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Abstract

Type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) commonly co-

occur. T2DM increases the risk for AD by approximately twofold. Animal

models provide one means of interrogating the relationship of T2DM to AD

and investigating brain insulin resistance in the pathophysiology of

AD. Animal models show that persistent hyperglycaemia results in chronic

low-grade inflammation that may contribute to the development of neu-

roinflammation and accelerate the pathobiology of AD. Epidemiological

studies suggest that patients with T2DM who received treatment with specific

anti-diabetic agents have a decreased risk for the occurrence of AD and all-

cause dementia. Agents such as metformin ameliorate T2DM and may have

other important systemic effects that lower the risk of AD. Glucagon-like pep-

tide 1 (GLP-1) agonists have been associated with a decreased risk for AD in

patients with T2DM. Both insulin and non-insulin anti-diabetic treatments

have been evaluated for the treatment of AD in clinical trials. In most cases,

patients included in the trials have clinical features of AD but do not have
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T2DM. Many of the trials were conducted prior to the use of diagnostic bio-

markers for AD. Trials have had a wide range of durations and population

sizes. Many of the agents used to treat T2DM do not cross the blood brain bar-

rier, and the effects are posited to occur via lowering of peripheral hyper-

glycaemia and reduction of peripheral and central inflammation. Clinical

trials of anti-diabetic agents to treat AD are ongoing and will provide insight

into the therapeutic utility of these agents.
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1 | INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
that is characterized by progressive synaptic and neuro-
nal loss, learning and memory deficits, and cognitive,
functional, and behavioural decline (Scheltens
et al., 2021). AD is the most common form of dementia,
accounting for 60%–80% of all cases (Alzheimer’s
Association, 2021). Approximately 6.2 million Americans
and nearly 50 million individuals worldwide have AD
dementia (Alzheimer’s Association, 2021); AD is the sixth
leading cause of death in the United States (Alzheimer’s
Association, 2021). Age is the greatest risk factor for
developing AD, although AD is not a normal part of
aging (Alzheimer’s Association, 2021). Several other fac-
tors confer increased risk including apolipoprotein E ε-4
(APOE4) genotype, stroke and vascular risk factors, head
trauma, diabetes mellitus (DM), and obesity (Barnes &
Yaffe, 2011). Type 2 diabetes mellitus (T2DM) can confer
a 1.5-fold to fourfold increase in lifetime risk for AD (Lu
et al., 2009; Mehla et al., 2014). Furthermore, approxi-
mately 80% of individuals with AD have insulin resis-
tance or abnormal fasting glucose levels (Janson
et al., 2004). Over 25% of the US population over the age
of 65 have T2DM, and aging of the population plays a
large role in both the epidemic of T2DM and the
increased prevalence of AD (Kirkman et al., 2012).
Understanding the mechanistic relationships of T2DM
and AD may lead to candidate treatments that control
T2DM and ameliorate the risk of progression to
AD. Some of these agents may treat AD independent of
the occurrence of T2DM.

The pathological hallmarks of AD include amyloid-
beta (Aβ) protein plaques composed of fibrillar Aβ
(Hardy & Higgins, 1992; Hyman et al., 2012), neurofibril-
lary tangles (NFTs) composed of hyperphosphorylated
tau protein (Grundke-Iqbal et al., 1986; Serrano-Pozo
et al., 2011), and chronic neuroinflammation, or a

sustained immune response in the brain, that promotes
and accelerates both Aβ and tau pathologies (Heneka
et al., 2015; Kinney et al., 2018; Millington et al., 2014).

Here, we review the foundational science linking
T2DM and AD, animal models used to explore the
relationship of the two disorders, and past and current
clinical trials of diabetes therapies tested for the treat-
ment of AD.

1.1 | Foundational science links between
T2DM and AD

Many types of evidence link T2DM and AD. T2DM
affects over 200 million people worldwide and is defined
as a sustained state of hyperglycaemia due to dysfunction
of insulin receptor (IR) signalling (insulin resistance)
despite elevated levels of insulin (Ahmed, 2012). Several
studies have shown that insulin resistance is a risk factor
for AD and may aggravate the pathology of AD (Boles
et al., 2017; de Felice, 2013; Ferreira et al., 2018; Talbot
et al., 2012a). Altered insulin signalling disrupts brain
function, as insulin in the brain promotes neurite growth,
synaptic plasticity, and development and maintenance of
excitatory synapses (Gu et al., 2014; Liu et al., 2014;
Taouis & Torres-Aleman, 2019; Zhao, Siu, et al., 2019).
Insulin administration via oral, nasal or intra-
cerebroventricular (ICV) injections decreases AD
pathology in animal models of T2DM with AD-like
changes (Adzovic et al., 2015; Avgerinos et al., 2018;
Cummings et al., 2020; Freiherr et al., 2013; Morris &
Burns, 2012; Steinmetz et al., 2016).

Metabolic syndrome is composed of insulin resis-
tance, obesity, hypertension, cardiovascular disease and
dyslipidaemia which increase the risk of AD beyond the
risk conferred by T2DM (Hildreth et al., 2012; Verdile
et al., 2015). Obesity, T2DM and AD have overlapping
biological pathologies including insulin resistance,
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oxidative stress, mitochondrial dysfunction and inflam-
mation (Pugazhenthi et al., 2017).

