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Abstract

Theoretical models of addiction suggest that alterations in addiction domains including incentive salience, negative
emotionality, and executive control lead to relapse in alcohol use disorder (AUD). To determine whether the functional
organization of neural networks underlying these domains predict subsequent relapse, we generated theoretically defined
addiction networks. We collected resting functional magnetic resonance imaging data from 45 individuals with AUD during
early abstinence (number of days abstinent M = 25.40, SD = 16.51) and calculated the degree of resting-state functional
connectivity (RSFC) within these networks. Regression analyses determined whether the RSFC strength in domain-defined
addiction networks measured during early abstinence predicted subsequent relapse (dichotomous or continuous relapse
metrics). RSFC within each addiction network measured during early abstinence was significantly lower in those that
relapsed (vs. abstained) and predicted subsequent time to relapse. Lower incentive salience RSFC during early abstinence
increased the odds of relapsing. Neither RSFC in a control network nor clinical self-report measures predicted relapse. The
association between low incentive salience RSFC and faster relapse highlights the need to design timely interventions that
enhance RSFC in AUD individuals at risk of relapsing faster.
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Introduction
The path to recovery from alcohol use disorder (AUD) is often
disrupted by high relapse rates (40–60%; McLellan et al. 2000;
Maisto et al. 2018). Relapse in AUD is driven by maladaptive
behaviors such as an exaggerated appetitive drive toward
alcohol use, inability to regulate mood and stress, and inability
to avoid and control alcohol consumption (Kwako et al.
2019). Theoretical models of addiction have categorized
these maladaptive behaviors into three addiction domains: 1)

reward and incentive salience, 2) negative emotionality, and
3) executive functioning (Koob and Volkow 2010, 2016; Kwako
et al. 2018, 2019). These distinct domains are associated with
underlying neural networks. Functional connectivity patterns
within these neural networks have been found to play a
role in perpetuating use and in repeated relapse (Koob and
Volkow 2016; Zehra et al. 2018). These addiction domains and
underlying neural substrates are described below with a focus
on AUD.
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Reward and Incentive Salience (IS) Domain

Under the IS domain, alcohol consumption is driven by its
rewarding effects. Animal and human research suggest that the
rewarding effects of substance use are mediated by dopamine
signaling in the mesolimbic dopamine system (Vollstädt-Klein
et al. 2010; Sanchez-Roige et al. 2014; Everitt and Robbins 2016).
Initial consumption has been associated with exaggerated
dopamine release in the nucleus accumbens, a dopaminergic
hub within the ventral striatum, which sends signals to the
motor cortex for continued goal-directed behavior toward
substance use. After continued and repeated substance use,
the dorsal regions of the dopaminergic system (i.e., caudate and
putamen) are increasingly engaged as substance use shifts from
goal-directed behavior to habitual behavior (Vollstädt-Klein
et al. 2010; Murray et al. 2012; Everitt and Robbins 2016).
Dysregulation in the ventral and dorsal striatum triggers
neuroadaptations in the dopaminergic system, characterized by
blunted dopaminergic responses (desensitization) to rewarding
stimuli, including rewards derived from substance use (Koob
and Le Moal 2008; George et al. 2012). Reward desensitization
drives an organism to try to compensate for dopaminergic
dysfunction by seeking incrementally larger amounts of alcohol
(Leyton and Vezina 2014) or to relapse after periods of abstinence
(Wang et al. 2012).

Negative Emotionality (NE) Domain

Under the NE domain, alcohol consumption is driven by
attempts to avoid aversive experiences, such as negative
affect or withdrawal symptoms and associated distress (Koob
and Volkow 2016). Heightened stress (e.g., due to withdrawal
or aversive experiences) has been found to be mediated by
increased concentration of corticotropin-releasing factor in the
extended amygdala (Volkow et al. 1997; Volkow et al. 2007; Koob
2010). Further, dopamine and k-opioid dysregulations in the
striatum and habenula underlie the blunted reward sensitivity
associated with negative affect (Matsumoto and Hikosaka 2007;
Walker and Koob 2008; Wise 2008; Baker et al. 2016; Bazov et al.
2018). Mesolimbic dysregulation (e.g., in amygdala, striatum,
and habenula) is involved in the manifestation of withdrawal
symptoms including heightened stress and negative affect,
which increases the vulnerability to relapse in an attempt to
avoid these aversive experiences.

Executive Functioning (EF) Domain

Under the EF domain, alcohol consumption is posited to be
driven by poor executive functioning, particularly the inability to
stop habitual unwanted behaviors or to exert executive control
over emotion dysregulations. Down-regulation of dopamine
signaling described under the IS and NE domains above also
extends to frontal regions, impairing top-down executive
control (Goldstein and Volkow 2011; Tang et al. 2015; Volkow
et al. 2019). Both reduced prefrontal dopaminergic signaling
and reduced prefrontal glutamatergic signaling disrupt proper
executive control over habit-induced craving, affecting decision
making, cognitive flexibility, error monitoring, and emotion
regulation needed to avoid return to substance use (Goldstein
and Volkow 2011). The EF domain has been classified into two
separate systems: the “EF-Go” and “EF-Stop” systems (Koob and
Volkow 2016). Functional dysregulations in the EF-Go circuit,
including the middle anterior cingulate cortex, inferior frontal
cortex, insula, and medial prefrontal cortex, ostensibly mediate

inability to control habit-induced craving driven by striatum
(particularly caudate). Functional dysregulation in the EF-
Stop circuit, including anterior cingulate cortex, dorsolateral
prefrontal cortex, inferior frontal cortex, medial prefrontal
cortex, orbitofrontal cortex, and amygdala, ostensibly mediate
poor inhibitory control and poor control of affective responses in
the EF-Stop system. Poor executive control in both the EF-Go and
EF-Stop systems have been associated with higher vulnerability
to relapse (Goldstein and Volkow 2011).

Resting State Functional Connectivity (RSFC) and
Addiction Treatment Outcome

The literature cited above highlights the role of addiction
domains and underlying neural substrates on the perpetuation
of substance use and relapse. Our group contributed to this
literature by reporting that lower resting-state functional
connectivity (RSFC) of individual regions of interest (e.g.,
anterior cingulate and nucleus accumbens) and other key
brain regions (e.g., dorsolateral prefrontal cortex and insula)
are potential neural markers of relapse in AUD (Camchong
et al. 2013; Camchong et al. 2014). While our previous studies
have defined subsequent relapse as a dichotomous variable
(Camchong et al. 2013; Camchong et al. 2014; Camchong et al.
2017), it is important to predict more detailed relapse metrics
to better inform timely and detailed AUD interventions. The
current paper extends previous findings in two main ways. First,
we adopt an integrative and theory-driven framework in the
identification of potential markers of relapse in AUD (Voon et al.
2020) through the examination of RSFC strength across regions
within each of the aforementioned domain-defined addiction
networks (i.e., IS, NE, EF-Go, and EF-Stop). This permits the ability
to examine more nuanced neurobiological patterns specific to
addiction beyond the information that can be derived using
individual regions of interest. Second, we investigate whether
RSFC within domain-defined addiction networks can predict
detailed relapse metrics (e.g., time to relapse, number of drinks
after relapse, and number of drinking days after relapse), beyond
predicting a dichotomous variable of relapse.

