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Abstract

Epilepsy is a common neurological disorder associated with alterations in cortical and subcortical
brain networks. Despite a historical focus on gray matter regions involved in seizure generation
and propagation, the role of white matter (WM) network disruption in epilepsy and its
comorbidities has sparked recent attention. In this review, we describe patterns of WM alterations
observed in focal and generalized epilepsy syndromes and highlight studies linking WM
disruption to cognitive and psychiatric comorbidities, drug-resistance and poor surgical outcomes.
Both tract-based and connectome-based approaches implicate the importance of extratemporal and
temporo-limbic WM disconnection across a range of comorbidities, and an evolving literature
reveals the utility of WM patterns for predicting outcomes following epilepsy surgery. We
encourage new research employing advanced analytic techniques (e.g., machine learning) that
will further shape our understanding of epilepsy as a network disorder and guide individualized
treatment decisions. We also address the need for research that examines how neuromodulation
and other treatments (e.g., laser ablation) impact WM networks, as well as research that leverages
larger and more diverse samples, longitudinal designs, and improved MRI acquisitions. These
steps will be critical to ensuring generalizability of current research and determining the extent to
which neuroplasticity within WM networks can influence patient outcomes.
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Epilepsy is defined by the presence of recurrent and unprovoked seizures and affects
approximately 50 million people worldwide (Bell et al. 2014). Once considered
predominantly a gray matter disease, epilepsy is now understood to affect white matter
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(WM) networks throughout the brain, typically characterized by loss of WM microstructure
and disrupted network connectivity. These widespread alterations are observed in patients
whose seizures originate in localized regions of the brain (i.e., focal epilepsy) as well as
those whose seizures originate broadly and often bilaterally (i.e., generalized epilepsy).
Although the origin(s) of WM injury in epilepsy are still debated, its consequences

are now better appreciated, with converging studies demonstrating a contribution of

WM disconnection to neurobehavioral comorbidities, measures of disease severity, and
postsurgical outcomes.

In this review, we summarize new literature describing patterns of WM network alterations
in adults with common focal and generalized epilepsy syndromes, including temporal

lobe epilepsy (TLE), extratemporal focal epilepsy (EXE), and genetic generalized epilepsy
(GGE). We focus our review on results obtained from diffusion-weighted imaging (dMRI)
since dMRI has become the most widely used non-invasive method for interrogating

WM microstructure and architecture in human neuroscience. We then provide evidence
from dMRI research that WM alterations may underlie common cognitive and psychiatric
comorbidities in epilepsy, as well as aid in the prediction of postoperative cognitive, seizure,
and visual field outcomes. Finally, we address new data using advanced dMRI sequences
and analytic procedures (e.g., machine learning), which may accelerate our understanding of
the neurobiology of epilepsy and lead to enhanced predictions of patient-specific outcomes.

WM network abnormalities within and across epilepsy syndromes

The presence of WM abnormalities in epilepsy has long been observed, with earlier studies
identifying WM hyperintensities, as well as global or regional WM volume loss in patients
with different epilepsy syndromes. However, the extent of these abnormalities and their
intrinsic patterns were not fully appreciated until the advent and application of dMRI
tractography in the early 1990s (Yogarajah & Duncan 2007). In particular, dMRI has
emerged as the method of choice for interrogating WM structure in epilepsy due to its
ability to derive quantitative measures of individual fiber tract integrity and characterize the
adverse effects of epilepsy on cortico-cortical disconnection, even in the absence of direct
injury to the cortex.

However, epilepsy is not a single disorder. Instead, the epilepsies are a group of disorders
that are unified by a common symptom (i.e., seizures) that can originate from almost
anywhere in the brain. For this reason, WM regions, tracts, and networks affected by
epilepsy do not follow one uniform pattern, but rather have some syndrome-specific features
with abnormalities that are often most pronounced proximal to the seizure focus. Two
recent, large-scale studies have well-characterized these patterns for the most common
epilepsy syndromes (Slinger et al. 2016; Hatton et al. 2020), and therefore, each pattern is
only briefly summarized below.

TLE:

TLE is the most common focal epilepsy syndrome in adults, and therefore, has received
the most attention. In TLE, seizures most commonly arise from the hippocampus and other
medial temporal lobe structures. For this reason, attention has focused on hippocampal
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efferent and afferent tracts, including the parahippocampal cingulum and fornix, as well

as the uncinate fasciculus; Figure 1A. These tracts are among the most affected in

patients who have gliosis and cell loss in the hippocampus (i.e., hippocampal sclerosis;

HS), and in those with an early age of seizure onset and longer disease duration, with
effects larger on the side ipsilateral to the seizure focus (Hatton et al. 2020). In addition,
temporo-limbic tract alterations in TLE appear to follow a centrifugal pattern such that
microstructural abnormalities increase along each tract as they approach the seizure focus
(Concha et al. 2012). This pattern implies that WM alterations are likely intrinsic to the TLE
syndrome, rather than general to epilepsy or secondary to treatment-related effects (e.g.,
anti-seizure medications; ASMs). However, other WM association tracts that course through
the temporal lobe (e.g., inferior longitudinal fasciculus) and those distal to the seizure focus
(e.g., corpus callosum, external capsule) also show marked WM changes bilaterally in TLE,
providing evidence for broad network pathology in patients with focal epilepsy that could
represent developmental (i.e., poor myelination of WM tracts) or iatrogenic (e.g., ASM)
factors.

Similarly, patients with EXE harbor a focal epilepsy syndrome with seizures originating
from one or more extratemporal areas of the brain, typically in the frontal lobes. Although
studies in EXE, such as frontal lobe epilepsy (FLE), are more scarce, decreases in fractional
anisotropy (FA) and increases in mean diffusivity (MD) have been shown throughout the
frontal lobe WM and frontostriatal fibers, with marked alterations along midline bundles and
tracts, including the genu and body of the corpus callosum (Widjaja et al. 2014), anterior
corona radiata, dorsal cingulum, and external capsule (Hatton et al. 2020). Associations
between clinical variables and WM disruptions in EXE have been less consistent, with
some studies demonstrating that an early age of onset and/or longer disease duration is
associated with poorer WM network integrity (Wang et al. 2011; Lin et al. 2020) and others
not finding associations (Hatton et al. 2020). The heterogeneity within EXE makes this
syndrome challenging to study as a single group, and clinico-diffusion correlations more
difficult to capture.