Insulin interacts with tau pathology via the activation
of protein kinases involved in tau phosphorylation.
Activation of kinases including protein kinase A (PKA),
calcium/calmodulin-dependent protein kinase II
(CaMKII), glycogen synthase kinase-3β (GSK-3β) and
cyclin-dependent kinase 5 (cdk5) leads to the hyper-
phosphorylation of tau and aggregation of tau proteins
comprising NFTs (Dolan & Johnson, 2010; Duka
et al., 2013; Engin & Engin, 2021; Wang et al., 2007).
GSK-3β is a serine-threonine kinase that is consistently
upregulated in AD brains (Blalock et al., 2004; Hooper
et al., 2008; Leclerc et al., 2001; Lovestone et al., 1994;
Munoz-Montano et al., 1997). GSK-3β can contribute to
development of NFTs (Beurel et al., 2015; Hanger
et al., 1992; Mandelkow et al., 1992) and Aβ plaque for-
mation (Beurel et al., 2015; Hurtado et al., 2012; Phiel
et al., 2003). In a reciprocal relationship, Aβ aggregation
appears to promote tau hyperphosphorylation via activa-
tion of GSK-3β (Reddy, 2013).

Animal models are used to explore the mechanistic
relationships of T2DM and AD. Streptozotocin (STZ), for
example, when given in staggered and low-dose injec-
tions, destroys pancreatic β cells mimicking late-stage
T2DM pancreatic exhaustion (McEvoy et al., 1984;
Murtishaw et al., 2018; Reed et al., 2000; Srinivasan
et al., 2005; Zhang et al., 2008). Treated animals have
sustained hyperglycaemia without any overt illness
(Murtishaw et al., 2018); they exhibit learning and mem-
ory deficits, increased tau phosphorylation and increased
neuroinflammation similar to the pathological changes
observed in AD (Murtishaw et al., 2018).

Signalling pathways link T2DM to AD. Fractalkine
(CX3CL1) is a chemokine constitutively and specifically
released by neurons to regulate microglia involved in
neuroinflammation through the fractalkine receptor
(CX3CR1) located on central nervous system (CNS)
microglia (Chamera et al., 2020). CX3CL1/CX3CR1 sig-
nalling interacts with insulin regulation in the brain by
modulating microglial function and hippocampal synap-
tic plasticity (Paolicelli et al., 2014; Sheridan et al., 2014).
A tau transgenic (Tg) mouse model (hTau mice) lacking
CX3CR1 exhibited enhanced tau phosphorylation and
aggregation associated with microglial activation, as well
as behavioural impairments (Bhaskar et al., 2010; Bolos
et al., 2017).

Genetic factors suggest a link between T2DM and
AD. APOE-4 is a gene encoding a protein that is involved
in lipid and cholesterol binding and transport and is the
best-known genetic risk factor for AD (Corder
et al., 1993; Kim et al., 2009; Strittmatter et al., 1993).
Two copies of the ε4 allele of the gene can confer up to a

15-fold increase in developing AD (Altmann et al., 2014;
Farrer et al., 1997; Payami et al., 1994). APOE-4 has been
shown to increase hyperinsulinaemia in T2DM amplify-
ing the risk for AD in APOE-4 carriers with T2DM
(Luchsinger et al., 2004; Peila et al., 2002).

1.2 | Insights from animal models of AD
and T2DM

Most of the work on AD-related mechanisms as well as
the testing of candidate therapeutics prior to clinical tri-
als is carried out in animal models that mimic aspects of
AD; this has largely relied on the use of genetic mouse
models that express mutations associated with familial
AD (fAD). These models present some of the core patho-
logical features of AD but do not exhibit the entire range
of AD pathology.

Animal models remain indispensable in research due
to their biological similarity to humans, allowing
researchers to investigate disease mechanisms and pro-
gression under controlled conditions. They continue to
advance both the scientific and medical fields and pro-
vide the scientific basis for the creation of novel thera-
peutics. Approximately 60% of all preclinical research is
conducted in rodents due to their anatomical, physiologi-
cal, genetic and overall biological similarity to humans
(Bryda, 2013). They allow researchers to target and alter
specific genes, translational pathways and protein
interactions that provide insights into mechanisms and
facilitate testing potential therapeutics. Several model-
based approaches have been utilized to investigate
mechanisms and features of AD and T2DM both inde-
pendently and together.

1.3 | Common AD mouse models/
mechanisms and use in metabolic and
diabetes investigations

There is no animal model that exactly mimics AD patho-
genesis and progression. Wild-type (WT) mice do not
normally develop AD-type pathology; hence, human
genes consistent with fAD (e.g., amyloid precursor pro-
tein [APP], presenilin 1 [PS1] and presenilin 2 [PS2]) are
commonly incorporated into mouse genomes to induce
AD pathology in Tg mouse models (Balu et al., 2019).
The AD pathology of fAD and sporadic late onset AD
(LOAD) are morphologically similar. It is common in a
laboratory setting to utilize several fAD genetic mutations
to create AD animal models. There are currently over
200 animal models of AD tracked by Alzforum (https://
www.alzforum.org/research-models/alzheimers-disease),
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which include models facilitating the pathogenesis of Aβ
plaques, NFTs, gliosis, synaptic loss, neuronal loss,
changes in long-term potentiation and long-term
depression (i.e., LTP/LTD, respectively), and cognitive
impairment. The APP/PS1 mouse, for example, is argu-
ably the most widely used animal model to investigate
Aβ pathology progression and other features of AD. The
APP/PS1 model contains mutations in APP (Swedish)
and PSEN1 (L166P) genes, under the Thy1 promotor, and
express a threefold increase in APP production compared
with endogenous murine APP. APP is the precursor pro-
tein for Aβ, and these mice develop Aβ plaques in the
cortex and hippocampus at approximately 3–4 months of
age (Radde et al., 2006), followed by reactive gliosis and
proinflammatory cytokine release (Lee et al., 2010; Radde
et al., 2006), synaptic loss (Bittner et al., 2012), neuronal
loss in the dentate gyrus (Rupp et al., 2011), hippocampal
LTP/LTD impairments (Gengler et al., 2010) and cogni-
tive impairment (Webster et al., 2013), all consistent with
AD. APP/PS1 mice are often utilized for AD-related stud-
ies because they closely mimic the progression of Aβ in
AD patients.