The analysis of resting-state functional MRI (magnetic
resonance imaging) data allows us to examine intrinsic
functional organization (Biswal et al. 1997) of addiction networks
in the absence of potentially confounding variables (e.g.,
variability in motivation or effort needed for task performance;
Pacheco-Colón et al. 2018). While we recognize that the
addiction domains described above overlap both neurally
and chronologically throughout the addiction cycle (Kwako
et al. 2018, 2019), the purpose of this paper is to investigate
the “independent” role of each addiction neural network
underlying each addiction domain. Moreover, if overlapping
networks are combined into one regression model, there are
potential multicollinearity issues that would yield misleading
results (Allen 1997; Gujarati 2011). Therefore, RSFC within each
addiction network defined above was examined as a separate
variable of interest.

The current paper is the first to directly examine the
relationship between the strength of RSFC within domain-
defined addiction networks measured during early abstinence
and subsequent detailed relapse metrics in AUD. First, we sought
to investigate whether RSFC of domain-defined addiction
networks during early abstinence was a marker of dichotomous
(relapse vs. no relapse) or continuous (time to relapse, number of
drinks after relapse, and number of drinking days after relapse)
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Table 1 Demographics and history of alcohol use in individuals with AUD during early abstinence

Treatment outcome at 4-month follow-up

All AUD (n = 45) ABS (n = 25) REL (n = 20) ABS versus REL
Characteristic Mean or n (SD or %) Mean or n (SD or %) Mean or n (SD or %) T-test or χ2 (italics)

Age 42.50 (9.41) 43.92 (9.10) 40.45 (9.83) P = 0.227
Education 14.13 (2.27) 14.00 (1.78) 14.35 (2.83) P = 0.615
Female, n % 18 (39.1%) 6 (24%) 12 (60%) P = 0.014
Employeda, n % 17 (39.1%) 12 (44.4%) 5 (25%) P = 0.209
Age of AUD onset 26.76 (9.84) 25.16 (8.74) 29.50 (10.49) P = 0.137
# of standard drinks: Past 6 months 2585.98 (1955.41) 2808.74 (1942.76) 2171.64 (1911.44) P = 0.385
# of drinking days: Past 6 months 100.98 (59.00) 106.68 (58.43) 91.10 (60.22) P = 0.277
# of days abstinent until the MRI session 25.20 (16.38) 26.12 (14.52) 24.75 (18.91) P = 0.785

Notes: AUD, alcohol use disorder; MRI, magnetic resonance imaging; SD, standard deviation; ABS, those that remained abstinent in the 4-month follow-up period;
REL, those that relapsed during the 4-month follow-up period; χ2, Chi-Square; P, significance probability value.
aEmployed at the time of entering the addiction treatment program.

relapse metrics. Second, to investigate whether the relationship
between relapse metrics and RSFC is unique to the domain-
defined addiction networks (vs. generalized RSFC alterations),
we examined RSFC of a visual network, a network that has not
been explicitly identified as involved in the maintenance of
addiction, as a control brain network. Based on the literature,
we hypothesized that RSFC within each of the domain-defined
addiction networks would be related to relapse, while the visual
network would not be related to relapse in AUD. There was no
a priori hypothesis favoring predictive ability of one domain-
defined addiction network over another. Third, we examined
whether clinical self-report measures (i.e., depression, anxiety,
and craving) or history of past substance use predicted relapse
metrics.

Materials and Methods
Participants

All participants were recruited 1–2 weeks after being admitted to
a 28-day in-patient addiction treatment program in Minneapolis,
MN, as part of a longitudinal study. The current paper analyzed
neuroimaging data collected from individuals with AUD during
early abstinence (mean number of days abstinent until MRI
session = 25.40, SD = 16.51). All participants provided written
informed consent and received monetary compensation for the
time spent participating. The consent process and all procedures
were reviewed and approved by the Institutional Review Board
at the University of Minnesota.

A total of 66 participants were consented. From the 66 total
subjects, 21 did not have available fMRI (functional magnetic
resonance imaging) data after consenting for the following
reasons: Seven left the treatment program and were no longer
reachable before their neuroimaging session, four were found
to be no longer eligible (one because of identified cognitive
impairment, two because the identified “primary” substance
use disorder diagnosis was not alcohol, but stimulant and
heroin, and one because of identified unknown metal in
their bodies), four voluntarily withdrew participation before
the neuroimaging session, two were excluded from group
analyses because their resting-state data did not meet our image
quality threshold (see Resting-State Data Quality Assessment
section), one because of technical issues during fMRI scan,
and three were lost to follow-up after the neuroimaging

session. As a result, complete data for the scope of this
paper were available for 45 abstinent individuals with AUD
(Table 1).

Inclusion and exclusion criteria can be found in the
Supplementary Material A. Participants underwent random
alcohol and drug tests in the treatment program. All subjects’
substance use history for the past 6 months before entering the
treatment program was recorded using the Timeline Follow-
Back (TLFB) (Sobell and Sobell 1992) and administered for
alcohol and for each other substance used (excluding caffeine)
(Table 1).

All participants completed clinical self-report measures that
have been associated with relapse (Oliva et al. 2018; Stohs et al.
2019; Pareaud et al. 2021) (Table 2): the Beck Depression Inven-
tory (BDI, Beck et al. 1988); the State Anxiety Inventory (STAI,
Spielberger 1983); and the Penn Alcohol Craving Scale (PACS,
Flannery et al. 1999). One participant did not complete self-
report measures. Participants completed follow-up interviews 1
and 4 months after the neuroimaging session to query dichoto-
mous and continuous relapse metrics.

Dichotomous Relapse Metrics: Group Definition
Participants were considered to be in the relapsing group (REL)
if they reported consuming at least one drink during the 1-
month or the 4-month follow-up period. Participants who had
not consumed any alcohol and/or nonprescribed drug during the
1-month or the 4-month follow-up period were considered to be
in the abstaining group (ABS).

