd lockdown in 2020 were lower than that in 
2016–2019. However, the temperature was not significantly different 
between 2020 and 2016–2019 in two lockdowns. The wind speed only 
made a significant difference in the 2nd lockdown (higher in 2016–2019 
than that in 2020) but not in the 1st lockdown. It indicated that the 
changes of air pollution were attributed to their combined factors (e.g. 
temperature, wind speed, and traffic flow). Relative humidity was less 
than 0.11 for all air pollutants except for O3 which was as high as 0.42. 
Although the relative humidity has less impact to PM concentrations, 
but its fluctuation raised the concentrations of PM (Zhang et al., 2017). 
In addition, the contributions of traffic to CO, NO, NO2, and BC were 
higher than 0.15, indicating the traffic was an important source for these 
pollutants which was also supported by reported studies (Dantas et al., 
2020; Farias and ApSimon, 2006; Tobías et al., 2020). Our previous 
study already found that the direct traffic emission could be an impor
tant source for BC in Augsburg (Liu et al., 2021c). The traffic flows 
(Table S8) were greatly decreased both in the 1st lockdown (164,604 ±
47,610 and 481,199 ± 49,858 in 2020 and 2016–2019, respectively) 
and 2nd lockdown (144,517 ± 91,765 and 493,958 ± 71,284 in 2020 
and 2016–2019, respectively), indicating the reductions of CO, NO, 
NO2, and BC were mainly attributed to the attenuated traffic density. 
However, the traffic less contributed to O3, PM10, and PM2.5, which 
traffic factors were less than 0.05 (Fig. 3). It is because PM10 and PM2.5 
has complex emission sources and natural generation processes (e,g, 
dust, heating, nucleation, secondary inorganic aerosol) (Hopke et al., 
2022). The unchanged PMs concentrations during lockdown could have 
relations with the physico-chemical process in the atmosphere locally 
(Cameletti, 2020) and enhanced PM2.5 levels were also induced by 
long-range transportation (Graham et al., 2020). Both anticyclonic 
weather and long-range transportation contributed to O3 as well (Pope 
et al., 2016). In addition, the spatio-temporal of air pollution such as O3 
and PM10 was also related to the land use characteristics (Yoo et al., 
2015). Since the observed air pollution data was collected from different 
land-use (i.e. urban background, urban traffic, and suburban back
ground) in Augsburg. 

It is interesting to observe the role of wind speed and wind direction 
on PM10, PM2.5, and BC concentrations, which driving factors were 
higher than 0.15 and 0.2, respectively. We further showed the distri
butions of PM10, PM2.5, and BC with wind speed and wind direction to 
interpret their interplay in Table 2. The radius graphs represented the 
wind speed (m/s) and direction (0–360○), while the color represented 
mass concentrations of air pollutants in Fig. 4. The wind frequencies 
were predominant in the west (13.08%) and east (10.18%) directions 
compared to north (5.85%) and south (5.63%) directions. But the PM10 
and PM2.5 in west (18.68 and 11.97 μg/m3) and east (18.77 and 12.04 
μg/m3) directions did not show consistent trends to the north (18.73 and 
12.02 μg/m3) and south (18.64 and 11.94 μg/m3) directions. The 
average wind speeds in west (2.91 m/s) and south (2.91 m/s) directions 
were higher than north (2.90 m/s) and east (2.88 m/s) direction. The 
PM10 were lower in west (18.68 μg/m3) and south (18.64 μg/m3) di
rection than in north (18.73 μg/m3) and east direction (18.77 μg/m3). 
This is also similar to PM2.5, where the west (11.97 μg/m3) and south 
(11.94 μg/m3) direction were lower than north (12.02 μg/m3) and east 
(12.04 μg/m3) direction. It indicted that strong wind speeds resulted in 
low concentrations of PM10 and PM2.5. In contrast, wind direction is 
more complex to explain which had relations with the land character
istic for each monitoring station. In a previous report, both wind speed 
and directions showed important effects on detecting ultrafine particle 
near a highway (Zhu et al., 2002). 
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Fig. 2. The annual of air pollutants of CO (a, b), NO (c, d), NO2 (e, f), O3 (g, h), PM10 (i, j), PM2.5 (k, l), and BC (m, n) in Augsburg between 2020 and 2010–2019. The 
left panel indicated time series of the monthly mean concentrations in the periods studied. The right panel indicated comparison of the total concentrations in the 
periods studied. 
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3.3. Prediction of air pollutants without lockdown 