Studies of the relationship between AD and T2DM
often rely on manipulations that alter diet, blood glucose,
and overall metabolic functions produced artificially in
animal models of AD.

1.4 | Insulin resistance and AD

It has traditionally been proposed that reduction of brain
metabolism occurs after neuronal atrophy and loss in the
course of AD (Bokde et al., 2001). However, accumulat-
ing evidence indicates that hypometabolism, potentially
because of metabolic dysfunction (e.g., insulin resistance
observed in T2DM), may occur prior to brain atrophy
(Kyrtata et al., 2021). Animal models are utilized to inves-
tigate the mechanisms by which this may occur. In
mouse models, long-term feeding with a high-fat diet
(HFD) can cause hyperinsulinaemia, cardiovascular dis-
ease, obesity and both peripheral and central insulin
resistance (Buettner et al., 2007; Wali et al., 2020). The
HFD and obesity have been shown to increase
neuroinflammation (Spagnuolo et al., 2015), neu-
rodegeneration (Mazon et al., 2017; Pugazhenthi
et al., 2017) and cognitive decline (Balasubramanian
et al., 2021; Nguyen et al., 2014) that are consistent with
AD. In clinical populations, most, but not all, patients
with T2DM are overweight or obese, leading to insulin
resistance. Insulin resistance and hyperglycaemia can
induce hyperphosphorylated tau protein accumulation
and lead to NFTs (Silva et al., 2019). The exact effects of
diet-induced insulin resistance on AD pathology and

cognition remain controversial due to differing diet com-
positions, incubation times, cohort sex and rodent strains
used in the experiments. The strength of these
approaches is that they reproduce the milieu of changes
observed with T2DM; however, they provide limited
insight in to specific mechanisms linking T2DM and AD.

Genetic approaches to producing insulin resistance
include the ob/ob mouse that is widely utilized to induce
obesity and facilitating examination of diet-induced insu-
lin resistance. This rodent model, in a C57BL/6J back-
ground, is unable to produce leptin—a hormone
responsible for inhibiting hunger—via altering the leptin
gene (i.e., ob or Lep), leading to increased appetite and
obesity (Ingalls et al., 1950; Small et al., 2017). These ani-
mals exhibit hyperinsulinaemia, mild hyperglycaemia
and insulin resistance (Coleman, 1978; Small et al., 2017).
Crossing the ob/ob mouse model with APP/PS1 mice
(i.e., APP/PS1 + ob/ob) leads to models that exhibit sig-
nificant increases in Aβ plaque load in the hippocampus
and prefrontal cortex; two brain regions affected early in
AD (S. Zhang et al., 2017). APP/PS1 + ob/ob mice evi-
dence more abundant hyperphosphorylated tau, neu-
roinflammation (i.e., activated astrocytes and microglia)
and synaptic loss and have more severe learning and
memory deficits compared to APP/PS1 mice (Zhang
et al., 2017).

Over the last 15 years, considerable attention has
been devoted to understanding the sustained inflamma-
tory response seen in the brain in AD. Chronic inflamma-
tion and insulin resistance are observed in both T2DM
and AD (O’Brien et al., 2017; Parimisetty et al., 2016;
Vinuesa et al., 2021). Systemic inflammation may precede
the development of insulin resistance in insulin-sensitive
tissue (Klöting & Blüher, 2014; Parimisetty et al., 2016).
In addition to peripheral and central inflammation in
both T2DM and AD, there is evidence of inflammation-
related changes in the blood–brain barrier (BBB) in both
conditions. The BBB is a neurovascular unit that limits
peripheral toxins, immune cells and pathogens from
entering and damaging the brain (van Dyken &
Lacoste, 2018). Chronic peripheral and inflammation
induced by DM and obesity can cause BBB breakdown
and permeability to infiltrating macrophages, leading to
exacerbation of the immune response in the brain,
disruption of glial and neuronal cell integrity, impaired
hormonal function, increased insulin insensitivity and
impaired cognition (van Dyken & Lacoste, 2018). The
invasion of leukocytes releases proinflammatory
cytokines that exacerbate AD pathology including neuro-
nal damage and death (Kinney et al., 2018; Varatharaj &
Galea, 2017). In animal models of AD, chronic neu-
roinflammation can be seen before Aβ accumulation in
the hippocampus (Beauquis et al., 2013; Heneka
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et al., 2015). Several glial signalling cascades implicated
in regulation of immune responses are altered in AD and
T2DM. For example, Toll-like receptor 4 (TLR4) and trig-
gering receptor expressed on myeloid cells 2 (TREM2)
are expressed on microglia that regulate inflammation in
the brain (Zhou et al., 2019). Activation of TLR4 produces
large increases of proinflammatory cytokines such as
tumour necrosis factor-α (TNF-α), nitric oxide (NO),
prostaglandin E2 (PGE2) and interleukin-1β (IL-1β),
which can promote and exacerbate both T2DM and AD
pathology (Murtishaw et al., 2016; Zhao, Bi, et al., 2019).
Lipopolysaccharide (LPS), an immunostimulatory com-
ponent of gram-negative bacteria, and a ligand for TLR-4,
induces inflammation in the brain (Zhao, Bi, et al., 2019).
LPS-induced CNS inflammation in 3xTg-AD mice
showed significant increase of tau hyperphosphorylation
via cdk5 (Kitazawa et al., 2005). LPS-induced inflamma-
tion following ICV injection of STZ induces IR insensitiv-
ity in the brain, increased tau phosphorylation in the
hippocampus and learning and memory deficits in male
Sprague–Dawley rats assessed in the Morris mater maze
(MWM) (Murtishaw et al., 2016). These studies suggest
that chronic inflammation as a result for T2DM, may be
one mechanism by which T2DM confers increased risk
for developing LOAD.