Continuous Relapse Metrics
Detailed TLFB (Sobell and Sobell 1992) data were collected from
the REL group, recording date of relapse, number of drinks,
and number of drinking days after relapse during the 4-month
follow-up period. Time to relapse to alcohol use was operational-
ized as the number of days until a participant’s self-reported
first use of alcohol. The variable representing the number of
drinks (standard drink, equivalent to 0.6 ounces of pure alcohol;
Centers for Disease Control and Prevention [CDC], 2021) after
relapse was operationalized as the number of drinks reported to
have been consumed in the 4-month follow-up period. Number
of days drinking was operationalized as the number of days
reported to have consumed at least one drink during the 4-
month follow-up period (Table 1).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
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Table 2 Self-report measures by group

Mean (standard deviation)

Self-report measure ABS (n = 25) REL (n = 20) Independent samples t-tests

Beck Depression Inventory (BDI) 21.92 (12.57) 18.90 (11.28) P = 0.41
State Anxiety Inventory (STAI) 40.61 (12.48) 44.73 (11.47) P = 0.29
Penn Alcohol Craving Scale (PACS) 21.21 (8.12) 21.10 (6.46) P = 0.96

Notes: ABS, those that remained abstinent in the 4-month follow-up period; REL, those that relapsed during the 4-month follow-up period; P, significance probability
value.

Imaging Data Acquisition

MRI data were acquired from a 3T Siemens Prisma scanner at
the University of Minnesota’s Center for Magnetic Resonance
Research (CMRR). Acquisition parameters closely matching
those created by the Human Connectome Project (HCP) (Glasser
et al. 2013; Smith et al. 2013; Uğurbil et al. 2013). The images
collected included: a T1-weighted MPRAGE image [TR = 2400 ms,
TE = 2.24 ms, slices = 208, voxel size = 0.8 mm3], a T2-weighted
SPACE image [TR = 3200 ms, TE = 564 ms, slices = 208, voxel
size = 0.8 mm3], spin echo EPI time series images for the resting-
state fMRI, and resting-state fMRI [TR = 800 ms, TE = 37 ms,
slices = 72, volumes = 520, voxel size = 2.0 mm3, 7 min duration].
During the resting-state fMRI scan, the participant was asked
to keep their eyes open, look directly at a fixation cross, to not
think of anything in particular, and remain awake (confirmed
by participant at the end of the MRI session).

Resting-State Data Quality Assessment

Prior to data processing, resting-state fMRI data quality was
assessed using methods similar to those outlined in Power et al
(Power et al. 2012). Framewise Displacement (FD) and DVARS (“D”
refers to the temporal derivative of time courses, and “VARS”
refers to root means square (RMS) variance over voxels) were
calculated on the resting-state fMRI scans. FD is a measure of the
head position change relative to the previous time point. DVARS
is a measure of the RMS signal change from the previous time
point, calculated over the brain mask (Power et al. 2012). Volumes
with FD > 0.5 mm and/or DVARS > 0.008 were flagged as bad
along with the previous volume and next two volumes. Rest-
ing scans with more than 30% flagged volumes were rejected
from the study. Two participants were excluded from analyses
because they failed these quality criteria.

Individual Anatomical MRI Data Processing

T1-weighted and T2-weighted images were processed using the
HCP minimal preprocessing pipeline (Glasser et al. 2013). To pre-
process the T1- and T2-weighted data, the following steps in the
minimal preprocessing HCP pipeline were done: Aligned the T1-
weighted and T2-weighted to each other; Registered T1 and T2
images to standard MNI space; Corrected for gradient inhomo-
geneities with gradient distortion correction; Projected images
to surface space with FreeSurfer; Motion correction; Removal of
nonbrain tissue; Gray and white matter segmentation; Intensity
normalization; Extraction and inflation to the cortical surface;
Output to CIFTI space by extracting NIFTI volumes containing
subcortical structural and GIFTI surface files corresponding to
the left and right cortical hemispheres, respectively (Glasser
et al. 2013).

Individual FMRI Data Preprocessing

After anatomical processing, the following were completed in
chronological order on resting-state fMRI data. To account for
spin-history stabilization effects, the first eight volumes of each
time series were removed. Then, the nonlinear distortions pro-
duced by the gradient were corrected using the HCP version
of the gradunwarp package (https://github.com/Washington-U
niversity/gradunwarp). EPI (echo-planar imaging) realignment
was then conducted to correct for motion by registering each
volume to the single band reference image via FLIRT with 6
degrees of freedom. To correct for distortion in the phase encod-
ing direction, a pair of opposing phase encoding spin echo
EPI field maps was used to estimate a distortion field with
the FSL tool “top-up” and was then applied to the EPI fMRI
images with FLIRT. Following distortion correction, EPI to T1-
weighted surface registration and subsequently native to MNI
nonlinear registration were performed. Finally, the voxels of the
MNI registered volumes were resampled onto cortical surfaces
and extracted to CIFTI space.

Extensive Functional Processing
The structural and functional preprocessing pipeline was
followed by the extensive functional pipeline. Because the rest
fMRI analysis relied on temporal correlations, the primary focus
of the extensive functional pipeline was to correct temporal
artifacts. First, to linearly detrend the data, a high band pass
filter cutoff of 2000s with a slow roll off (Smith et al. 2013) was
applied. Second, the data were denoised using ICAFIX (Griffanti
et al. 2014; Salimi-Khorshidi et al. 2014) with a customized
FIX classifier using 15 randomly selected scanning sessions
from the current data (trained by J. Camchong—ICAFIX Pipeline
Documentation, see Supplementary Material B for methodology
rationale) (https://github.com/Washington-University/HCPpipe
lines/wiki/Installation-and-Usage-Instructions#the-ica-fix-pi
peline). “FIX” classified the spatial components as “signal” or
“noise.” Components classified as noise were regressed out from
the data (multiplied by the associated time series and subtracted
from the original dataset) (Smith et al. 2013). Following the
ICAFIX process, surface-based functional alignment was run
on the ICAFIX denoised data with the tool MSMAll (Robinson
et al. 2014). MSMAll employed myelin maps, resting-state fMRI
network maps, and resting-state fMRI visuotopic maps to
align a participant’s cortical data to a group template. Once
complete, the MSMAll and ICAFIX fMRI concatenated data were
dissociated resulting in the resting-state fMRI data that were
used for subsequent analyses.