GGE includes several related syndromes with generalized seizure onset, including juvenile
myoclonic epilepsy (JME), where a predominant genetic contribution is suspected. Although
patients with GGE do not have visible structural abnormalities on MRI, thalamocortical
dysfunction is often present and accompanied by morphological alterations (Bernhardt et

al. 2009; Whelan et al. 2018). Studies of WM disruption in GGE have suggested greatest
alterations in fronto-midline fibers, including the genu and body of the corpus callosum,
anterior corona radiata, external capsule (Hatton et al. 2020) and in thalamo-cortical
pathways (Keller et al. 2011; Lee et al. 2014). In addition, alterations in pre-supplementary
motor area to prefrontal connectivity patterns have been observed and appear unique to GGE
syndromes (Mollmar et al. 2012). However, there is some evidence that WM alterations in
GGE are less severe and widespread than those observed in focal epilepsy (Slinger et al.
2016).
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Despite these syndrome-specific features, new results from the Enhancing Neurolmaging
and Genetics through Meta-Analysis (ENIGMA )-Epilepsy working group have revealed
striking similarities in WM compromise across these common epilepsy syndromes. In 1249
patients with TLE, FLE, and GGE compared to 1069 healthy controls, WM alterations were
observed within 36 of 38 association, commissural and projection fibers (Hatton et al. 2020)
- Figure 2. Across patient groups, reductions in FA and increases in MD were greatest in
fronto-central WM, including the genu and body of the corpus callosum, dorsal cingulum
and external capsule. Although the severity of these alterations varied across syndromes and
was most pronounced in TLE with HS, bilateral alterations in many anterior midline fibers
were uniform across groups. Although the underlying mechanism(s) that lead to this shared
midline pathology are unknown, one possibility is that midline WM is more vulnerable

to the direct impact of seizures (locally in GGE and FLE or from seizure propagation

via the thalamus in TLE). Another possibility is that midline WM is more vulnerable

to neurological or neuropsychiatric injury in general. In support of the latter, Hatton and
colleagues observed very similar patterns of WM disruption between epilepsy and several
neuropsychiatric disorders (e.g., bipolar, schizophrenia, depression), with the body and
genu of the corpus callosum affected across all disorders. Indeed, several studies have
demonstrated cross-disorder connectomic vulnerability, revealing that hub regions that are
highly connected and potentially important for communication tend to be disproportionally
affected by disease (van den Heuvel and Sporns 2013). Broad patterns of microstructural
alterations shared across epilepsy syndromes were not previously appreciated due to a
tendency of the field to segregate studies according to single epilepsy syndromes. Although
some syndrome-specific findings were evident, shared patterns of WM injury could explain
why cognitive and psychiatric co-morbidities can be quite similar in two patients with
different syndromes, but heterogeneous withina syndrome. It is these clinico-diffusion
associations that are the focus of this review.

From WM tracts to WM networks

Extrapolating from the study of specific WM tracts, a mounting literature has aggregated
connectivity information across multiple regions to study macroscale brain network
reorganization in epilepsy. These studies have utilized approaches from complex systems
analysis such as graph theory, as a formalism to examine changes in WM network topology
(Lariviére et al. 2021; Tavakol et al. 2019). Such macroscopic analyses initially generate
systematic representations of connectivity, so-called ‘connectomes’, based on WM tract
properties between all pairs of cortical and subcortical regions - Figure 1B. The topology
of the resulting connectomes can then be analyzed at a global scale (by studying network
clustering that relates to local communication efficiency, or by studying path length that
reflects global efficiency), by examining submodules within the networks through network
decomposition techniques, or by studying network embedding of individual regions, with
hub mapping being a prominent example of the latter. Complementing graph-theoretical
network descriptions, complementary approaches from network neuroscience have emerged,
including the use of network communication models that assess how a structurally-wired
connectome can generate brain dynamics (Girardi-Schappo et al. 2021), or the study of
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spatial trends in network organization, also referred to as connectivity gradients (Huntenburg
et al. 2018).

Similar to the study of WM tracts, the most robust connectomics literature has focused

on TLE. These studies have described shifts in cortical as well as subcortical network
topology in TLE at global, modular, and nodal scales. One of the earliest graph theoretical
studies in TLE reported reductions in both global and local efficiency in a group of left
TLE patients relative to controls, in addition to alterations in hub topography in TLE

(Liu et al. 2014). These studies have been extended to assess the utility of connectome
measures to predict postoperative seizure outcome (see “Postsurgical seizure outcomes”
section and Table 3). Other studies provided connectome-level evidence for a broad
association between degree of mesiotemporal pathology and WM alterations in TLE. In
one study, the authors observed overall more marked network reorganization in patients
with more severe HS (based on histopathology) compared to TLE patients with only subtle
hippocampal pathology (Bernhardt et al. 2019) - Figure 3. Other recent investigations used
connectome-informed dynamic communication models, underscoring that the alterations in
the brain’s WM architecture may relate to delayed dynamic signal flow, and ultimately
cognitive impairments across multiple domains in TLE (Girardi-Schappo et al. 2021).

Connectome analyses of WM organization in other epilepsy syndromes are less frequently
reported. In GGE, a recent study showed bi-hemispheric alterations in several connectivity
parameters compared to controls, and demonstrated an association between network
architecture and drug response in patients (McKavanagh et al. 2021). These findings

are complemented by a connectome-informed machine learning study in JME, showing
that structural connectome and conventional dMRI measures can discriminate between
patients and controls with more than 80% accuracy (Lee et al. 2021). Finally, a recent
study applied computational modelling to structural and functional connectome data in
both GGE and TLE patients, and identified increases in subcortical drive contributing to
cortical dynamics in GGE, while TLE patients presented with reduced subcortical drive
and imbalanced excitation-inhibition of cortical microcircuits, potentially suggesting an
important differentiation between focal and generalized epilepsy syndromes at macro- and
microscales (Weng et al. 2020).

WM associations with cognitive and psychiatric co-morbidities

WM associations with cognition in epilepsy

WM integrity is critical for the integration of cortico-cortical networks that support
cognition. However, only recently has compromise to specific WM tracts and networks
been linked to domain-specific cognitive impairments in epilepsy (for reviews see Allone et
al. 2017; Leyden et al. 2015). The majority of work has focused on cognitive impairment

in TLE, but new data addressing how WM injury disrupts cognition in FLE and JME are
now emerging. A review of TLE studies between 2005 and 2014 is provided in Leyden and
colleagues (2015). We provide an update on the state of the field, focusing on studies from
2015 to 2021 for TLE, and studies of other epilepsy syndromes not previously reviewed
(Table 1).
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Memory—It is well established that the hippocampus and its projections are critical to
learning and memory. However, an emerging literature has characterized how broader WM
network disruption contributes to memory impairments in epilepsy (Table 1a). Damage to
temporo-limbic association tracts, including the uncinate fasciculus, inferior longitudinal
fasciculus, parahippocampal cingulum, and inferior fronto-occipital fasciculus is most
commonly associated with impairments in verbal learning and memory in TLE (for review
see Leyden et al. 2015). A few studies have also examined the superficial WM (SWM) or U-
shaped WM fibers directly beneath the cortex that are important for maintaining short-range
cortico-cortical connectivity. These studies have revealed that microstructural loss within
the left entorhinal, broader medial temporal, and posterior cingulate SWM also contributes
to verbal memory impairments in TLE, and may explain more of the variance in memory
performances than functional oscillations or cortical thinning in adjacent cortex (Chang et
al. 2019). In particular, the entorhinal WM contains major afferent connections from the
entorhinal cortex to CA3 and the dentate gyrus of the hippocampus via the perforant path
and angular bundle. These WM tracts are known to be important for episodic memory
encoding (e.g., pattern separation) and likely disrupt a critical memory circuit in TLE.