3.3.1. Changes of CO, NO, NO2, and BC 
This study used the Random Forest based on air pollutant data, 

meteorological and traffic data, as well as weekdays and holidays from 
2016 to 2019 to predict theoretical pollutant concentration values in 
two lockdown periods in the absence of lockdown measures and 
compared them with actual monitoring values (Fig. 5). The actually 
monitored values for each air pollutant were significantly different from 
the theoretical predicted values (p < 0.001) except NO in 2nd lockdown 
with p-value of 0.055. Specifically, the theoretical predicted average 
concentrations of CO, NO, NO2, and BC during the 1st lockdown were 
0.33 ± 0.07 mg/m3, 13.91 ± 12.27 μg/m3, 30.23 ± 9.02 μg/m3, and 
1.29 ± 0.65 μg/m3, which were higher than the actually measured 
values indicating lockdown played an important role in the reduction of 
CO, NO, NO2, and BC (Table 3). This was mainly due to the measures 

during the pandemic situation where the fossil fuel-powered trans
portation attenuated and the frequency of travel significantly reduced 
(Fig. S2). The similar results were also reported by previous studies 
(Collivignarelli et al., 2020; Patel et al., 2020), which highlighted a 
significant decrease in BC, CO, and NO2 concentration due to the 
reduction of traffic density. The similar phenomenon for the reductions 
of CO, NO2, and BC were also found in the 2nd lockdown. 

3.3.2. Changes of O3 
For the 1st lockdown, the actually measured O3 was 62.88 ± 33.65 

μg/m3, which significantly increased 15.62% compared to the predicted 
O3 (53.06 ± 27.70 μg/m3). This was consistent with the results from 
Munir et al. (2021) who reported the increased O3 in Berkshire, UK, 
during the spring lockdown. Liu et al. (2020a) found that lower emis
sions of NOx would weaken the titration effect of NO and result in a 
larger accumulation of O3. This was also supported by Collivignarelli 
et al. (2020), Dantas et al. (2020), and Tobías et al. (2020) who showed 
that the increased O3 during lockdown was probably owing to the 

Table 1 
The fitting effects of four models based on R2, MSE, RMSE, MAE, and 
MAPE values (Random Forest, RF; K-nearest Neighbors, KNN; Linear 
regression, LN; and Lasso regression, Lasso).  

Air pollution Comparison of different model 

CO RF > LN > Lasso > KN 
NO RF > LN = Lasso > KN 
NO2 RF > LN = Lasso > KN 
O3 RF > LN = Lasso > KN 
PM10 RF > KN > LN = Lasso 
PM2.5 RF > LN = Lasso > KN 
BC RF > LN = Lasso > KN  

Fig. 3. Driving factor of different variables based on Random Forest data in Augsburg from August 01, 2016 to September 30, 2019.  

Table 2 
The distributions of PM10, PM2.5, BC, wind speed and frequency in different 
directions based on Augsburg data from August 01, 2016 to September 30, 2019.  

Targets North East West South 

Wind frequency (%) 5.85 10.18 13.08 5.63 
Wind speed (m/s) 2.90 2.88 2.91 2.91 
BC (μg/m3) 1.13 1.13 1.13 1.13 
PM2.5 (μg/m3) 12.02 12.04 11.97 11.94 
PM10 (μg/m3) 18.73 18.77 18.68 18.64  
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decreased NO in Barcelona (Spain) and Milan (Italy), respectively. In the 
2nd lockdown, the measured O3 (16.71 ± 17.99 μg/m3) decreased 
40.39% compared to the predicted O3 (23.45 ± 16.83 μg/m3). It could 
be the weakened photochemistry effects (Qi et al., 2021) in autumn and 
winter time, which reduced local ozone production. 

3.3.3. Changes of PM 
Similar to O3, our study also showed opposite changes of PM10 and 

PM2.5 in two lockdowns. For the 1st lockdown, the actual concentrations 

of PM10 and PM2.5 were 24.44 ± 14.58 and 13.63 ± 6.58 μg/m3, 
increasing to 18.23% and 10.06%, respectively, compared to the pre
dicted PMs. However, in the 2nd lockdown, the concentrations of PM10 
and PM2.5 reduced 34.37% and 30.62%, respectively (Table 3). In recent 
studies (Gu et al., 2021; Liu et al., 2021c), the observed PM2.5 did not 
exhibit equivalent changes as the gas precursors during the strict 
COVID-19 lockdown periods. Thus, different mechanisms other than the 
primary emission and secondary PM formation changes were suggested 
to largely contribute to the enhancement of fine particles in Augsburg. 

Fig. 4. Relationship of PM10, PM2.5, and BC with wind direction and wind speed in Augsburg from August 01, 2016 to September 30, 2019.  

Fig. 5. The predicted and measured values of different air pollutants in the 1st lockdown (a) CO (b) NO, NO2, O3, PM10, PM2.5, and (c) BC as well as in the 2nd 
Lockdown (d) CO (e) NO, NO2, O3, PM10, PM2.5, and (f) BC in Augsburg in 2020. 

Table 3 
The predicted values and measured values during lockdown. (Mean ± SD; Change %= (a measured value – a predicted value)/a measured value⋅100%).  

