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Abstract

The C3H/HeJ model has long dominated basic AA in vivo research and has been used as proof-

of-principle that Janus kinase (JAK) inhibitors are suitable agents for AA management in vivo. 

However, its histological features are not typical of human AA, and it is questionable whether it is 

sufficiently clinically predictive for evaluating therapeutic effects of candidate AA agents. Instead, 

the humanized mouse model of AA has been used to functionally demonstrate the role of key 

immune cells in AA pathogenesis, and to discover human-specific pharmacologic targets in AA 

management. Therefore, we advocate use of both models in future preclinical AA research.

INTRODUCTION

The mainstream autoimmunity research community has been slow to recognize and 

acknowledge that the hair loss disorder, alopecia areata (AA), is one of the most common 

human autoimmune diseases (Inui et al., 2013; Gilhar et al., 2012) prevailed in incidence 

and prevalence only by type 1 diabetes mellitus and rheumatoid arthritis, the clinical 

and psychosocial importance of this disease is notoriously underestimated, since AA 

is neither life-threatening nor recognized to be life-shortening or physically crippling. 

However, patients affected by AA, namely by its maximal variants, alopecia areata totalis or 

universalis, often experience AA as a psychologically devastating illness, whose burden of 

disease is very substantial (Gilhar et al., 2012; Matzer et al., 2011; Monselise et al., 2013). 

This is aggravated by the fact that there is no fully satisfactory, universally effective therapy 
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available for the established disease, nor convincing management strategies for the reliable 

prevention of AA progression (Harries et al., 2010; Paus et al., 2018).

These facts alone call for clinically relevant AA research models, in which the as yet 

insufficiently understood pathobiology of AA can be systematically and mechanistically 

dissected, and in which new AA treatment and prevention strategies can be explored in 

vivo at the preclinical level, ideally with good predictive value for the outcomes that can 

realistically be expected in AA patients. Mouse models have provided invaluable research 

tools for dissecting the roles of extrinsic and intrinsic factors and various underlying immune 

pathologies in various autoimmune skin diseases (Yu et al., 2015,2018). Lessons that have 

been learned from mouse models for psoriasis (Nakajima et al., 2018; Jin et al., 2018; 

Mykicki et al., 2017), atopic dermatitis (Nakajima et al., 2019; Lin et al., 2018; Yamada 

et al., 2018) and vitiligo (Riding et al., 2019) have greatly advanced our understanding of 

disease pathogenesis, and for exploring novel therapeutic strategies at the preclinical level.

According to the literature, there are at least 20 models for psoriasis, 19 for atopic 

dermatitis, and 11 for vitiligo, but only three for AA. Since one of the latter, i.e. the 

“Dundee experimental balding rat (DEBR)” model (McElwee et al., 1995,1999), is no 

longer available, this has left us with just two in vivo models of AA: the most widely 

used murine AA model that has long dominated preclinical AA in vivo research, i.e. aging 

C3H/HeJ mice (Sundberg et al., 1994,1995; de Jong, et al., 2018; Dai et al., 2016; Shin 

et al., 2018), in which spontaneously developing AA-like lesions can be studied, and the 

humanized AA mouse model (Gilhar et al., 2013, 2016).

The C3H/HeJ mouse model has produced many novel results with important implications 

for human AA by accessing the powerful tools of mouse genetics (de Jong et al., 2018), 

and has helped to identify candidate autoantigens (Wang et al., 2016) and novel treatment 

strategies (Dai et al., 2016; Jalili et al., 2018; Xing et al., 2014). It also provided insight into 

the role that could be played by psychoemotional stressors and associated neuropeptides in 

AA pathogenesis (Paus and Arck,2009; Zhang et al., 2009; Siebenhaar et al., 2007; Peters 

et al., 2007), and has confirmed the key role of IFN-γ in AA pathogenesis (Ito et al., 2004; 

Paul et al., 2006). Advanced variations of this model that accelerate the development of AA 

by transplanting lesional skin from older mice to young ones (McElwee et al., 1998) or that 

transfer draining lymph node-derived cells from affected older to as yet unaffected young 

C3H/HeJ cells (Wang et al., 2015) have further facilitated the use of is murine AA model.