Additional signalling cascades that regulate both neu-
ronal and glial function are altered in T2DM and AD. c-
Jun N-terminal kinases (JNKs) are members of the
mitogen-activated protein kinase (MAPK) family and are
involved in cellular stress responses; their activity has
been linked to T2DM. JNK is among the most investi-
gated molecules in obesity-induced insulin resistance
(Pal et al., 2016). JNK has three genetic isoforms, MAPK8
coding for JNK1, MAPK9 coding for JNK2 and MAPK10
coding for JNK3 (Yarza et al., 2016). JNK3 has been
implicated in the development of AD (Yarza et al., 2016).
It is highly expressed and chronically active in brain tis-
sue and cerebrospinal fluid (CSF) in AD patients and has
been implicated in the cognitive deficits consistent with
AD (Gourmaud et al., 2015). Several downstream cas-
cades that arise from JNK signalling are linked to cell
survival and pathologic features of AD. JNK can directly
induce insulin resistance through a phosphorylated IR
substrate (IRS) 1, inhibiting insulin cascades and poten-
tially increasing the risk for AD (Sabio et al., 2008). ICV
injection of Aβ oligomers can activate IRS-1pSer and JNK
in the hippocampus of cynomolgus monkeys (Bomfim
et al., 2012). Administration of exendin-4—an anti-
diabetic agent—to Tg mice, decreased IRS-1pSer and
activated JNK, resulting in amelioration of behavioural
and cognitive deficits (Bomfim et al., 2012). Mice given
HFD to induce obesity exhibit JNK activation. Genetic
manipulations leading to depletion of JNK prevent

obesity by decreasing adiposity and ameliorating insulin
sensitivity and IR signalling (Hirosumi et al., 2002).
Genetic-based depletion of JNK3 in fAD mice leads to a
dramatic reduction of Aβ42 peptide and Aβ plaque
load and improved cognition (Yoon et al., 2012). Aβ42
can indirectly activate JNK signalling, resulting in
neuroinflammation and neurodegeneration (Yoon
et al., 2012). JNK modulates NFT formation via phos-
phorylating tau (Lagalwar et al., 2006; Yarza et al., 2016).
JNK-related signalling represents a specific conserved
pathway that intersects with obesity, insulin resistance
and cell survival in AD and T2DM.

Taken together, insulin resistance may not directly
cause AD; however, insulin resistance can increase the
risk of developing AD by exacerbating AD pathology
(e.g., Aβ, tau and chronic neuroinflammation) and, in
turn, promote further insulin resistance—a feed-forward
loop (Wei et al., 2021). Therapeutics targeting insulin
resistance may be useful to ameliorate this mechanism
and reduce the risk of AD and the exacerbation of AD in
those with existing pathological changes.

1.5 | Hyperglycaemia and AD

Hyperglycaemia is a major characteristic of T2DM and
has a high prevalence in aged populations. Twenty-five
percent of the US population over the age of 65 have
T2DM (as defined by hyperglycaemia), and another �88
million in the United States exhibit pre-DM hyper-
glycaemia (elevated blood glucose but not yet meeting
T2DM criteria; Centers for Disease Control and
Prevention, 2020). In clinical populations, disruption of
glucose homeostasis expedites the progression from mild
cognitive impairment (MCI) to AD (Morris et al., 2014),
suggesting that dysregulation of glucose metabolism may
play a causal role AD pathogenesis (Macauley
et al., 2015).