Individual Data Segmentation
Following the above steps, the resting-state fMRI individual data
were parcellated into distinct and nonoverlapping regions using

https://github.com/Washington-University/gradunwarp
https://github.com/Washington-University/gradunwarp
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Table 3 Bilateral brain regions within each addiction domain

Regions in each addiction domain (Koob and Volkow 2016; Kwako et al. 2018)

IS
consumption driven to
experience reward

NE
consumption driven to
avoid withdrawal and
negative emotions

EF-Go
consumption driven by
habit-induced craving

EF-Stop
consumption driven by
poor inhibitory and
affective control

Subcortical Amygdala Amygdala
Caudate Caudate Caudate

Habenula
Nucleus accumbens Nucleus accumbens Nucleus accumbens
Pallidum Pallidum Pallidum
Putamen Putamen Putamen

Cortical a Motor cortexb

Anterior cingulate cortex Anterior cingulate cortex
Dorsolateral prefrontal
cortex

Inferior frontal cortex Inferior frontal cortex
Insulac

Medial prefrontal cortex Medial prefrontal cortex
Orbitopolar frontal cortex

Notes: IS, incentive salience; NE, negative emotionality; EF-Go, executive functioning go; EF-Stop, executive functioning stop. aCorresponding Schaefer regions in
Supplementary Material C.
bIncluding: Inferior and superior premotor, premotor, somatosensory, supplementary motor.
cIncluding: Anterior agranular insular complex, frontal opercular, insula granular, middle insula, posterior insula, posterior opercular. NOTE: To test the robustness
of the composition of these domain-defined addiction networks, bootstrapping analyses were conducted and detailed in Supplementary Material H.

the cortical Schaefer 400 (i.e., 400 regions across the cortex)
(Schaefer et al. 2018) and the subcortical Harvard-Oxford atlases
(Desikan et al. 2006). Within each region, the individual grayor-
dinates (Van Essen and Glasser 2016) were averaged together
per time point to generate a parcellated time series of the
resting-state fMRI data.

Calculating Functional Connectivity Matrices within Domain-Defined
Addiction Networks
Regions corresponding to each domain-defined addiction net-
work (Koob and Volkow 2016) were identified within the Schae-
fer 400 and the subcortical Harvard-Oxford atlases (Table 3 and
Supplementary Material C). Although each addiction domain
represents specific maladaptive behaviors in the addiction cycle
(Koob and Volkow 2016), it is important to note that they overlap
spatially (Table 3; Kwako et al. 2018) since some regions play a
different role within different domains. Because the scope of
this current paper is to determine whether the functional orga-
nization within separate domain-defined addiction networks is
related to treatment outcome, the RSFC within each domain-
defined addiction network was calculated and analyzed as a
separate variable.

The time series within each of the regions was identified to
be part of each domain-defined addiction network: The incen-
tive salience (IS; Fig. 1), negative emotionality (NE; Fig. 2), and
executive functioning “Go” (EF-Go; Fig. 3) and executive func-
tioning “Stop” (EF-Stop; Fig. 4) networks (Koob and Volkow 2016;
Kwako et al. 2019) were extracted. The time series of each
region within each domain-defined addiction network was used
to produce an NxN connectivity matrix representing pairwise
temporal Pearson correlations. Each node in the matrix corre-
sponded to an individual region and each edge corresponded
to the temporal correlation of the paired nodes. The following
additional steps were taken on the four generated connectivity
matrices for each domain-defined addiction network. First, the

diagonal of each of the matrices was removed as this repre-
sents the correlation of a region with itself. Second, the remain-
ing Pearson correlation values were transformed to Z-scores
(Fisher Z-transformation). Third, the Fisher Z-scores were vec-
torized and averaged to produce one measure of RSFC (temporal
correlation) within each of the four domain-defined addiction
networks. Finally, the temporal correlations were standardized
across subjects to remove the impact of scaling when fitting
group-level models.

RSFC in Control Networks
To determine whether findings are specific to domain-defined
addiction networks versus whole-brain RSFC alteration, the
RSFC within Schaefer regions corresponding to primary visual
network was examined (Supplementary Material D).

Group-Level Analyses

First, to determine whether there were significant demographic
differences on dichotomous relapse metrics (ABS vs. REL defined
at 1-month and 4-month follow-up periods), independent sam-
ples t-tests with bootstrapping (2000 bootstrapping samples;
Konietschke and Pauly 2014) were conducted on age, years of
education, clinical self-report measures (i.e., BDI, STAI, and
PACS), and substance use history (age of onset of alcohol depen-
dence, number of drinks in the past 6 months, number of days
drinking in the past six months, and number of days abstinent
until MRI data collection day). To determine whether there were
sex (as a biological variable) differences between groups (REL
vs. ABS), Pearson Chi-square tests were conducted (Table 1).
Supplementary Material E includes analyses examining motion
as a covariate.

Second, to determine whether the strength of RSFC within
domain-defined addiction networks measured during early
abstinence predicted relapse as a dichotomous variable (REL

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
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Figure 1. Incentive salience (IS) addiction network. First two columns are IS regions corresponding to cortical Schaefer 400 atlas parcels on bilateral motor cortex
displayed on an MNI surface brain (see Table 3 and Supplementary Material C for list of regions). Last three columns are IS regions corresponding to subcortical
Harvard-Oxford atlas parcels on bilateral caudate, nucleus accumbens, pallidum, and putamen on axial slices (z) displayed on an MNI average brain. A, anterior; P,

posterior; L, left; R, right.

Figure 2. Negative emotionality (NE) addiction network. Last three columns are EF-Go regions corresponding to subcortical Harvard-Oxford atlas parcels on bilateral
amygdala, caudate, habenula, nucleus accumbens, pallidum, and putamen on axial slices (z) displayed on an MNI average brain. There are no cortical parcels within
this addiction network, so two first columns with the MNI surface brain are empty. A, anterior; P, posterior; L, left; R, right.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data


2694 Cerebral Cortex, 2022, Vol. 32, No. 12

Figure 3. Executive function Go (EF-Go) addiction network. First two columns are EF-Go regions corresponding to cortical Schaefer 400 atlas parcels on bilateral anterior

cingulate cortex, mid cingulate cortex, inferior frontal cortex, insula (anterior agranular insular complex, frontal opercular, insula granular, middle insula, posterior
insula, and posterior opercular), and medial prefrontal cortex displayed on an MNI surface brain (Table 3 and Supplementary Material C include list of regions). Last
three columns are EF-Go regions corresponding to subcortical Harvard-Oxford atlas parcels on bilateral caudate, nucleus accumbens, pallidum, and putamen on axial
slices (z) displayed on an MNI average brain. A, anterior; P, posterior; L, left; R, right.

Figure 4. Executive function Stop (EF-Stop) addiction network. First two columns are EF-Stop regions corresponding to cortical Schaefer 400 atlas parcels on bilateral
anterior cingulate cortex, dorsolateral prefrontal cortex (BA 6, 8, 9, 46), inferior frontal cortex, medial prefrontal cortex, and orbitopolar frontal cortex (BA 10, 47)
displayed on an MNI surface brain (Table 3 and Supplementary Material C include list of regions). Last three columns are EF-Stop regions corresponding to subcortical
Harvard-Oxford atlas parcels on bilateral amygdala on axial slices (z) displayed on an MNI average brain. A, anterior; P, posterior; L, left; R, right.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
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vs. ABS defined at 1-month and 4-month follow-up periods), a
binary logistic regression with each domain-defined addiction
network as a separate independent variable and adjusting for
sex was conducted. To determine whether there were significant
group differences in RSFC strength within domain-defined
addiction networks, analysis of variance with bootstrapping
(2000 samples; Konietschke and Pauly 2014) adjusting for
sex was conducted for each of the domain-defined addiction
networks.