Leveraging network models of WM connectivity, Balachandra, Kaestner and colleagues.
2020 found that a structural connectome of a temporal sub-network (i.e., temporal to
extratemporal connections) was able to classify TLE patients as verbal memory-impaired
Vs hon memory-impaired with 81% accuracy. The connectome’s strong performance may
reflect its ability to identify temporo-limbic and association tracts commonly implicated

in memory, in conjunction with short-range connections connecting adjacent temporal lobe
cortex - Figure 4.

Associations between WM and visual memory are scarce, with only two studies reporting
that damage to the right uncinate fasciculus (Diehl et al. 2008) and right parahippocampal
gyrus WM (Yogarajah et al. 2008) is associated with visual memory impairment in TLE.

Pre-to-postoperative associations with memory.: Anterior temporal lobectomy (ATL)

is the most common surgical procedure performed for treatment of drug-resistant TLE.
However, ATL involves the removal of the anterior hippocampus, amygdala, lateral temporal
cortex and sub-adjacent WM, leading to a high risk for postsurgical memory decline in
many patients (Sherman et al. 2011). Only two studies have examined WM associations
with postoperative memory decline (Table 1b). One study highlighted the importance of a
fronto-temporal tract transected during surgery (i.e., uncinate fasciculus) and the integrity of
WM beneath the entorhinal cortex to memory decline following ATL. A second study did
not find associations between WM integrity in the ipsilateral temporal lobe (i.e., fornix) and
memory decline (Elliott et al. 2018). However, the surgical sample in the second study was
small and the surgeries were heterogeneous, limiting interpretability of the results. Thus,
while some data support the importance of the uncinate fasciculus to postoperative memory
outcomes, there are not enough data to draw reliable conclusions.

Language—Language impairments in TLE have frequently been associated with
disruption to both perisylvian (i.e., arcuate fasciculus) and extra-sylvian (e.g., inferior
longitudinal fasciculus) WM fibers. Left hemisphere fibers along the dorsal stream are
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important for mapping auditory sounds to articulatory (motor) representations (e.g., arcuate
fasciculus), whereas fibers in the ventral stream are typically implicated in mapping auditory
speech sounds to meaning-i.e., lexical semantic processing (e.g., inferior longitudinal
fasciculus and inferior fronto-occipital fasciculus). Although these left hemisphere fronto-
temporal tracts are implicated in language performance both in healthy individuals and TLE,
right hemisphere fibers also correlate with language performance in TLE, including the
right arcuate fasciculus, inferior fronto-occipital fasciculus, superior longitudinal fasciculus,
and uncinate fasciculus (McDonald et al. 2008; Pustina et al. 2014). This suggests 1)

right hemisphere contributions to language and/or 2) potential reorganization of language

to the right hemisphere in some patients with a left-sided seizure focus. In support of

the importance of right hemisphere networks to language, Kaestner and colleagues (2020)
demonstrated that using a structural connectome and machine learning (XGBoost), a broad,
bilateral pattern of WM abnormalities contributed to naming and fluency impairments in
TLE. Although lateral temporal connections between superior temporal gyrus and pars
opercularis were the most important features (i.e., fibers from the arcuate fasciculus), other
widely distributed and interhemispheric connections also emerged. Similarly, Munsell and
colleagues (2019) identified a distributed, bilateral WM network of regions that predicted
naming performance in left TLE patients who were all left-hemisphere dominant for
language, suggesting that right hemisphere WM contributions to language were not solely
secondary to language reorganization.

Neuroplasticity of language networks.: A remarkable characteristic of the human brain is
its ability to reorganize in response to injury. With language, this is most frequently observed
as an interhemispheric shift, making asymmetry of WM tracts a popular method for probing
language reorganization in epilepsy (Ellmore et al. 2010). For most healthy individuals, the
left hemisphere is dominant for language. However, patients with left TLE in particular
show reduced left-lateralization of language networks (i.e., a more symmetrical or right-
lateralized representation) on fMRI and in WM integrity measured with dMRI. However,
reduced asymmetry in perisylvian WM integrity sometimes but not always corresponds

to reduced asymmetry in language activations on fMRI (e.g., Chang et al. 2017; Powell

et al. 2007; but see Rodrigo et al. 2008). The mixed findings highlight the complexity

of language reorganization in left TLE, and our need to better understand re-organization

of WM language networks and how it relates to functional reorganization and language
performance.

Pre-to-postoperative associations with language.: Only a few studies examined the
association between WM integrity and postoperative language outcomes. Powell and
colleagues (2008) found that greater preoperative asymmetry of fronto-temporal WM to

the language-dominant hemisphere was associated with greater naming decline post-surgery,
suggesting that direct surgical disruption to (presumably healthy) temporal lobe WM leads
to decline in naming. Another study demonstrated that patients with pre-to-postsurgical
decline in fluency had FA microstructure that looked less like that of controls (i.e., more
abnormal), with abnormal WM profiles explaining more variance in language outcomes than
language activation on fMRI (Osipowicz et al. 2016).
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Other research has demonstrated associations between postoperative verbal fluency and
higher FA of the right superior longitudinal fasciculus (Pustina et al. 2014)-a finding that
may reflect a compensatory interhemispheric shift in language networks to the contralateral
hemisphere. However, there is also evidence that greater pre-to-postsurgical increases in
parallel diffusivity in the jpsilateral ventromedial temporal lobe are associated with better
postoperative language scores in left TLE (Yogarajah et al. 2010). Taken together, the extant
literature suggests that better language outcomes following ATL depend on both inter- and
intra-hemispheric shifts in WM integrity in key dorsal and ventral language tracts. Although
surgery incurs a risk of language decline, there appears to be potential for microstructural
and functional reorganization in both ipsilateral and contralateral hemispheres that may help
to mitigate language decline.

Executive function—Executive dysfunction is observed in a third to half of patients

with TLE and has a higher prevalence in JME and FLE. However, unlike for language and
memory, there is less consistent evidence linking specific WM tracts/regions to executive
dysfunction in epilepsy. In adults, working memory impairments have been associated with
damage to the superior longitudinal fasciculus, cingulum, and temporal lobe WM (Winston
et al. 2013) as well as the uncinate fasciculus (Diao et al. 2015). In addition, poorer
performance on set-shifting and response inhibition—-two components of executive function—
has been associated with lower neurite density of the bilateral inferior fronto-striatal tracts
(Reyes et al. 2018). However, in another TLE study, poorer set-shifting performance

was associated with Aefghtened hippocampal-thalamic connectivity, interpreted to reflect

a pathological increase of WM connectivity leading to less efficient executive function
(Dinkelacker et al. 2015). These mixed results are unsurprising given that executive function
is not a unitary construct, with different studies measuring different aspects of executive
function. Interestingly, no study has examined the relationship between pre-to-postsurgical
changes in executive function and WM connectivity. This would be a fruitful area for
exploration as there is some evidence for postsurgical /mprovement of executive function
(Sherman et al. 2011), and separately, normalization of fronto-temporal FA (e.g., Pustina et
al. 2014).

