Table 2.
Jaccard Index table for the nine AI models
Jaccard Index: Solo Deep Learning | ||||
Seen-AI | Unseen-AI | |||
Model | CRO-CRO | ITA-ITA | CRO-ITA | ITA-CRO |
PSPNet | 0.86 | 0.87 | 0.87 | 0.8 |
SegNet | 0.9 | 0.93 | 0.8 | 0.83 |
UNet | 0.87 | 0.92 | 0.87 | 0.83 |
µ | 0.88 | 0.91 | 0.85 | 0.82 |
σ | 0.02 | 0.03 | 0.04 | 0.02 |
Jaccard Index: Hybrid Deep Learning | ||||
Seen-AI | Unseen-AI | |||
Model | CRO-CRO | ITA-ITA | CRO-ITA | ITA-CRO |
VGG-PSPNet | 0.85 | 0.95 | 0.9 | 0.81 |
VGG-SegNet | 0.89 | 0.93 | 0.85 | 0.86 |
VGG-UNet | 0.92 | 0.9 | 0.88 | 0.74 |
ResNet-PSPNet | 0.89 | 0.91 | 0.9 | 0.83 |
ResNet-SegNet | 0.93 | 0.94 | 0.91 | 0.88 |
ResNet-UNet | 0.93 | 0.95 | 0.89 | 0.88 |
µ | 0.90 | 0.93 | 0.89 | 0.83 |
σ | 0.03 | 0.02 | 0.02 | 0.05 |
% Improvement | 3% | 3% | 5% | 2% |