Third, to determine whether the strength of RSFC within
the domain-defined addiction networks measured during early
abstinence predicted continuous relapse metrics (i.e., time to
relapse, number of drinks after relapse, and number of drinking
days after relapse—as dependent variables), linear regressions
were conducted.

Finally, to determine whether clinical self-report measures
(BDI, STAI, and PACS) predicted dichotomous or continuous
relapse metrics (i.e., time to relapse, number of drinks after
relapse, and number of drinking days after relapse), binary logis-
tic and linear regressions were conducted respectively.

Results
Dichotomous Group Definition

Eleven out of forty-five participants (23.9%) relapsed at the 1-
month follow-up (number of days to relapse M = 9.60, SD = 6.92).
Twenty of the forty-five participants (44.4%) relapsed in the
4-month follow-up period with an average time to relapse
of 52.20 days (SD = 48.57, n = 20). From the 20 individuals that
relapsed during the 4-month follow-up period, 94.7% relapsed to
alcohol only and 5.3% relapsed to a combination of alcohol and
drugs. Fifteen (of twenty) REL reported 213.63 average number
of drinks (SD = 252.86) and 19.93 average number of drinking
days (SD = 18.20) after relapse in the 4-month follow-up period.
While the remaining 5 (of 20) in the REL group reported to have
relapsed over the phone, they were not available to complete
the in-person visit in which detailed TLFB information after
relapse (number of drinks consumed and number of drinking
days) would be collected.

Demographic and Self-Report Differences between
Subsequent ABS and REL

Because Chi-Square test revealed significant sex differences,
with a higher proportion of females in the REL group at the
4-month follow-up than the ABS group (X2 (1, N = 45) = 6.00,
P = 0.014) (Table 1), Cox proportional hazards analysis was con-
ducted to model sex differences in survival (relapse) rate. Results
suggested that being female increased the odds (OR, odds ratio)
of relapse during the 4-month period [B = 0.959, SE = 0.459, Wald
χ2 = 4.355, P = 0.037, OR = 1.06–6.42] (Supplementary Material G).
Subsequent group analyses adjust for sex.

Self-Report Measures Measured during Early
Abstinence—Comparison between Subsequent REL and ABS
Independent samples t-tests showed no significant difference
between REL and ABS groups in number of days of abstinence
before the MRI scan session (Table 1), past substance use (num-
ber of drinks in the past 6 months, number of days drinking in
the past 6 months, and age of onset of alcohol use disorder)
(Table 1), clinical self-report measures (BDI, STAI, and PACS,
Table 2), current and lifetime substance use disorder (Table 4), or

psychiatric diagnoses (Table 5). Results remained nonsignificant
after adjusting for sex.

Predicting Dichotomous Relapse Metrics Based on RSFC
Measured during Early Abstinence

For all the results reported hereafter, the following concepts
apply. First, when referring to any RSFC metric, it should be
noted that all RSFC metrics reported here refer to one MRI
session collected during early abstinence for all participants,
while they were in the addiction treatment program. Second,
when referring to group differences, REL versus ABS, it should
be noted that group membership was defined at subsequent
follow-up time points 1 and 4 months later.

Predicting Dichotomous Relapse Defined at the 1-Month Follow-Up
Using RSFC Measured during Early Abstinence
Binary logistic regression conducted with group membership
(REL vs. ABS) defined at the 1-month follow-up period indi-
cated that higher IS RSFC during early abstinence decreases
the odds of relapse in the subsequent month, after adjusting
for sex (OR = 0.32, P = 0.037, 95% CI: 0.11–0.93). RSFC within the
other addiction networks showed a statistical trend predicting
1-month relapse, after adjusting for sex: 1) NE RSFC (OR = 0.47,
P = 0.08, 95% CI: 0.20–1.09), 2) EF-Go RSFC (OR = 0.36, P = 0.06, 95%
CI: 0.13–1.04), and 3) EF-Stop RSFC (OR = 0.39, P = 0.06, 95% CI:
0.14–1.05).

Predicting Dichotomous Relapse Defined at the 4-Month Follow-Up
Using RSFC Measured during Early Abstinence
Binary logistic regression conducted with group membership
(REL vs. ABS) defined at the 4-month follow-up period indicated
that RSFC within any of the considered networks was not asso-
ciated with 4-month relapse status, after adjusting for sex: 1) IS
RSFC (OR = 0.93, P = 0.83, 95% CI: 0.47–1.82), 2) NE RSFC (OR = 1.31,
P = 0.43, 95% CI: 0.67–2.55), 3) EF-Go RSFC (OR = 0.92, P = 0.82, 95%
CI: 0.47–1.81), and 4) EF-Stop RSFC (OR = 0.87, P = 0.70, 95% CI:
0.44–1.74).

RSFC during Early Abstinence Is Significantly Different between AUD
That Relapsed versus Abstained in the Subsequent Month
Independent samples t-tests revealed significantly lower RSFC
within the IS, EF-Go, and EF-Stop addiction networks during
early abstinence between subsequent REL versus ABS (Fig. 5).
After adjusting for sex, IS RSFC group differences (subsequent
REL vs. ABS) during early abstinence remained significant
(P = 0.027). There was a trend in RSFC group differences in the
other addiction networks after adjusting for sex (NE P = 0.07;
EF-Go P = 0.05; EF-Stop P = 0.06).

RSFC during Early Abstinence Was Not Different between AUD That
Relapsed versus Abstained in the 4-Month Follow-Up
Independent samples t-tests revealed no significant RSFC differ-
ences between groups defined at the 4-month follow-up when
not adjusting for sex (IS P = 0.437; NE P = 0.372; EF-Go P = 0.533; EF-
Stop P = 0.365) or after adjusting for sex (IS P = 0.839; NE P = 0.442;
EF-Go P = 0.824; EF-Stop P = 0.713).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
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Table 4 Counts of lifetime and current substance use disorder for all participants with alcohol use disorder

Lifetime diagnosis count Current diagnoses count

Substance ABS (n = 25) REL (n = 20) χ2 Sig. ABS (n = 25) REL (n = 20) χ2 Sig.

Marihuana 11 4 P = 0.09 2 1 P = 0.70
Cocaine 6 2 P = 0.20 0 0 —
Methamphetamine 2 1 P = 0.67 0 0 —
Opioids 3 0 P = 0.11 0 0 —
Hallucinogens 0 1 P = 0.66 0 0 —
Nicotine 14 11 P = 0.94 12 10 P = 0.50

Notes: ABS, those that remained abstinent in the 4-month follow-up period; REL, those that relapsed during the 4-month follow-up period; χ2, Chi-Square; P,
significance (Sig.) probability value. Analyses correcting for comorbid substance use showed that having a lifetime or current comorbid substance use did not have an
effect on predicting subsequent dichotomous or continuous treatment outcomes.