Cognitive Phenotypes—The majority of studies have focused on cognitive domains

in isolation as well as specific tracts, guided by a-priori hypotheses regarding structure-
behavior relationships. However, recent studies have moved toward an examination of
cognitive phenotypes, or patterns of cognitive impairment, and examined how these
phenotypes map onto whole-brain microstructural pathology (Reyes et al. 2019; Rodriguez-
Cruces et al. 2018; Rodriguez-Cruces et al. 2020) - Figure 5. These studies have identified
three to four distinct cognitive phenotypes in TLE that have unique patterns of deep and
superficial WM network abnormalities, some of which correspond to previously reported a-
prioritracts. Most interesting is the observation that patients with a cognitively intact profile
do not differ from healthy controls in WM network pathology, lending further validation

to the biological relevance of these phenotypes and the importance of WM integrity to
cognition.

Neuroscientist. Author manuscript; available in PMC 2023 August 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Stasenko et al.

Page 9

Associations with psychiatric comorbidities

Depression and anxiety—Depression affects approximately one out of four patients
with epilepsy. Although once thought to reflect a reaction to psychosocial stressors
associated with epilepsy, research now supports a bidirectional relationship between TLE
and depression (Kanner et al. 2012), with WM abnormalities as one potential contributor.
In a recent systematic review of the neuroimaging correlates of depression in epilepsy
(Elkommos and Mula 2021), three studies examined WM microstructure. Two studies
reported that WM abnormalities in fronto-temporo-limbic regions were associated with
increased depressive symptoms in TLE (Kemmotsu et al. 2014; Kavanaugh et al. 2017).
However, a third study did not find a significant difference between TLE with depression
and anxiety compared to TLE alone in a post-hoc analysis (Stretton et al. 2015) - Table

2. In sum, there is some evidence that fronto-limbic network dysfunction may underlie

a bidirectional link between TLE and depression, and this may influence which patients
present with depression. However, prospective, longitudinal studies are needed that directly
compare TLE with depression to TLE without depression and track whether the evolution
of WM changes corresponds to the evolution or severity of depressive symptoms. Future
investigations of these associations in other epilepsy syndromes is important.

Interictal psychosis—There is a prevailing view that a strong link exists between

TLE and psychosis, and that damage to gray and WM may give rise to psychosis in
epilepsy. A systematic review reported an almost eight-fold increased risk of psychosis in
epilepsy relative to the general population, with an even higher risk in TLE (Clancy et

al. 2014). Psychosis in epilepsy is classified as ictal or postictal if it is closely linked to
seizure occurrence. Conversely, interictal psychasis is not temporally related to seizures
and may not necessarily resolve in between seizure episodes. A recent study found
differences between TLE with vs. without interictal psychosis in several temporo-limbic
tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus) and the anterior
thalamic radiations (Sone et al. 2020). In the same study, a graph theory analysis found
that TLE with psychosis had a greater reduction in global and local efficiency compared
to controls, with the effect of psychosis primarily in left limbic and prefrontal areas. A
previous tract-based study reported lower FA in bilateral fronto-temporal regions and higher
MD in bilateral temporal regions in TLE with psychosis compared to TLE alone (Flugel
et al. 2006). Thus, psychosis in epilepsy may be associated with a distributed pattern of
temporo-limbic pathology, not restricted to the mesial temporal lobe.

WM associations with seizure laterality, drug-resistance and postsurgical outcomes

Seizure onset laterality—Identifying the side of seizure onset is a crucial step in the
presurgical evaluation of a patient with epilepsy. This presents a challenge for many patients
with TLE whose seizures may not clearly lateralize on scalp-EEG, or for whom subtle
epileptogenic lesions are not visible on conventional MRI. For this reason, dMRI has been
proposed as a clinical decision support tool that could be used to map the underlying seizure
networks and increase confidence in seizure laterality.

A number of studies have examined the utility of using dMRI to identify the side of seizure
onset (e.g., Ahmadi et al. 2009; Concha et al. 2012; An et al. 2014; Nazem-Zadeh et al.
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2014; Nazem-Zadeh et al. 2016) - Table 3. These studies have obtained accuracies from
71-91% for discriminating patients with right from left TLE using fronto-temporal WM
tracts alone and reflect the tendency for patients with unilateral TLE to have greater WM
tract damage on the side ipsilateral to the seizure focus and proximal to the seizure onset
zone.

Beyond tract-based studies, Besson and colleagues (2014) used a structural connectome
approach to demonstrate differences between left and right TLE, with more severe
alterations in left TLE, who showed a strongly lateralized fronto-temporal disconnection
pattern. Using graph theory, Kamiya and colleagues (2016) found decreased local efficiency
in the left posterior cingulate gyrus, left cuneus, and bilateral hippocampus in left TLE. In
contrast, only the right hippocampus showed altered network properties in right TLE. In this
study, a support vector machine correctly classified between 73-86% of patients as having
left versus right seizure onset. Taken together, preliminary evidence suggests that both
tract-based and structural connectome measures of network pathology aid in lateralization of
the seizure focus in TLE, with moderate to high classification accuracy across studies. With
further refinements in machine learning algorithms and larger samples, dMRI may serve as
clinically useful for augmenting pre-surgical seizure lateralization.

Drug-resistance—Only 60% of patients with epilepsy respond to the first two ASMs and
less than 4% respond to further ASM trials. The remaining 30-40% are defined as “drug-
resistant” and present a considerable treatment challenge. Labate and colleagues (2015)
found that patients with drug-resistant mesial TLE had more severely reduced temporal lobe
FA compared to patients with benign mesial TLE, irrespective of the presence of HS. In
fact, temporal lobe FA was able to differentiate between refractory vs. benign TLE with

an AUC of .74. In a follow-up study, patients whose mild mesial TLE eventually evolved
into refractory mesial TLE had distinct microstructural alterations in the corticospinal tracts,
superior longitudinal fasciculus, left cingulum, and left inferior longitudinal fasciculus prior
to the development of drug-resistance (Labate et al. 2020). These data suggest that greater
WM pathology both within and beyond the temporal lobe may predispose patients to
develop drug-resistant seizures. ldentifying these patterns at the onset of epilepsy could

help to guide treatment decisions early, including identifying patients who are not likely

to gain seizure control from ASMs and who should be considered for surgery or other
non-pharmacologic treatments.