Pollutant 16/03–19/04 (1st lockdown) 02/11–31/12 (2nd lockdown) 

Predicted values Measured values Change % Predicted values Measured values Change % 

CO (mg/m3) 0.33 ± 0.07 0.28 ± 0.09 − 18.21 0.38 ± 0.10 0.35 ± 0.13 − 7.67 
NO (μg/m3) 13.91 ± 12.27 7.92 ± 11.55 − 75.68 18.17 ± 15.34 19.14 ± 19.55 4.88 
NO2 (μg/m3) 30.23 ± 9.02 24.83 ± 16.19 − 21.75 33.65 ± 10.31 25.44 ± 10.18 − 32.28 
O3 (μg/m3) 53.06 ± 27.70 62.88 ± 33.65 15.62 23.45 ± 16.83 16.71 ± 17.99 − 40.39 
PM10 (μg/m3) 19.99 ± 5.44 24.44 ± 14.58 18.23 19.85 ± 7.05 14.77 ± 8.09 − 34.37 
PM2.5 (μg/m3) 12.26 ± 4.64 13.63 ± 6.58 10.06 13.83 ± 5.95 10.59 ± 6.92 − 30.62 
BC (μg/m3) 1.29 ± 0.65 0.87 ± 0.60 − 48.92 1.65 ± 0.74 0.92 ± 0.69 − 79.08  
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Zangari et al. (2020) also found that the PM2.5 levels in New York 
showed no significant difference during lockdown period in 2020 when 
compared to 2015–2019. However, during the 2nd lockdown, the traffic 
flow was further reduced compared to the 1st lockdown due to stricter 
measures to restrict people travel. At the same time, a prohibition on 
fireworks in public places may lead to a significant reduction especially 
between Christmas and New Year eve (24/12–31/12), which further 
reduced the sources of air pollution (Khedr et al., 2022), and thus the 
concentration of pollutants during the 2nd lockdown was decreased. 

3.3.4. Comparison of the measured air pollutants between two lockdowns 
CO, NO, NO2, and BC were lower in the 1st lockdown (0.28 ± 0.09 

mg/m3, 7.92 ± 11.55 μg/m3, 24.83 ± 16.19 μg/m3, and 0.87 ± 0.60 μg/ 
m3) than that in the 2nd lockdown (0.35 ± 0.13 mg/m3, 19.14 ± 19.55 
μg/m3, 25.44 ± 10.18 μg/m3, and 0.92 ± 0.69 μg/m3) (Table 3). Higher 
temperature and wind speed in the 1st lockdown (7.12 ± 7.00 ◦C and 
2.92 ± 1.99 m/s) accelerated these air pollution dispersion than that in 
the 2nd lockdown (2.88 ± 4.50 ◦C and 2.40 ± 1.40 m/s), even the traffic 
flow was larger in the 1st lockdown (164,604 ± 112,759 per hour) than 
that in the 2nd lockdown (144,713 ± 140,167 per hour) (Table S8), 
further indicating temperature and wind speed made a high contribution 
to the air pollution concentrations. However, O3, PM10, and PM2.5 were 
higher in the 1st lockdown (62.88 ± 33.65, 24.44 ± 14.58, 13.63 ±
6.58 μg/m3) than that in the 2nd lockdown (16.71 ± 17.99, 14.77 ±
8.09, 10.59 ± 6.92 μg/m3) (Table 3). The warm temperature, prolonged 
sunlight, low relative humidity, and decreased NO greatly contributed to 
the extraordinary high O3 in the 1st lockdown (Table S8). The higher 
PMs in the 1st lockdown could attribute to the physico-chemical process 
in the atmosphere. In this condition, the higher pressure and tempera
ture in the 1st lockdown could benefit this process than that in the 2nd 
lockdown. 

4. Conclusions 

In this study, we compared the annual levels of air pollutants in 2020 
to the record data in 2010–2019 in Augsburg. The air quality (CO, NO, 
NO2, PM10, PM2.5, and BC) was significantly improved in 2020, which 
was because of restriction measures during pandemic situation. In a 
deep study to simulate and predict air pollutants, we used four modes 
(Random Forest, K-nearest Neighbors, Linear regression, and Lasso 
Regression) based on meteorological data, traffic density, weekday and 
weekend/holiday. Random Forest showed the best fitting performance 
and was used to predict air pollutants during lockdown periods. It 
turned out that temperature and wind speed were the two most 
important factors for all air pollutants predictions. Traffic factor was 
very important in the predictions of CO, NO, NO2 and BC but not for O3, 
PM10, and PM2.5 indicating the necessity to include traffic variable for 
these air pollutants model simulation. It was interesting to observe the 
role of wind directions on BC, PM10 and PM2.5 predictions but its 
functions were more complex to explain which were associated with the 
used land characteristic. VOCs factor could be considered in the future 
O3 prediction to achieve the more accuracy results. The measured CO, 
NO, NO2, and BC were significantly decreased compared to the pre
dicted values during lockdowns which were owing to the limitation of 
traffic and industrial activities. The measured O3 and PMs significantly 
increased in 1st lockdown period even with restriction measures, which 
could be owing to their complex physico-chemical formation in atmo
sphere. This study presented a certain degree of idea to the regulatory 
bodies on planning and implementation of strict air quality control plans 
and emission control strategies to improve environmental and human 
health. Overall, this analysis of air quality data shows that the strict 
implementation of lockdown measures in Augsburg during COVID-19 
(and associated reductions in transport) contributed to the improve
ment of local air quality and the necessity to include important variables 
for the simulations and predictions of air pollution. 
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