Table 5 Counts of lifetime and current psychiatric diagnoses

Lifetime diagnosis count (%) Currenta diagnoses count (%)

Psychiatric diagnosesb ABS (n = 25) REL (n = 20) χ2 Sig. ABS (n = 25) REL (n = 20) χ2 Sig.

MDD 12 (48.0%) 6 (30.0%) P = 0.22 11 (44.0%) 6 (30.0%) P = 0.34
GAD 10 (40.0%) 8 (40.0%) P = 1.0 9 (36.0%) 6 (30.0%) P = 0.67
PTSD 6 (24.0%) 7 (35.0%) P = 0.42 6 (24.0%) 6 (30.0%) P = 0.65
Social phobia 4 (16.0%) 5 (25.0%) P = 0.45 4 (16.0%) 5 (25.0%) P = 0.45
PD 4 (16.0%) 4 (20.0%) P = 0.73 0 2 (10.0%) P = 0.11
Agoraphobia 1 (4.0%) 1 (5.0%) P = 0.87 0 1 (5.0%) P = 0.26
ADHD 1 (4.0%) 2 (10.0%) P = 0.42 1 (4.0%) 1 (5.0%) P = 0.87

Notes: ABS, those that remained abstinent in the 4-month follow-up period; REL, those that relapsed during the 4-month follow-up period; χ2, Chi-Square; MDD,
major depressive disorder; GAD, generalized anxiety disorder; PTSD, posttraumatic stress disorder; PD, panic disorder; ADHD, attention deficit hyperactivity; P,
significance (Sig.) probability value. aParticipants with current diagnoses were clinically stable.
bNo lifetime or current diagnoses for the following disorders in the current sample: dysthymia, hypomania, bipolar disorder (without psychosis episodes), obsessive
compulsive disorder, antisocial personality disorder, conduct disorder.

RSFC of Primary Visual (Control) Network during Early Abstinence
Was Not Different between AUD That Relapsed versus Abstained
during Follow-Up
Independent samples t-tests revealed no significant RSFC differ-
ences within the primary visual network (Supplementary Mate-
rial D) between REL and ABS groups defined at 1-month follow-
up when not adjusting for sex (P = 0.571) and after adjusting
for sex (P = 0.660). No significant RSFC differences were found
when groups were defined at the 4-month follow-up when not
adjusting for sex (P = 0.415) and after adjusting for sex (P = 0.311).

Predicting Continuous Relapse Metrics during
Follow-Up Based on RSFC Measured during Early
Abstinence

Time to relapse (number of days to first drink since MRI scan)
during the 4-month follow-up period could be significantly pre-
dicted based on the strength of RSFC within the IS, NE, EF-
Go, and EF-Stop addiction domain networks during early absti-
nence (number of days to relapse increased as strength in RSFC
increased). These analyses were significant before and after
adjusting for sex.

For the IS network, a significant regression equation was
found (ANOVA: F(1,18) = 7.553, P = 0.013), with an R2 of 0.296
(Fig. 6A). RSFC within the IS network measured during early
abstinence significantly predicted time to relapse during the
follow-up period (Coefficient: t = 2.748, P = 0.013, β = 0.544). The
squared semipartial coefficient (sr2) of 0.544 (sr2 estimated how
much variance in days to relapse was uniquely predictable based

on the strength of RSFC within the IS network) indicated that
54.4% of the variance in time to relapse was uniquely accounted
for by the IS network RSFC strength.

For the NE network, a significant regression equation was
found (ANOVA: F(1,18) = 11.397, P = 0.003), with an R2 of 0.388
(Fig. 6B). RSFC within the NE network measured during early
abstinence significantly predicted time to relapse during the
follow-up period (Coefficient: t = 3.376, P = 0.003, β = 0.623). The
squared semipartial coefficient (sr2) of 0.623 indicated that 62.3%
of the variance in time to relapse was uniquely accounted for by
the IS network RSFC strength.

For the EF-Go network, a significant regression equation was
found (ANOVA: F(1,18) = 7.030, P = 0.016), with an R2 of 0.281
(Fig. 6C). RSFC within the EF-Go network measured during early
abstinence significantly predicted time to relapse during the
follow-up period (Coefficient: t = 2.651, P = 0.016, β = 0.530). The
squared semipartial coefficient (sr2) of 0.530 indicated that 53.0%
of the variance in time to relapse was uniquely accounted for by
the IS network RSFC strength.

For the EF-Stop network, a significant regression equation
was found (ANOVA: F(1,18) = 5.717, P = 0.028), with an R2 of 0.241
(Fig. 6D). RSFC within the EF-Stop network measured during
early abstinence significantly predicted time to relapse during
the follow-up period (Coefficient: t = 2.391, P = 0.028, β = 0.491).
The squared semipartial coefficient (sr2) of 0.491 indicated that
49.1% of the variance in time to relapse was uniquely accounted
for by the IS network RSFC strength.

For the primary visual cortex (control) network, the regres-
sion equation was not significant (ANOVA: F(1,18) = 2.732,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
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Figure 5. Lower resting-state functional connectivity (RSFC) in subsequent relapsers (REL, red bars) versus abstainers (ABS, blue bars) defined at the 1-month follow-up

within the (A) incentive salience (IS; 95% Confidence Interval: 0.033–0.146), (B) negative emotionality (NE; 95% Confidence Interval: 0.03–0.15), (C) executive function
Go (EF-Go; 95% Confidence Interval: 0.017–0.102), and (D) executive function Stop (EF-Stop; 95% Confidence Interval: 0.016–0.095) networks. After adjusting for sex as
a biological variable, only the IS RSFC difference remained significant.

P = 0.116), with an R2 of 0.132. Results remained nonsignificant
after adjusting for sex (F(2,17) = 1.304, P = 0.297). That is, RSFC of
primary visual cortex measured during early abstinence did not
predict time to relapse during the follow-up period.

Number of drinks or the number of drinking days after
relapse during the 1-month or 4-month follow-up period
was not predicted by RSFC measured during early abstinence
within the addiction or visual cortex networks (P > 0.05). Results
remained nonsignificant after adjusting for sex.

No Relapse Prediction Using Self-Report Measures (BDI,
STAI, and PACS) Measured during Early Abstinence

Predicting REL versus ABS at 1-Month Follow-Up
Binary logistic regression conducted with group membership
defined at the 1-month follow-up period indicated that self-
report measures measured during early abstinence were not
associated with 1-month relapse, after adjusting for sex.

Predicting REL versus ABS at 4-Month Follow-Up
Binary logistic regression conducted with group membership
defined at the 4-month follow-up period indicated that self-
report measures measured during early abstinence were not
associated with 4-month relapse, after adjusting for sex.