Postsurgical seizure outcomes—TLE and other focal epilepsies represent a spectrum
of disorders with a wide range of postsurgical seizure outcomes (i.e., seizure-free versus
not), even in patients with similar preoperative clinical features (Coan and Cendes, 2013).
Keller and colleagues (2017) found that patients with TLE who had greater preoperative
pathology in the ipsilateral dorsal fornix and contralateral parahippocampal WM were more
likely to have poor seizure outcomes relative to those with less pathology. Furthermore,
pathological changes in the ipsilateral fornix and uncinate were beyond the margins

of the resection in patients with poor seizure outcomes, suggesting that insufficient
disconnection of the temporal lobe epileptogenic network may lead to persisting seizures.
Gleichgerrcht and colleagues (2020) quantified whether brain regions were situated on
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efficient communication pathways in the whole-brain network (i.e., regions with high
betweenness centrality) to map patient-specific reorganization in structural hubs. Combining
these measures with supervised machine learning, that study found that nodes most strongly
associated with seizure freedom included the bilateral parahippocampal and superior
temporal gyri - Figure 6. Bonilha and colleagues (2015) used a structural connectome

model to predict post-ATL seizure outcomes in TLE with a positive predictive value (seizure
freedom) of 88% and a negative predictive value (seizure refractoriness) of 79%. Network
connections that contributed the highest accuracy were located not only in the ipsilateral
temporal and extratemporal regions, but also in the contralateral hemisphere - Figure 6.
These data suggest that broad WM network abnormalities both ipsilateral and contralateral
to the seizure focus may increase risk for poor seizure outcomes, implying incomplete
resection of the epileptogenic network as detected by dMRI.

Postsurgical visual field deficits—In the temporal lobe, the optic radiations project
from the lateral geniculate of the thalamus, anteriorly and laterally over the temporal horn
of the lateral ventricles before coursing posteriorly toward the occipital pole. During ATL,
the anterior portion of the ventral visual pathway (i.e., Meyer’s loop) is removed, producing
a visual field defect (VFD) [typically an incomplete (medial sector) quadrantanopia] in

a majority of patients. VFDs can preclude patients from driving in some countries and
states, significantly impacting their quality of life and independence (Gilliam et al. 1997).
Converging evidence has demonstrated that the extent of degeneration along or transection
of temporo-occipital fiber tracts predicts the severity of postoperative visual field defects
following ATL (Chen et al. 2009; Powell et al. 2005; Taoka et al. 2005; Wieshmann et

al. 1999; for review see Piper et al. 2014) - Table 3 and Figure 7. In fact, Winston and
colleagues (2014) found that no patient failed to meet visual criteria for driving as a result
of ATL resection when visualizing the optic radiations with tractography in comparison

to 13% of controls who did not undergo tractography. As a result of these promising
findings, preoperative dMRI has been proposed as a viable method for minimizing risk for
VFDs. However, the optic radiations disperse broadly in the temporal lobe and can prove
difficult to track, with differences in data acquisition and tractography algorithms leading to
limited reproducibility of these fibers. Therefore, advanced dMRI models and tractography
approaches are needed to augment the ability of dMRI tractography to minimize VFD
associated with ATL.

Advanced Diffusion Techniques

Although WM microstructural abnormalities are commonly observed in epilepsy using
conventional dMRI and have been validated against histopathological measures of WM
pathology (Concha et al. 2010), the full extent of neuropathological alterations in

epilepsy requires more sensitive measures of microstructural properties. In particular,

it is increasingly appreciated that FA and MD are non-specific measures of cerebral
microstructure that are influenced by a number of tissue-related factors. In addition to
axonal loss and demyelination, decreases in FA obtained from the basic tensor model may
reflect the presence of crossing fibers or increases in extracellular diffusion due to edema
or inflammation. Given the role that inflammation may play in the pathogenesis of some
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forms of epilepsy, a better understanding of the neurobiology behind decreased FA could
help guide treatments in patients with different epilepsy syndromes.

Advancements in dMRI data acquisition (i.e., scanning parameters) and post-processing
techniques have enabled more sensitive and/or specific measures of cerebral pathology

in epilepsy. Studies in diffusion kurtosis imaging (DKI), a statistical method that uses
multiple diffusion weightings (i.e., b-values) to probe non-Gaussian diffusion and estimate
diffusion heterogeneity in tissue, have found that kurtosis measures reveal a broader and
more robust pattern of microstructural abnormalities in TLE compared to conventional
DTI (Bonilha et al. 2015; Lee et al. 2014). This may reflect a greater sensitivity of DKI

to multiple pathologic factors including cell loss, inflammation, and axonal and dendritic
reorganization.

In addition, diffusion spectrum imaging (DSI), a high-angular diffusion imaging (HARDI)
technique, has been combined with the neurite orientation dispersion and density imaging
(NODDI) model, a multicompartment diffusion model, to estimate structural connectivity
and network properties in TLE (Lemkaddem et al. 2014). Restriction spectrum imaging
(RSI) is another multicompartment (multi b-value) model well-positioned to evaluate
whether decreases in FA are better explained by decreased axonal/neurite density, crossing
fibers, and/or increases in extracellular diffusion (e.g., cerebrospinal fluid—filled spaces;
inflammation), all within a clinically-feasible (4-6 min) time frame. This method has
demonstrated that measures of WM pathology obtained with RSI are greater in magnitude,
more lateralized to the epileptogenic hemisphere, and broader than those obtained with
conventional DTI (Loi et al. 2016) - Figure 8.

Recent advancements in scanner hardware, such as stronger gradients and multiband
acceleration methods, greatly reduce the practical difficulties of scanning with very high
b-values (i.e., b=4000 or 5000) and a large number of diffusion directions. This allows for
improved measurements, further improving the quality of tractography, as well as further
separating intra-axonal from extracellular signals in epilepsy (Bryant et al. 2021). These
studies suggest that advanced diffusion techniques may provide more sensitive measures
of network pathology in TLE, greatly increase the specificity of connectome imaging, and
further the identification of epilepsy-specific network abnormalities.

Summary and Future Directions

Over the past several decades, dMRI has greatly advanced our understanding of WM
network disruption within and across epilepsy syndromes and reveals the critical role of
WM disconnection in cognitive, psychiatric, and clinical outcomes in epilepsy. In particular,
there is clear evidence demonstrating a link between memory and language impairments in
epilepsy and disruption to bilateral medial temporal and fronto-temporal WM, respectively.
Associations with executive dysfunction are less clear, but may be secondary to injury within
fronto-temporal (i.e., uncinate fasciculus) and fronto-striatal pathways. Similarly, psychiatric
co-morbidities are more likely to emerge in patients with distributed temporo-limbic WM
pathology. With respect to clinical outcomes, there is strong evidence that WM patterns can
facilitate lateralization of the seizure focus in TLE, and that the presence of extra-temporal
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pathology increases risk for drug-resistance as well as poor seizure outcomes following
ATL. Finally, studies using dMRI tractography have demonstrated that visualization of the
optic radiations can lead to improved visual field outcomes following surgery.