Hyperglycaemia can be modelled in in rodents with
STZ, a diabetogenic drug that is toxic to insulin-
producing pancreatic β cells via the alkylation of β-cell
DNA, thus impairing insulin secretion and inducing
chronic hyperglycaemia (Murtishaw et al., 2018). This
approach has been useful in studying T1DM; however,
the severity of the beta cell loss does not mimic T2DM
seen in aging populations. To better approximate T2DM,
investigators have developed staggered and/or low-dose
injections of STZ to effectively induce a progressive
long-term hyperglycaemia state in an otherwise healthy
animal (Murtishaw et al., 2018). Investigations have dem-
onstrated that staggered administration of STZ results in
a sustained hyperglycaemic state with induction of learn-
ing and memory deficits, increased tau phosphorylation
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and increased neuroinflammation in mice consistent
with AD pathological changes (Murtishaw et al., 2018).
Investigations employing central STZ administered via a
single ICV injection revealed exacerbation of Aβ accumu-
lation in APP/PS1 mice (Kelliny et al., 2021). The central
STZ administration is hypothesized to induce IR resis-
tance centrally, potentially mimicking an important
aspect of AD. Peripheral STZ and the resulting hyper-
glycaemia have been shown to increase APP protein
expression in APP/PS1 mice, thus promoting Aβ genera-
tion (Yang et al., 2013) and directly exacerbate Aβ and
tau pathologies (Arnold et al., 2018; Ferreira et al., 2018;
Murtishaw et al., 2018; Yang et al., 2013). Acute hyper-
glycaemia in APP/PS1 mice can increase Aβ production
in the hippocampal interstitial fluid, and the effect is
exacerbated with increased age (Macauley et al., 2015).
Pdx1+/� mice (a chronic hyperglycaemia mouse model)
crossed with an APP/PS1 mouse exhibited increased tau
phosphorylation, increased synaptic loss in the hippo-
campus, increased microglial and astrocyte activation,
glucose intolerance and Aβ plaque formation (Guo
et al., 2016). These mice exhibited increased advanced
glycation end-products (AGEs) followed by the activation
of its receptor (RAGE), which is thought to contribute to
impairments in Aβ degradation and Aβ generation (Guo
et al., 2016). AGEs can induce synaptic and neuronal
death via increased APP processing (i.e., β-site APP-
cleaving enzyme [BACE] and PS1) and reactive oxygen
species (ROS) generation (Ko et al., 2015). Elevated glu-
cose levels can facilitate the formation of Aβ-42 oligomers
(the more toxic form of Aβ) (Kedia et al., 2017). It is
hypothesized that glucotoxicity via chronic hyper-
glycaemia can induce neuronal structural and functional
alterations, haemorrhagic interruption of cerebral blood
vessels and increased Aβ accumulation. Glucotoxicity can
result in cell injury to hepatocytes and insulin-producing
pancreatic β cells via mitochondrial oxidative stress and
mitochondrial dysfunction (Lee, Lee, et al., 2011; Mota
et al., 2016). Oxidative stress can increase the activity of
BACE and gamma secretase, enzymes directly involved
in the cleavage of APP and the generation of Aβ
(Cheignon et al., 2017; Y. Zhao & Zhao, 2013).

Chronic hyperglycaemia induces hyper-
phosphorylation of tau via several kinases (Murtishaw
et al., 2018; Wang et al., 2007). Activation of PKA,
CaMKII, GSK-3β and cdk5 in T2DM leads to the hyper-
phosphorylation of tau, aggregation of tau proteins and
formation of NFTs seen in AD (Dolan & Johnson, 2010;
Duka et al., 2013; Engin & Engin, 2021; Wang
et al., 2007). Aβ accumulation appears to promote
tau hyperphosphorylation via activation of GSK-3β
(Reddy, 2013). Chronic hyperglycaemia can induce tau
modification via tau cleavage, both in vitro and in vivo

(Kim et al., 2013). Thus, kinase alterations seen in T2DM
can contribute to AD pathogenesis. The investigations of
hyperglycaemia provide mechanistic evidence for how
T2DM confers increased risk for developing AD.

1.6 | Genetic relationships of T2DM
and AD

1.6.1 | Apolipoprotein E

APOE is a protein that is involved in lipid and cholesterol
binding and transport and is the most common genetic
risk factor for AD (Corder et al., 1993; Kim et al., 2009;
Strittmatter et al., 1993). In humans, there are three
APOE alleles (i.e., E2, E3 and E4) that produce apo-E2,
apo-E3 and apo-E4 proteins. Approximately �60% of AD
patients have an APOE4 genotype (Rebeck et al., 1993).
Having two copies of the ε2 allele is the strongest genetic
protective factor for LOAD, whereas two copies of the ε4
variant can confer up to a 15-fold increase risk in devel-
oping LOAD (Altmann et al., 2014; Farrer et al., 1997;
Payami et al., 1994; Riedel et al., 2016; Serrano-Pozo
et al., 2021). Mice express only one form of APOE, and
the amino acid homology between mouse and human
APOE is 70% (Rajavashisth et al., 1985). APOE reporter
mice with enhanced green fluorescence protein (EGFP)
insertion reveal that microglia and astrocytes constitu-
tively express APOE, and neurons synthesize APOE
under stress conditions (Xu et al., 2006). Despite the
increased risk in APOE-4 human carriers, Tg fAD mice
do not closely mimic the effects of human APOE
isoforms (Balu et al., 2019), and a majority of Tg fAD
mouse models use murine APOE instead of human
APOE; this presents a limitation when investigating Aβ
accumulation, synaptic integrity and neuroinflammation
seen in AD (Balu et al., 2019). Given the large role that
APOE plays in AD pathophysiology, several animal
models of both DM and AD with APOE modifications
have been investigated.

Although the APOE 4 gene significantly increases the
likelihood of developing AD, many individuals who are
APOE4 carriers do not develop the disease; it is hypothe-
sized that APOE4 interacts with several factors, including
obesity, that increase AD risk (Moser & Pike, 2017). For
example, APOE4 has been shown to increase hyper-
insulinaemia and T2DM, contributing to the risk of AD
(Luchsinger et al., 2004; Peila et al., 2002). Diet-induced
obesity (i.e., western diet) in 5xfAD/human APOE-ε4+/+

mice exhibit a significant increase in amyloid deposits,
Aβ burden, and reactive gliosis compared to 5xfAD/
human APOE-E3+/+; suggesting that there is an interac-
tion between obesity and APOE in increasing AD
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pathogenesis (Moser & Pike, 2017). Mice with human
APOE4 with HFD-induced insulin resistance replicate
diabetic-related states such as increased glucose and insu-
lin resistance and decreased insulin secretion (Koren-Iton
et al., 2020). When mice with human APOE3 are fed a
HFD, they show similar results as APOE4 mice,
suggesting that diabetic modifications play an important
role in the pathological effects of APOE (Koren-Iton
et al., 2020).