Predicting Continuous Relapse Metrics
Time to relapse, number of drinks after relapse, or number of
drinking days after relapse was not predicted with any of the
self-report measures measured during early abstinence.

Exploratory correlation analyses revealed that anxiety and
craving levels were associated with RSFC in the NE and EF
networks (see Supplementary Material F).

Discussion
This paper is innovative because it combined two novel
approaches to investigate whether RSFC measured during
early abstinence in AUD can predict treatment outcomes.
First, we used an integrative and theory-driven framework to
determine whether RSFC within neural networks known to
underlie addiction domains (Koob and Volkow 2016; Kwako
et al. 2018, 2019) could predict relapse in AUD enrolled in an
addiction treatment program. Second, analyses included both
dichotomous and continuous relapse metrics collected during
a 4-month follow-up period. These novel approaches provided
evidence that degree of RSFC within domain-defined addiction
networks collected during early abstinence in AUD can 1) predict
relapse (REL vs. ABS) within 1 month and 2) predict time to
relapse in the subsequent 4 months. The ability to predict
time to relapse is particularly important to inform timely
interventions targeted to those at risk of relapse, especially
earlier relapse.

RSFC Strength and Sex Predicted Relapse
as a Dichotomous Variable (REL vs. ABS)

The binary logistic prediction models suggested that those
with lower IS RSFC were more likely to relapse in the 1-month

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
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Figure 6. Linear regression scatter plots showing significant association between time to relapse (measured in days) and resting-state functional connectivity (RSFC)
in the (A) incentive salience (t = 2.70, P = 0.015, β = 0.537), (B) negative emotionality (t = 3.63, P = 0.002, β = 0.650), (C) executive control—Go (t = 2.719, P = 0.014, β = 0.540),
and (D) executive control—Stop (t = 2.451, P = 0.025, β = 0.500) addiction networks.

follow-up period (with a similar trend found in the NE, EF-Go,
and EF-Stop) (Table 7). The finding that reduced RSFC within
the IS network predicts relapse as a dichotomous variable is in
line with reports using seed-based and graph theory analysis.
First, our previous RSFC paper found that lower RSFC of the
nucleus accumbens seed (part of the IS network) and cortical
and subcortical regions (including putamen) in a whole-brain
analysis predicted relapse (Camchong et al. 2013). This effect
was not found when examining the RSFC of the visual cortex as
a seed (Camchong et al. 2013). Second, a recent paper using seed-
based connectivity methodology reported similar findings of
lower RSFC of nucleus accumbens and medial prefrontal cortex
measured during early abstinence as predictors of subsequent
relapse during a 6-month follow-up period (Yang et al. 2021).
Finally, a recent paper using graph theory methodology reported
that those who subsequently relapse show lower interconnect-
edness of caudate and thalamus with the default mode network,
and higher interconnectedness of these regions in other
networks (including a salience network) when compared with
abstainers and healthy controls (Muller and Meyerhoff 2021).
Current findings complement and extend the above literature
(Camchong et al. 2013; Muller and Meyerhoff 2021; Yang et al.
2021) by reporting that lower RSFC within a network under-
lying the incentive salience domain (Koob and Volkow 2016;

Kwako et al. 2018, 2019) predicts subsequent relapse. While the
ability to predict subsequent relapse (REL vs. ABS) during the 1-
month follow-up period was highest with the IS network (with
statistical significance), data also showed a trend in the other
domain-defined addiction networks.

Sex as a Biological Variable Predicted Dichotomous Relapse
Within our sample, females were more likely to relapse in the
4-month follow-up period (Supplementary Material G). The lit-
erature regarding the association between sex and relapse out-
comes, however, is inconsistent. While there are preclinical and
clinical reports consistent with our findings showing a signifi-
cantly higher proportion of females in the relapse group (Rubo-
nis et al. 1994; Kippin et al. 2005; Becker et al. 2017), there are
also reports that males are more likely to relapse than females
(Walitzer and Dearing 2006; Agosti 2013). This inconsistency may
be associated with the variability of factors surrounding relapse
that may be also related to sex differences such as mental
health (e.g., PTSD and negative affect), hormonal differences, or
neurochemical differences (Giacometti and Barker 2020). Within
our sample, females reported more severe symptoms of depres-
sion, anxiety, and craving than males, although the difference
was a statistical trend (P = 0.055, P = 0.072, P = 0.064, respectively).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab374#supplementary-data
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While sex predicted relapse as a dichotomous variable, it did not
predict continuous variables of relapse: time to relapse, number
of drinks, or number of days drinking. Future research focusing
on sex as a biological variable with larger samples is needed.

RSFC Strength within Domain-Defined Addiction
Networks Predicted Time to Relapse

Time to relapse as a treatment outcome in AUD is crucial infor-
mation for timely clinical or neuromodulation interventions.
This is the first paper that reports the ability to predict time
to relapse based on resting fMRI within domain-defined addic-
tion networks in AUD. The association between lower RSFC
of domain-defined addiction networks during early abstinence
and subsequent shorter time to relapse reported in this paper
may indicate that RSFC of networks associated with incentive
salience, negative emotionality, and executive functioning dur-
ing early abstinence is key to recovery in AUD. Although the
ultimate goal is to prevent relapse outright, it is important
to identify the markers of early relapse risk in order to stage
interventions to those most vulnerable appropriately. It should
be noted that while we found sex differences between groups
(those that relapsed were more likely to be female), the effect of
predicting time to relapse with RSFC of domain-defined addic-
tion networks remained significant after adjusting for sex. While
RSFC within each addiction network predicted time to relapse,
RSFC within the control network (visual network) did not predict
relapse metrics, suggesting that the predictive value was specific
to RSFC within domain-defined addiction networks (Koob and
Volkow 2016; Kwako et al. 2018, 2019).

Time to relapse in AUD has been previously predicted with
other neuroimaging metrics (i.e., task-evoked fMRI and gray
matter volume). For example, when presented with neutral
stimuli, lower connectivity between anterior cingulate and mid
cingulate cortex in recovering individuals with AUD can predict
longer time to relapse in alcohol use disorder (Zakiniaeiz et al.
2017). Current results add to the literature by showing that
RSFC strength across regions within domain-defined addiction
networks measured during early abstinence can predict time
to relapse over a 4-month follow-up period in individuals
with AUD.

Clinical Self-Report Measures Did Not Predict Relapse
Metrics

The lack of group difference (ABS vs. REL) as well as the inability
to predict relapse metrics suggests that clinical symptomatol-
ogy (depression, anxiety, and craving; Table 2) reported by AUD
individuals during early abstinence were not reliable predictors
of treatment outcome within our sample. Moreover, the count
of clinical diagnoses (current or lifetime; Table 5) was not signif-
icantly different between groups and was not associated with
relapse metrics in our sample.