The C3H/HeJ mouse model was also used to identify key immune cell and molecular 

principles in murine AA and proof-of-principle that Janus kinase (JAK) inhibitors are 

suitable agents for AA management in vivo, since both IFN-γ and IL-15 signal via 

the JAK pathway, thus rendering JAK inhibitor therapy a highly promising intervention 

strategy in AA management (Xing et al., 2014; Phan and Sebaratnam, 2019; Wang et al., 

2018). However, their potential adverse effects deserve to be more rigorously contemplated 

and evaluated, especially when JAK inhibitors are systemically administered long-term to 

children (Gilhar et al., 2019).
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Despite it undisputed usefulness for and major contributions to preclinical AA research, the 

C3H/HeJ mouse model carries a number of important disadvantages that are often ignored, 

yet must be kept in mind (See Table 1). These include a major constitutive TLR signaling 

defect (Sundberg et al., 1994; Kamath et al.,2005) that is absent in AA patients, and alopecic 

lesions induced itch-related grooming behavior-induced (Sundberg et al., 1994; King et 

al., 2014). A key disease-promoting “danger” signal in AA pathobiology, the NKG2D 

agonistic ligand, MICA (Ito et al., 2008; Petukhova et al., 2010; Li et al., 2016), is strikingly 

absent in mice (the murine homolog protein has only 27% amino-acid identity with human 

MICA) (Sundberg et al., 1994). Moreover, the histological features are not typical for 

human AA (Sundberg et al., 1994; McElwee et al., 1998), since in the murine AA-like 

phenotype the inflammatory cell infiltrate extends to the distal follicle between the hair bulb 

and sebaceous gland, sometimes reaching the bulge, whereas human AA is characterized 

by a largely peribulbar lymphocytic infiltrate (Sundberg et al., 1994; King et al., 2014). 

Additionally, these mice cannot serve as a valid model for evaluating therapeutic effects of 

selected immunoinhibitory agents of interest in AA, such as Kv1.3 blockers because the K+ 

channel expression pattern of mouse T cells is different from that of human T cells (Beeton 

et al., 2006). It has been argued that, given the major differences between the immune 

systems of mice and humans (Zschaler et al., 2014), spontaneous models of autoimmunity 

that arise in mice do not satisfactorily recapitulate the human condition, and thus make 

the development of new therapeutic strategies that will also work in the human system 

particularly challenging (Walsh et al., 2017). Unsurprisingly, there is growing concern that 

laboratory mice do not reflect relevant aspects of the human immune system, which may 

account for failures to translate disease treatments (Beura et al., 2016).

Furthermore, the major differences between non-conventional T cells populations in humans 

and mice must be taken into account, when using mice as preclinical models of human 

disease (Zschaler et al., 2014). For example, there are several distinct subsets of γδ T cells 

in mice and humans, but mouse and human subsets have notably different TCR use, antigen 

reactivity and patterns of tissue homing (Godfrey et al., 2015). Buscher et al demonstrated 

that mouse models failed to account for the natural diversity in human immune responses 

and as a result, insights gained in the lab may be lost in translation (Buscher et al., 2017).

Therefore, it constituted an important advance in the field when lesional human skin 

from AA patients was successfully transplanted onto SCID mice (Gilhar et al., 1998, 

2001,2002). This permitted one, for the first time, to study and experimentally manipulate 

the AA-affected human target organ directly in a preclinical in vivo-setting. Moreover, 

this model confirmed the proposed key role of CD8+ T cells and of anagen HF-derived 

autoantigens in AA (Paus et al., 1993,2018) and the importance of CD4+ T cell help for 

developing a maximal AA phenotype (Gilhar et al., 2002,2003). However, this model has 

not been adopted by the field, since it is too unpractical, since it requires the availability of 

substantial amounts of diseased human scalp skin from AA patients as well as autologous, 

intracutaneous T cell populations from lesional skin (Gilhar et al., 1998).

Therefore, a more practical “humanized” mouse model of AA with a wider range of 

applications had been developed. Helpful leads for this came from the prior observation 

that the intracutaneous injection of PBMCs enriched in cell populations that express NK cell 
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markers into split-thickness transplants of healthy human corporeal skin onto beige SCID 

mice (which lack T, B, and have a low level of NK cells (Thomsen et al., 2008) suffices 

to induce psoriasis (Nickoloff., 1999; Guerrero-Aspizua et al., 2010; Nousbeck et al., 2011; 

Bracke et al., 2016).