1.6.2 | Non-APOE risk genes for AD
and DM

Genome-wide association studies (GWAS), next-
generation sequencing (NGS) and other technological
advances point to several additional genetic loci, rare
genetic variants and mutations that have a role in LOAD
(Giri et al., 2016). These techniques have helped identify
genetic influences that vary from low risk (e.g., CR1,
CD33, CD2AP, etc.), to medium risk (e.g., ADAM12,
PLD3, ABCA7, etc.), high risk (e.g., APOE, TREM2 and
SORL1, etc.) and causal (e.g., APP, PS1 and PS2) associa-
tions with AD. Over 280 autosomal dominant variants
have been observed in AD (Aguilar et al., 2019; Cruts
et al., 2012; Yamazaki et al., 2016). The impact of genes
influencing JNK and GSK-3β discussed above suggest
overlapping changes relevant to T2DM and AD.

Similarly, there are numerous candidate genes impli-
cated in DM that may have direct linkage to AD patho-
genesis. Risk genes that are strongly associated with
T1DM include human leukocyte antigen (HLA) HLA-
DR3-DQ2 or HLA-DR4-DQ8 haplotypes (Pociot &
Lernmark, 2016). Over 50 genes, 58 genomic regions and
more than 100 single nucleotide polymorphisms (SNPs)
are associated with T1DM (Paschou et al., 2018; Pociot &
Lernmark, 2016). Individuals with T1DM, especially the
elderly, have an increased risk of developing AD (Lacy
et al., 2018).

Genes strongly associated with T2DM include
TCF7L2 (involved in insulin secretion and glucose pro-
duction), ABBC8 (regulates insulin), CAPN10 (involved
in insulin sensitivity and secretion), GLUT2 (transports
glucose into pancreatic β cells), GCGR (involved in gluca-
gon regulation) (Naseri et al., 2020) and others (Naseri
et al., 2020; Park, 2011). These genes are involved in the
overall production and regulation of glucose and insulin
and in how glucose is sensed in the body; dysfunction of
these processes can lead to T2DM and in parallel,
increased risk for AD.

Some of these genes are known to link T2DM and
AD. For example, the TCF7L2 gene is strongly associated
with T2DM (Grant et al., 2006), and increased TCF7L2

mRNA has been observed in AD brains (Blom
et al., 2010). ABCA1 regulates cholesterol efflux and is
involved in high-density lipoprotein (HDL) formation
(Fitz et al., 2012). APP/PS1 mice with APOE4 insertion
and ABCA1�/+ exhibited memory impairments and
increased Aβ deposition (Fitz et al., 2012). Consistent
with human studies, the CAPN10 gene plays an impor-
tant role in DM in mice (Cheverud et al., 2010), and it
may indirectly increase the risk of AD by contributing to
T2DM.

1.7 | Animal model treatment-related
insights

1.7.1 | Insulin

Insulin is a hormone produced primarily by pancreatic β
cells (Rorsman & Ashcroft, 2018), although it has been
shown that neurons can produce insulin (Bl�azquez
et al., 2014; Gray et al., 2014). Insulin mRNA is found in
brain regions relevant to AD such as the hippocampus
(i.e., CA1 and CA3) (Devaskar et al., 1994). Elevated glu-
cose levels initiate the synthesis and release of insulin
via pancreatic β cells and promote cellular glucose
uptake for energy generation. Downstream insulin sig-
nalling pathways include their role in protein transcrip-
tion and synthesis, regulation of apoptosis and
modulation of lipid synthesis in the brain (Arnold
et al., 2018). Insulin plays a large role in brain develop-
ment, neuronal health, and brain ageing. Both insulin
and insulin-like growth factor (IFG-1) can modulate the
proliferation, differentiation and survival of neural stem
cells (Spinelli et al., 2019).

IRs are highly expressed on various cell types in the
brain (i.e., neurons, microglia, oligodendrocytes, etc.)
and across several brain regions including the hypothal-
amus, olfactory bulb, cerebellum, striatum, cortex and
hippocampus (Arnold et al., 2018). IRs are highly local-
ized in both pre- and post-synaptic areas, playing an
important role in neuroplasticity (Abbott et al., 1999;
Bockmann et al., 2002; Mielke et al., 2006; Werther
et al., 1989).

Insulin in the brain can promote neurite growth, reg-
ulates the expression and localization of γ-aminobutyric
acid (GABA), N-methyl-d-aspartate (NMDA) and
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors, and is involved in synaptic plasticity
(i.e., LTP and LTD) in the hippocampus (van der Heide
et al., 2005). Insulin helps maintain and promote excit-
atory synapses (Chiu et al., 2008) and dendritic spines
(Lee, Huang, & Hsu, 2011) and can promote neuronal
health and survival by inhibiting apoptosis (Arnold
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et al., 2018; Kim & Han, 2005). Neurons do not depend
on insulin-dependent GLUT-4 receptors for glucose
uptake as required for glucose uptake in peripheral cells.
Instead, insulin-independent receptors (e.g., GLUT-3) are
expressed on neurons and—indirectly activated via
NMDA receptors—facilitate neuronal glucose uptake
(Talbot et al., 2012b; Uemura & Greenlee, 2006).