Despite these advances, future work is needed to replicate these findings in larger samples,
expand to epilepsy syndromes beyond TLE, increase generalizability of findings by
including more diverse populations, and utilize advanced analytical techniques. For instance,
machine learning is well-suited for WM analyses in epilepsy for two main reasons: 1)
Predictive models generated by training data can be tested in external samples and thus
permit the evaluation of the generalizability of the results and 2) Machine learning allows
for abridging complex data into variables that can be identified as relevant or discarded as
non-crucial, as well as reducing data into fewer dimensions. Conventional machine learning
approaches such as support vector machine and random-forest, among others, have been
applied to WM in epilepsy and are excellent strategies for the identification of complex
patterns and out-of-sample testing. Moreover, feed-forward neural networks or convolutional
neural networks (CNN) are also well-suited to abridge and test information, with CNN being
particularly relevant for 2D or 3D image-pattern detections, which can be derived from
connectome-based matrices.

In addition, many unanswered questions remain regarding the origin and evolution of

WM disruption in epilepsy, including: Does WM disruption lead to the development of
seizures or do recurrent seizures result in progressive WM damage? What is the functional
relevance and temporal course of FA changes (i.e., does increased FA or connectivity early
in disease represent pathologically enhanced signal flow that occurs prior to white matter
degradation?). How do WM networks reorganize after surgery and what is the time course
of reorganization? Does the trajectory of WM recovery or re-organization correspond with
cognitive or psychiatric improvements? And, how do patterns of reorganization within
WM networks relate to functional reorganization? In addition, it is challenging to study
direct associations between any single clinical seizure variable (e.g., age of seizure onset,
seizure duration, drug resistance) and WM injury given the high interdependence of these
variables. Many of these questions can be addressed with longitudinal studies of patients
with new onset epilepsy and at multiple time points following surgery. Recent studies have
developed nomograms, or easy-to-use risk stratification models that allow clinicians to
estimate the probability of cognitive, emotional or seizure outcomes in adults considering
epilepsy surgery (e.g., Jehi et al. 2015; Busch et al. 2018; Doherty et al. 2021). These studies
have included clinical and demographic variables (e.g., side of seizure onset, education,
cognitive score) as predictors of decline. Given new data suggesting that AMRI may add to
the prediction of cognitive and seizure outcomes, future nomograms may benefit from the
addition of markers of WM microstructure. In addition, no studies have used baseline WM
integrity to risk-stratify patients with regard to cognitive or seizure outcomes following new
surgical interventions that mostly spare collateral WM (e.g., laser ablation). Such studies
may provide a more definitive answer as to the importance of WM integrity to a range of
postsurgical outcomes.

As the field moves towards an understanding of epilepsy as a network disorder, there
is an increased usage of neurostimulation to treat refractory epilepsy. The Responsive

Neuroscientist. Author manuscript; available in PMC 2023 August 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Stasenko et al.

Page 14

Neurostimulation System (RNS) delivers responsive stimulation to halt seizures, and also
provides long-term neuromodulation. Similarly, deep brain stimulation (DBS) of thalamic
nuclei and vagus nerve stimulation (VNS) of the peripheral part of the cranial nerve

are neuromodulatory treatments for seizures that could impact WM connectivity. With
respect to VNS, increased volume of WM microstructure in the vagus afferent network has
been associated with increased treatment efficacy (Mithani et al. 2019). Further research
examining WM changes following each of these neuromodulation treatments could improve
patient selection and increase our understanding of WM neuroplasticity in epilepsy.

Lastly, there is a need to understand the impact of racial and ethnic health disparities on
integrity of WM networks in epilepsy. Literature outside of epilepsy suggests a strong link
between health disparities and brain and cognitive health. For instance, poorer WM integrity
has been associated with fewer years of schooling, lower household income (Gianaros et al.
2013), and lower socioeconomic status (Shaked et al. 2019), which may lead to an increased
risk for age-related and disease-related cognitive decline. However, minimal research exists
on the additive impact of epilepsy and social determinants of health on WM integrity.
Deeper phenotyping of our patients and efforts aimed at increasing the sociocultural, ethnic
and racial characterization of our samples would enhance the generalizability of these
findings and lead to a more enriched understanding of the causes and consequences of WM
injury in epilepsy.
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Box 1.

Definitions and key terms

Diffusion-weighted MRI (dMRI): A form of magnetic resonance imaging that
generates images that utilize the diffusion patterns of water molecules, which
allows for the detection of microstructural details of normal or abnormal
anatomy of a given region /n vivo and non-invasively. An extension of

dMRI called diffusion tensor imaging (DTI) tractography is used widely for
reconstructing white matter tracts in the brain.

Fractional anisotropy (FA): The most common summary measure of
microstructural white matter integrity used in DTI studies that assesses the
degree of anisotropy of water molecules, from which alterations in axonal
diameter, fiber density, and myelination of white matter can be inferred. It
ranges from 0 (i.e., isotropic movement of water molecules equally restricted
in all directions) to 1 (i.e., anisotropic movement of water molecules, for
example, in fiber bundles in which a diffusion occurs only along one axis and
is fully restricted in all other directions). Although reduced FA is typically
conceptualized as reflecting reduced myelin content, some findings suggest
that /ncreasesin WM connectivity can reflect pathological wiring, although
the origin of this is not well understood.

Mean diffusivity (MD): Another measure of microstructural integrity of

white matter defined as an inverse measure of the membrane density that

is more sensitive to cellularity, edema, and necrosis. Describes the rotationally
invariant magnitude of water diffusion within tissue and can be affected by
any disease process that affects the restriction of the barriers to the motion of
water.

Radial diffusivity (RD): Reflects diffusivity perpendicular to axonal fibers and
is influenced by changes in the axonal diameters or density. RD is thought to
be more strongly related to myelin abnormalities (i.e., demyelination).

Structural connectome (SC): A comprehensive and individualized white
matter analysis approach that examines a map of brain network connectivity.
This requires measuring the strength of region-to-region connections within
an individual. Connectome-based models have the potential to provide

more fine-grained information about patterns of abnormal cortico-cortical
connectivity underlying cognitive impairments than long-range tractography
methods.

Graph theory: A mathematical framework that allows for the quantitative
modeling and analysis of the topological properties of complex
interconnected systems, that has made a considerable impact on
understanding brain connectivity. Such an approach has been pivotal in a shift
toward understanding temporal lobe epilepsy as a network disorder.
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. Hippocampal sclerosis (HS): A lesion characterized by cell loss and gliosis in
the hippocampal formation usually seen as atrophy, increased signal, and loss
of internal architecture of the hippocampus on MRI.

. Parahippocampal cingulum (PHC): The inferior segment of the cingulum
(a white matter tract projecting from the cingulate gyrus to the entorhinal
cortex), which has been implicated in episodic memory. The PHC runs along
the ventral aspect of the hippocampus.