Current findings are inconsistent with previous papers
reporting time to relapse prediction from self-report measures
such as craving in cocaine use disorder (Paliwal et al. 2008) or
depression in AUD (Greenfield et al. 1998). Sample differences
across studies may contribute to the discrepancy between the
current and previous findings. The lack of association between
clinical self-report measures and relapse metrics could be
because in the current sample the degree of clinical severity
reported during early abstinence was moderate (Spielberger
1983; Beck et al. 1988; Emons et al. 2019). Participants in

the current sample were undergoing group and individual
counseling in the addiction treatment program and were
receiving psychotropic medication (Table 6) to treat clinical
symptoms, suggesting their symptomatology was stable. It
should be noted that a high proportion of AUD participants
in the current sample had comorbid clinical diagnoses (e.g.,
PTSD, MDD, and GAD). While the proportion of these diagnoses
between subsequent abstainers and relapsers was comparable,
their presence needs to be further explored in larger studies
addressing clinical diagnoses comorbidities with AUD.

Based on the above discussion, we believe that within the
scope of the current data, the functional organization of domain-
defined addiction networks measured during early abstinence
offers a more objective and predictive measure of relapse vul-
nerability than self-report clinical measures within the current
AUD sample. Future research with a wider range of self-reported
measures needs to be conducted to further explore these mea-
sures as predictors of relapse metrics (i.e., time to relapse and
drinking severity after relapse).

Considerations

The following issues cannot be determined within the scope
of this paper. First, we present cross-sectional RSFC data. We
cannot determine whether RSFC of abstainers and relapsers dif-
fered before the baseline MRI session or whether the differences
resulted from diverging neuroplastic alterations during early
abstinence. Second, the prediction of long-term length of absti-
nence is not possible with our 4-month follow-up period. That
is, those that were categorized as being in the ABS group could
have subsequently relapsed outside of the observed follow-up
period. Third, we investigated whether AUD outcomes could be
predicted using RSFC within networks selected based on theo-
retical models of addiction (Koob and Volkow 2016; Kwako et al.
2018, 2019). A direct methodological comparison between our
approach and traditional individual ROI analyses is beyond the
scope of this paper. However, in the future, it will be important
to examine whether RSFC within these theoretically defined
networks predict addiction outcomes more strongly than RSFC
networks defined with a single ROI. Fourth, the association
between clinical symptomatology and RSFC within domain-
defined addiction networks and relapse metrics needs to be
further examined in individuals with AUD with more severe
symptomatology. Finally, while RSFC within domain-defined
addiction networks predicted time to relapse, it did not predict
the severity of drinking after relapse in the 4-month follow-up
period. Future longitudinal studies examining a longer treat-
ment outcome trajectory and exploring data-driven network
definition are warranted.

Conclusions
Current findings suggest that reduced RSFC within neural
networks underlying incentive salience, negative emotionality,
and executive control can predict subsequent relapse in AUD.
This paper provided unique and crucial evidence showing
that among individuals with AUD in an addiction treatment
program, relapse and time to relapse can be predicted based on
RSFC of domain-defined addiction networks. These predictions
were not found when using an RSFC control network (primary
visual) or self-report measures as predictors. The association
between low RSFC in addiction networks and shorter time to
relapse presents a biomarker of vulnerability to relapse and
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Table 6 Current medications by group (abstainers vs. relapsers)

Current count (%)

Type of medication ABS (n = 25) REL (n = 20) χ2 Sig.

Antidepressant 8 (32.0%) 7 (35.0%) P = 0.83
Anxiolytic 9 (36.0%) 6 (30.0%) P = 0.67
Blood pressure stabilizer 6 (24.0%) 4 (20.0%) P = 0.75
Cholesterol 2 (8.0%) 0 (0.0%) P = 0.20
Craving 0 (0.0%) 5 (25.0%) P = 0.008∗
Diabetes 7 (28.0%) 2 (10.0%) P = 0.13
Sleep 10 (40.0%) 6 (30.0%) P = 0.49

Notes: ABS, those that remained abstinent in the 4-month follow-up period; REL, those that relapsed during the 4-month follow-up period; χ2, Chi-Square; P,
significance (Sig.) probability value. The finding of a significantly higher proportion of individuals taking craving medication (four using naltrexone, one using
acamprosate) in the REL group versus the ABS group needs to be further examined in larger scale studies. ∗P < 0.05.

Table 7 Statistics showing binary logistic regression results when predicting dichotomous group membership (relapsers vs. abstainers) during
the 1-month and 4-month follow-up period

Odds ratio of relapsing
During 1-month follow-up period

Odds ratio of relapsing
During 4-month follow-up period

Predictors B SE (B) Wald χ2 P OR, 95% CI B SE (B) Wald χ2 P OR, 95% CI

IS −1.13 0.54 4.36 0.04 0.32, 0.11–0.93 −0.07 0.34 0.05 0.83 0.93, 0.47–1.82
Sex 0.24 0.73 0.10 0.75 1.27, 0.30–5.34 1.66 0.68 5.93 0.01 5.26, 1.38–20.0
NE −0.76 0.43 3.08 0.08 0.47, 0.20–1.09 0.27 0.34 0.62 0.43 1.31, 0.67–2.55
Sex 0.70 0.72 0.95 0.33 2.01, 0.49–8.19 1.68 0.67 6.24 0.01 5.37, 1.44–20.1
EF-Go −1.01 0.54 3.54 0.06 0.36, 0.13–1.04 −0.08 0.34 0.05 0.82 0.92, 0.47–1.81
Sex 0.43 0.72 0.37 0.54 1.54, 0.38–6.31 1.67 0.67 6.14 0.01 5.31, 1.42–19.9
EF-Stop −0.94 0.51 3.46 0.06 0.39, 0.14–1.05 −0/14 0.35 0.15 0.70 0.87, 0.44–1.74
Sex 0.39 0.71 0.30 0.59 1.48, 0.36–5.99 1.64 0.68 5.89 0.02 5.17, 1.37–19.5

Notes: Underlined P-values are significant at P < 0.05. IS, resting-state functional connectivity in the incentive salience network; NE, resting-state functional
connectivity in the negative emotionality network; EF-Go, resting-state functional connectivity in the executive functioning-Go network; EF-Stop, resting-state
functional connectivity in the executive functioning Stop network; B, unstandardized regression Beta weight; SE (B), standard error of the Beta weight; Wald χ2,
Chi-Square statistic for the individual predictor variable; P, significance probability value; OR odds ratio; 95% CI for OR, 95% confidence interval for the odds ratio.

highlights the importance of allocating resources to design
timely interventions dedicated to modulating RSFC of domain-
defined addiction networks in individuals with AUD at risk of
relapsing faster.

Supplementary material
Supplementary Material can be found at Cerebral Cortex online.
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