Insulin and IRs decrease with normal ageing and in
AD. The binding of insulin to IRs is directly associated
with the production of insulin-degrading enzyme (IDE).
IDE is a key enzyme involved in the degradation of Aβ
(Farris et al., 2003). IR activation suppresses the activa-
tion of GSK3β, a kinase involved in the phosphorylation
of tau (Murtishaw et al., 2018). These mechanisms may
explain why insulin treatment rescued learning and
memory deficits in rodents (Adzovic et al., 2015;
Steinmetz et al., 2016). Six weeks of treatment with
intranasal insulin rescued brain insulin signalling dys-
function, ameliorated cognitive impairments, inhibited
JNK activation, increased neurogenesis and reduced Aβ
accumulation and plaques in 4.5-month-old APP/PS1
mice (Mao et al., 2016). Additional data, from an amyloid
and tau mouse model of AD (3x-Tg-fAD mice) treated
with intranasal insulin for 2 months, demonstrated
improved memory (in novel object recognition task and
MWM), reduced depression-like behaviour (via tail
suspension and forced swim tests) and decreased
hyperphosphorylated tau, Aβ oligomers and 3-
nitrotyrosine in the frontal cortex and hippocampus
(Barone et al., 2019). Additional data showed that ICV
administration of insulin significantly decreased inflam-
matory markers in the hippocampus and improved spa-
tial memory performance (Adzovic et al., 2015). It
remains to be determined if the benefits of insulin
administration are impacted when IR insensitivity is pre-
sent in AD, aging or T2DM.

Soluble Aβ oligomers can impair insulin signalling
via downregulation of IRs on neurons (Zhao et al., 2008).
Elevated brain insulin initiates increased levels of IDE.
Studies with mouse models of both T2DM and AD dem-
onstrate that activating peroxisome proliferator-activated
receptor γ (PPARγ) and the adenosine monophosphate
(AMP)-activated protein kinase (AMPK) pathways signif-
icantly increase IDE leading to decreased Aβ levels and
rescue of recognition and learning memory deficits (Li
et al., 2018).

1.7.2 | Metformin

Metformin is the most utilized medication to treat T2DM
as it decreases hepatic glucose production, decreases
intestinal glucose absorption and increases insulin

sensitivity. The effects of metformin in AD animal
models, however, have not been entirely consistent
across experiments. Studies suggest that metformin may
have beneficial effects in age-related diseases including
AD (Rotermund et al., 2018). For example, mice with
STZ-induced hyperglycaemia given metformin showed
reduce levels of phosphorylated tau and Aβ plaque bur-
den in the hippocampus, decreased phosphorylated GSK-
3β in the cortex and improved learning and memory
(Oliveira et al., 2021). In another study, administration of
metformin led to a reduction of Aβ levels, improved
learning and memory (i.e., MWM and Y-Maze),
enhanced mRNA expression of genes involved in synap-
tic plasticity (i.e., brain-derived neurotrophic factor
[BDNF]), deceased oxidative stress (i.e., malondialdehyde
and superoxide dismutase), reduced inflammation
(i.e. IL-1β and IL-6) and increased IDE protein levels in
APP/PS1 mice (Lu et al., 2020). Long-term metformin
treatment in HFD aged C57BL/6J mice found that treat-
ment with metformin prevented spatial learning and
memory deficits (Allard et al., 2016). HFD mice given
metformin showed enhanced glucose tolerance, as well
as decreased oxidative stress and inflammation (Lennox
et al., 2014). Administration of metformin to HFD rats
led to reduced peripheral insulin resistance, decreased
brain and plasma markers of oxidative stress, improved
mitochondrial function and prevention of learning and
memory impairments (Pintana et al., 2012). Senescence-
accelerated mouse-prone 8 (SAMP8)—an AD mouse
model—injected with metformin for 8 weeks exhibited
improved learning and memory and decreased accumula-
tion of APPc99 and hyperphosphorylated tau (Farr
et al., 2019). Chronic metformin treatment rescued spine
density, LTP and spatial memory in APP/PS1 mice via
the suppression of cdk5 (Wang et al., 2020). Metformin
also improves cognition of aged mice by promoting cere-
brovascular integrity, enhanced glycolysis in blood and
neurogenesis (Zhu et al., 2020).

However, not all studies have found beneficial
responses to metformin in animal models of AD. Db/db
mice injected with metformin did not exhibit improved spa-
tial learning and memory (Li et al., 2012). One study found
that metformin treatment in P301S mice—a tauopathy
mouse model—showed reduced hyperphosphorylated tau
but simultaneously exhibited increased tau aggregation
(Barini et al., 2016). Similarly, short-term metformin treat-
ment reduced hyperphosphorylated tau but simultaneously
promoted expression and processing of APP and BACE-1
(Kickstein et al., 2010; Picone et al., 2015). The inconsis-
tency observed in studies of the effects of metformin on
AD-related changes may be due to differing diet composi-
tions as well as mechanistic differences in the various ani-
mal models.
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1.7.3 | PPAR-gamma agonists