. Fornix: A C-shaped white matter bundle that serves as the main output tract
of the hippocampus and plays a role in transmitting information from the
hippocampus to the mammillary bodies and to the anterior nuclei of the
thalamus. The fornix is believed to play an important role in cognition and
episodic memory.

. Uncinate fasciculus (UF): A curved relatively short fiber that connects the
prefrontal and anterior temporal regions. Although its exact function is not
understood, it has been associated with episodic and working memory, as
well as with language (mainly semantic processing) and socio-emotional
processing.

. Inferior longitudinal fasciculus (ILF): A long range associative white matter
tract that connects basal-temporal areas with the anterior temporal lobe,
which is relayed to frontal and lateral temporal-parietal regions through
additional white matter connections. The ILF serves as the ventral visual
stream important for visual recognition (e.g., objects, faces, places) as
well as an ‘indirect’ route for language. The ILF is thought to support
multiple cognitive functions including object and face recognition, lexical and
semantic processing, and emotion processing.

. Inferior fronto-occipital fasciculus (IFOF): The IFOF, is a “direct’ language
route as part of the ventral stream, proposed to connect the occipital cortex
to the anterior temporal and inferior frontal cortices. The IFOF is thought to
play a role in semantic processing via direct connections of basal-temporal
areas with frontal and temporal-parietal cortex, with stimulation leading to
disrupted semantic processing (i.e., semantic paraphasias or errors in speech
that are related to an object’s meaning).

. Arcuate fasciculus (AF): An association tract that connects the temporal and
inferior parietal cortices to the frontal cortex, and specifically connects the
inferior frontal gyrus (i.e., Broca’s area) and the superior temporal gyrus
(i.e, Wernicke’s area). The AF is considered as part of the dorsal pathway
for language, and is implicated in several language functions (e.g., syntax,
repetition, phonological processing, and prosody).

. Superficial white matter (SWM): A thin layer of white matter just underneath
the cortex, comprised of short u-shaped association fibers that provide
cortico-cortical connections between adjacent gyri, and represent most of
the brain’s white matter connections. SWM is thought to play a role in
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brain maturation and neuroplasticity. Despite its importance in white matter
connectivity, the application of SWM to neurological disease in humans (e.g.,
epilepsy, autism, Alzheimer’s disease) has been only recently applied.

. Perforant path: The major input to the hippocampus that provides connections
from the entorhinal cortex to hippocampal subfields including the dentate
gyrus, CAl and CA3, and the subiculum. This path has a major role in
memory retention and retrieval.

. Anterior temporal lobectomy (ATL): The most common resective surgery for
medication-resistant temporal lobe epilepsy introduced in the 1950s. ATL
achieves seizure freedom in 60-80% of patients and requires removal of the
anterior portion of the inferior and middle temporal gyri, uncus, a portion
of the amygdala, and the anterior 2-3 cm of the hippocampus and adjacent
parahippocampal gyrus.

. Perisylvian: Regions of the brain responsible for language found around the
lateral sulcus (i.e., Sylvan fissure) of the left hemisphere that include deep
white matter tracts that connect fronto-temporo-parietal regions.

. Executive function: A broad category of higher-level cognitive abilities
including working memory, set-shifting, and inhibition.

. Interictal psychosis: Psychosis that occurs in approximately 6% of individuals
with epilepsy, with the onset not during or immediately following a seizure.
Symptoms of interictal psychosis in epilepsy overlap with symptoms in
schizophrenia, such as paranoid delusions and hallucinations.

. Drug-resistant epilepsy: When a person has failed to become seizure-free with
adequate trials of two antiseizure medications.

. Quadrantanopia: A loss of vision in one quarter of the visual field. A
homonymous superior quadrantanopia, which presents as a loss of vision in
the same upper quadrant in both eyes, is common in patients who undergo
ATL due to damage to the inferior optic radiations of the temporal lobe (i.e.,
Meyer’s loop). Individuals can compensate for the vision loss by tilting their
head to bring the affected visual field into view.

. Wallerian degeneration: An active process of injury-induced degeneration of
the distal end of an axon after neuronal loss or death. Seizure-induced damage
from abnormal neural firing and hyperexcitability may cause secondary white
matter degeneration along the seizure propagation pathway. Using DTI, early
axonal breakdown has been attributed to reduced parallel diffusivity, whereas
later myelin degradation is attributed to elevated perpendicular diffusivity.
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A. White matter fiber tracts commonly studied in epilepsy
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Figure 1. White matter tracts of interest and depiction of structural connectome
(A) DTI-derived fiber tracts that are commonly studied in relation to clinical and cognitive

outcomes in epilepsy. ILF = inferior longitudinal fasciculus; PHC = parahippocampal
cingulum; IFOF = inferior fronto-occipital fasciculus; uncinate = uncinate fasciculus; ant.
thalamic = anterior thalamic radiations. Adapted from Hagler et al., 2009, with permission.
(B) Schematic showing the construction of a diffusion MRI connectome. Preprocessed
dMRI data are analyzed in an automatically parcellated anatomical space. Adjacency (i.e.,
connectivity) matrices are then generated by systematically assessing pairwise associations
between pairs of all regions (with regions 7and jgiven as an example). Connectivity
matrices are equivalent to brain graphs, where brain regions correspond to nodes and
structural connections correspond to edges. Connection weight (Wj;) is defined as the
number of fiber tract connections between two nodes (/and /). The final step (top

right) includes graph theory analysis based on the adjacency matrix to extract brain
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network topological organization (i.e., degree centrality, cluster coefficient, characteristic
path length). Adapted from Rodriguez-Cruces et al., 2020, with permission.

Neuroscientist. Author manuscript; available in PMC 2023 August 22.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Stasenko et al.

A) Fractional anisotropy (FA)

Average =
o A BCC GCC SCC ACR ALIC CGC CGH CST EC FXSTPCR PUC PTR RLC SCR SFO SLF S5 TAP UNC Left -

-0.25

sd

c
]
=
=]
L)

~0.60

-0.75 —

B) Mean diffusivity (MD)

0.80

0.60

Cohen'sd

0.20

0

040 .

