Table 3.
Performance summary of six machine learning models of HT.
Models | Accuracy | Precision | Recall | F1 Score | AUC Score |
---|---|---|---|---|---|
KNN | 0.681029 | 0.746247 | 0.681507 | 0.710569 | 0.728307 |
LR | 0.701378 | 0.730701 | 0.780822 | 0.749290 | 0.767496 |
SVM | 0.710839 | 0.720756 | 0.825304 | 0.766319 | 0.766069 |
DT | 0.643135 | 0.680359 | 0.706202 | 0.691899 | 0.633101 |
MLP | 0.721863 | 0.746918 | 0.797603 | 0.767313 | 0.775333 |
XGBoost | 0.729774 | 0.770717 | 0.772755 | 0.767228 | 0.781673 |
AUC, area under curve; KNN, k-nearest neighbor classifier; LR, logistic regression; SVM, a support vector machine; DT, the decision tree model; MLP, the multilayer perceptron network; XGBoost, eXtreme Gradient Boosting.