Table 8.
Study | DL technique | Acc % | Loss function | Optimizer | GPU | Evaluation metric |
---|---|---|---|---|---|---|
[42] | CNN | 90.64 | CCE | RMSprop | – | Acc, P, R, F1-Score, 5-fold cross-validation |
[54] | VGG-16 | 98.3 | CCE | Adam | – | Acc, Sn, Sp |
[10] | MobileNetV2 | 94.72 | – | Adam | – | Acc, Sn, Sp |
[47] | ResNet-50 (COVID-ResNet) |
96.23 | – | Adam | – | Acc, Sn, P, F1-score |
[38] | EfficientNet | 96.70 | – | Adam | ✓ | 10-fold cross validation, Acc, P, R, F1-score |
[67] | VGG-16 | 95 | CCE | Adam | – | Acc, P, R, F1-score |
[87] | CapsNet | 84.22 | MSE | Adam | – | Acc, 10-fold cross validation, Sn, Sp, F1-score, P |
[124] | Darknet-19 (DarkCovidNet) |
87.02 | Cross- entropy |
Adam | – | 5-fold cross validation, Acc, Sn, Sp, P, F1-score |
[91] | SqueezeNet | 98.3 | – | Bayesian | ✓ | Acc, COR, COM, Sp, F1-score, MCC |
[44] | COVID-Net | 93.3 | – | Adam | – | Acc, Sn |
[103] | COV19-ResNet COV19-CNNet | 97.61 94.28 |
– | – | ✓ | Acc, P, R, Sp, F1-score, |
[76] | ResNet-50 | 98.18 | – | – | ✓ | Acc, P, R, F1-score |
[59] | VGG-CapsNet | 92 | CCE | SGD | – | Acc, P, R, F1-score, AUROC |
[89] | EfficientNet B3-X | 93.9 | – | Adam | – | Acc, , + |
[106] | CoroNet (Xception) | 95 | – | Adam | ✓ | Acc, P, R, Sp, F1-score |
[37] | CNN SVM DT KNN |
97.14 98.97 96.10 95.76 |
– | Adam, Bayesian | ✓ | 5-fold cross validation, Acc, Sn, Sp, AUROC, F1-score |
[111] | CNN (CVDNet) | 96.69 | cross-entropy | Adam | – | Acc, P, R, F1-score, 5-fold cross validation |
[58] | Ensemble (ResNet-50V2, VGG-16, InceptionV3) | 95.49 | CCE | Adam | ✓ | Acc, Sn, Sp, P, AUROC |
[79] | ResNet-50 | 92 | CCE | Adam | – | Acc, Sn, Sp, F1-score, AUROC |
[60] | SqueezeNet & MobileNetV2 (Combined features set) | 99.27 | – | – | ✓ | Acc, Sn, Sp, P, F1-score, 5-fold cross validation |