Average BCC GCC SCC ACR ALIC CGC CGH CST EC FXST PCR PLIC PTR RLIC SCR SFO SLF S5 TAP UNC

MD

Small effect size
Medium effect size

Large effect size

Cross-hemisphere
Left hemisphere

Right hemisphere

*Significant difference from
healthy controls (p < .001)

y==20

Page 25

Left & "

Right

Cohen'sd

I
-

SL0-

S

ST0-

=]

Figure 2. White matter microstructural differences between all epilepsy syndromes compared to

healthy controls

All values represent Cohen’s d effect size estimates for differences in (A) fractional

anisotropy (FA) and (B) mean diffusivity (MD) between the epilepsy group and healthy
controls. Positive effect sizes reflect diffusion values greater than controls; negative effect
sizes represent values lower than controls; y and z values represent the slice number for
the coronal and axial planes, respectively. Across all epilepsies, the greatest effects on
FA were observed in the body of the corpus callosum (BCC) and genu of the corpus
callosum (GCC), external capsule (EC), cingulum and corona radiata. Greatest effects on

MD were observed in the EC, anterior corona radiata (ACR) and superior longitudinal
fasciculus (SLF); ALIC, anterior limb, internal capsule; CGC, dorsal cingulum; CGH,

parahippocampal cingulum; CST, corticospinal tract; FX- ST, fornix; PCR, posterior corona
radiata; RLIC, rostral limb, internal capsule; SCC, splenium corpus callosum; SCR, superior
corona radiata; SFO, superior frontal occipital fasciculus; SS, sagittal stratum; TAP, tapetum;
UNC, uncinate fasciculus. These data are from the ENIGMA-Epilepsy working group (over
2,000 participants). Adapted from Hatton et al., 2020 with permission.
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Whole-brain structural connectome and graph theoretical results

A. Structural connectomes
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Figure 3. Group differences in network topology
Panel A shows whole-brain structural connectomes in healthy controls, temporal lobe

epilepsy (TLE) patients with hippocampal sclerosis (TLE-HS), and TLE patients with
isolated gliosis (TLE-G). Maps were generated using diffusion tractography between all
regions. Letters refer to regional groupings of the nodes (F = frontal; L = limbic; O

= occipital; P = parietal; S = sub-cortical; T=temporal). Panel B depicts whole-brain

graph theoretical results showing a markedly increased path length and decreased clustering
coefficient in TLE-HS compared to controls and TLE-G, whereas those with TLE-G are
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only moderately affected compared to controls. Reproduced from Bernhardt et al., 2019,
with permission.
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Top connections important for memory impairment classification
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Figure 4. Structural connectome predicts verbal memory in temporal lobe epilepsy
Comprehensive white matter neuronal network mapping (i.e., the structural connectome)

was able to predict verbal memory impairment in TLE and highlighted the importance

of short-range temporal-temporal connections to memory. Panel A shows a glass brain
visualization of the top 15 connections important for classification of patients as memory-
impaired versus unimpaired. Panel B shows names of top 15 most important connections
ordered by most important (top) to least important (bottom). ITG = inferior temporal gyrus;
Ih = left hemisphere; MTG = middle temporal gyrus; rh = right hemisphere. Reproduced

from Balachandra, Kaestner et al., 2020, with permission.
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Figure 5. Multi-domain cognitive phenotyping and whole-brain white matter connectome
Patients with less efficient WM network organization showed more pronounced cognitive

difficulties. WM connectome metrics were more closely associated with cognitive function
than cortical thickness. (A) Hierarchical clustering of cognitive profiles converged on

three cognitive classes in the temporal lobe epilepsy cohort: Patients in Class 1 had
cognitive scores within normal range, those in Class 2 showed mild impairment in memory-
specific domains, and Class 3 displayed pronounced impairment across all domains, with
prominent reduction of processing speed. (B) Gradual network organization abnormalities
were observed across Classes with most marked changes in Class 3, intermediate differences
in Class 2, and only subtle changes in Class 1. Class 2 showed decreased clustering in

the contralateral suborbital sulcus and inferior frontal sulcus. At a connectome-wide level,
Class 3 showed the most marked increases of characteristic path length, while Classes 1
and 2 were rather normal. In Class 3, path length increases were most marked in the lateral
and medial temporal lobes in both hemispheres, the ipsilateral frontal and the contralateral
occipital lobe. Modified from Rodriguez-Cruces et al., 2020, with permission.
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A. Nodes most strongly associated with postoperative seizure
freedom
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B. Connections commonly associated with postoperative
seizure outcome
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Figure 6. Structural connectome and network topography as biomarkers for estimating post-
surgical outcomes in patients with TLE

(A) Network integration in the medial and lateral temporal regions was related to post-
surgical seizure outcomes, such that patients with abnormally integrated network nodes were
less likely to achieve seizure freedom. The left panel of A illustrates feature importance

for classification for a model of betweenness centrality (BC)—the degree to which other
regions rely on a particular node for efficient (i.e., shortest amount of steps needed) flow of
information. A higher BC indicates a more highly integrated region within the network. The
ipsilateral parahippocampus, contralateral superior temporal gyrus, and bilateral entorhinal
regions showed the highest importance. The right panel demonstrates group differences

in BC between seizure-free and non-seizure free patients. Positive #values indicate higher
values in the non-seizure free group. Areas with stronger red color correspond to the most
important (left panel) and most significantly different between the groups (right panel).

Ipsi = ipsilateral (represents the side ipsilateral to the seizure onset). Reproduced from
Gleichgerrcht et al., 2020, with permission. (B) In green are structural connectome links that
were repeatedly chosen by the cross-validation model to have the highest ability to predict
post-surgical seizure freedom. Yellow spheres represent the 8 cortical regions of interest
defined as pertaining to the temporal region. Patients who exhibited greater weights among
these links were less likely to become seizure-free after surgery. Reproduced from Bonilha
et al., 2015, with permission.
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1) Patient with postoperative visual field deficit ~ 2) Patient without postoperative visual field deficit

Figure 7. Tractography of optic radiations decreases risk for post-surgical visual field deficits
(1) Patient 1 demonstrated a postoperative visual field deficit (VFD) after anterior temporal

lobectomy, manifesting as a superior quadrantanopia (A). This patient experienced a surgical
disruption of the anterior segment of the Meyer’s loop (C). The preoperative right optic
radiation tracts overlap with the resected anterior temporal lobe (D). (2) In contrast, Patient
2 did not experience a postoperative VFD (A). The anterior border of the Meyer’s loop
remained intact (C), and the tracts do not overlap with the resected anterior temporal

lobe (D). Thus, preoperative DTI tractography allows for identification of those patients at
greatest risk of VFDs. The color bar represents a measure of connection probability to the
starting point. Reproduced from Powell et al., 2005, with permission.
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Figure 8. Restriction spectrum imaging (RSI) provides a more robust measure of white matter
injury in TLE relative to DTI

Voxel-based analysis of group comparisons between patients with right TLE (RTLE)

and left TLE (LTLE) and age-matched controls. Areas of red-yellow represent decreased
fractional anisotropy (FA) and neurite density (ND), and increased mean diffusivity (MD)
and isotropic free (IF) water diffusion in patients compared to controls. Compared to

FA, ND maps revealed a broader and more robust pattern of decreases of white matter
integrity in TLE, with strong lateralization to the left hemisphere in LTLE, and to the
right hemisphere in RTLE. Decreases were noted primarily in the anterior temporal lobe,
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with additional decreases in the inferior prefrontal white matter. Thus, neurite density
using RSI may provide a more specific measure of WM pathology than standard DTI,
distinguishing regions primarily affected by axonal/myelin loss from those where crossing
fibers and increases extracellular water also play a role. Adapted from Loi et al., 2016, with
permission.
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