In the new model AA-like hair loss lesions are induced in normal, full-thickness human 

scalp skin transplanted onto SCID beige mice by injecting autologous PBMCs enriched for 

NKG2D+/CD56+ cells treated stimulated with IL2 (Gilhar et al.,2013a, 2013b). Given that 

PBMCs from the same patient are used who has donated the scalp skin xenotransplants, 

a graft-versus-host scenario, which would anyway not generate an AA phenotype but a 

permanent, cicatricial alopecia, is avoided (Gilhar et al., 2016).

Using this model permits one to circumvent many of the disadvantages of the C3H/HeJ 

AA model, as they do not apply to the humanized one (Table 1). This should encourage 

investigators to widely use the humanized AA model, e.g. as a second step after initial 

screening experiments in C3H/HeJ mice, so as to optimize preclinical AA in vivo research 

and its predictive power for clinical outcomes. Moreover, this in vivo model should facilitate 

at least initial progress in the long- overdue challenge to dissect which role human hair 

follicles and their immune privilege actually play in the establishment, maintenance, and 

collapse of peripheral autoantigens (Oelert et al., 2017).

By using the humanized AA mouse model, it has been elucidated that AA pathogenesis in 

human skin is also affected by unconventional T cell subtypes such as NKT, iNKT10, ILC1, 

γ/δ-T and γ/δ-Tregs cells, whose numbers are significantly increased in AA compared 

to healthy human skin (Laufer et al., 2019; Ghraieb et al., 2018; Kaufman et al., 2010), 

whose likely role in AA pathobiology had previously escaped murine AA research. Since 

the experiments demonstrated that non-conventional T cells may play a role in human AA 

(Laufer et al., 2019, Ghraieb et al., 2018), they suggest that targeting these immunocytes 

offers new opportunities for innovative therapeutic intervention. The humanized mouse 

model has been used to discover human specific pharmacological targets such as the 

potassium channel Kv1.3 (Gilhar et al., 2013). In addition, the model demonstrated both 

preventive and therapeutic effects of α-galactosylceramide (α-GalCer), which stimulates 

IL-10 production by iNKT cells and their expansion (Ghraieb et al., 2018), thus introducing 

a promising a new candidate treatment strategy into translational AA research. Finally, 

in vivo-results in the humanized AA mouse model elegantly recapitulate the reported 

differential clinical trial results in AA patients with the JAK inhibitor, tofacinitib versus the 

PDE4 inhibitor, apremilast (Liu et al., 2017; Mikhaylov, et al., 2019): just as in AA patients, 

poor therapeutic effects were seen in the humanized AA mouse model with apremilast, 

contrasted by a strong therapeutic effect of tofacinitib, was also shown (Gilhar et al., data 

presented at the conference; manuscript has been submitted).

CONCLUSION

In summary, we advocate to make it a routine practice in future preclinical AA research 

to use both the C3H/HeJ (e.g. for screening purposes) and the humanized AA model as 
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perfectly complementary investigation tools, and to test new candidate AA therapeutics also 

in the humanized AA model before entering into clinical trials.
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Table 1.

Differences between C3H/HeJ and humanized AA mouse model

Typical properties C3H/HeJ mice@ Humanized AA mouse model

Ease of use Basic surgical skills Advanced surgical skills

Cost Relatively low Relatively high

Convenience Good Difficult to find donors willing to provide both 
scalp skin and blood

Grooming-induced 
hair loss

Present Absent

Predictiveness Unclear Good

Disadvantages 1. The histologic feature is not characteristic to human AA
2. Absence of MICA, a recognized pathogenic key NKG2D 
ligand in human AA
3. Mouse-specific hair follicle immunopathology

1. Need specific conditions
2. Lack of genetic background
3. Small area of scalp skin xenotransplants

Advantages Can easily be employed as first stage assay for in vivo candidate 
drug testing, even though a negative outcome may not be 
predictive

1. The histologic feature is characteristic 
to human AA

2. Mimics human AA more closely than any 
other animal model, good predictive power

@
=skin graft-induced hair loss variant (McElwee et al., 1998)
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