Peroxisome proliferation-activated receptors (PPARs)
have a role in cellular functions relevant to T2DM and
AD. PPARs are a type of ligand-inducible nuclear hor-
mone receptor superfamily that are regulated by steroids
and lipid metabolites (Heneka et al., 2011; Nicolakakis &
Hamel, 2010). PPARs are involved in lipid storage, adipo-
cyte differentiation and glucose homeostasis in all organs,
including the brain (Heneka et al., 2011; Nicolakakis &
Hamel, 2010). Three isoforms of PPRAs exist (α, γ and
β/δ), each encoded by different genes (Nicolakakis &
Hamel, 2010). PPARγ has a role in insulin sensitizing
effects of the PPARγ agonists thiazolidinediones, a class
of oral anti-diabetic agents (Lehmann et al., 1995;
Nicolakakis & Hamel, 2010). PPARγ has relevance to
both T2DM and AD, as PPARγ can regulate obesity, dia-
betes and neuroinflammation (de Carvalho et al., 2021).
In animal models, PPARγ agonists have been observed to
reduce microglial and astrocytic activation in the hippo-
campus and cortex, decrease BACE-1 mRNA and protein
levels and reduce Aβ deposits in the hippocampus and
cortex (Heneka et al., 2005). PPARγ plays an important
role in mitochondrial function and biogenesis, fatty acid
storage, energy metabolism and antioxidant defence
(Rodríguez-Pascau et al., 2021). More recently,
bis(ethylmaltolato)-oxidovanadium (IV) (BEOV), a vana-
dium compound, was shown to be involved in DM and
AD via PPARγ activity (He et al., 2021). Administration
of BEOV in APP/PS1 mice significantly decreased levels
of TNF-α, IL-6, IL-1β, NO synthase and cyclooxygenase-2
in hippocampus of APP/PS1 mice (He et al., 2021). Fur-
thermore, these effects were observed in BV2 microglia
cell cultures with Aβ (He et al., 2021). BEOV reduced Aβ
levels and improved learning and memory in APP/PS1
mice (He et al., 2021).

There are several endogenous and synthetic agonists
with a spectrum of affinity for PPARγ. Natural PPARγ
agonists with high affinity include linoleic acid (9- and
13-HODE), prostaglandin 15-Deoxi-Delta(12,14)-
prostaglandin J(2) (15d-PGJ(2)) (Cocca et al., 2009; Khan
et al., 2019), as well as gamolenic acid, eicosapentaenic
acid, polyunsaturated fatty acid metabolites and others
(Khan et al., 2019). Synthetic PPARγ agonists primarily
include thiazolidinediones (e.g., pioglitazone [Actos]:
troglitazone [Rezulin], ciglitazone and rosiglitazone
[Avandia]) (Khan et al., 2019), as well as ibuprofen, indo-
methacin, flurbiprofen and others (Khan et al., 2019).
APP/PS1 mice administered pioglitazone showed reduced
microglia and astrocyte activation and reduced Aβ
plaques in the hippocampus (Mandrekar-Colucci
et al., 2012). Pioglitazone increased microglial Aβ phago-
cytosis in the hippocampus in an AD mouse model

(Yamanaka et al., 2012). Pioglitazone was shown to
increase levels of APOE-related genes, decrease
proinflammatory genes and decrease Aβ levels in the hip-
pocampus of an AD mouse model (Skerrett et al., 2015).
Pioglitazone reduced tau phosphorylation at multiple
sites in the cortex and CA1 region of the hippocampus
and improved cognition in 3xTg mice (Adler et al., 2014).
Similarly, administration of rosiglitazone reduced
astrocytic and microglial activation, Aβ oligomers and
aggregates, and spatial memory impairments in APP/PS1
mice (Toledo & Inestrosa, 2010). More recently,
telmisartan, an antagonist for angiotensin receptor II
type 1, commonly used for hypertension treatment, was
shown to activate PPARγ with anti-inflammatory and
anti-apoptotic effects (Khan et al., 2019). Telmisartan
improved memory deficits seen in AD mouse models
generated by ICV injection of STZ (Singh et al., 2013) and
ICV injection of Aβ (Khan et al., 2019; Shindo
et al., 2012; Tsukuda et al., 2009).

1.7.4 | GLP-1 agonists

Glucagon-like peptide 1 (GLP-1) is a hormone that is
released by the gut, is involved in the gut/brain axis, pro-
tects insulin-producing pancreatic β cells and assists in
insulin secretion (Cabou & Burcelin, 2011). GLP-1 can
directly modulate neurotransmitter release, is involved in
LTP and protects synapses involved in LTP from Aβ
oligomer-induced damage (Gault & Hölscher, 2008).
GLP-1 reduces oxidative stress, is involved in autophagy
regulation and exhibits anti-inflammatory protective
functions (e.g., anti-inflammatory signalling) in the CNS
(Li et al., 2009). GLP-1 signal transduction is mediated by
the GLP-1 receptor (GLP-1R), a G-protein-coupled recep-
tor (Grieco et al., 2019). GLP-1R can activate the pho-
sphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)
pathway leading to protection against apoptosis and inhi-
bition of pro-inflammatory cytokines (Farilla et al., 2003;
Grieco et al., 2019; Tramutola et al., 2017; Yang
et al., 2018).

GLP-1R agonist agents (e.g., exenatide, lixisenatide,
liraglutide, semaglutide, etc.) lower glucose levels and
reduce cognitive deficits observed in T2DM (Aroda, 2018;
Gomez-Peralta & Abreu, 2019; Grieco et al., 2019).
Administration of exenatide to rats reduced neu-
roinflammation (i.e., TNF-α) (Solmaz et al., 2015) and
rescued LTP from Aβ-induced compromise of hippocam-
pus function (Wang et al., 2016, p. 4).

Administration of lixisenatide reduced NFTs, Aβ
plaques and chronic neuroinflammation in the hippo-
campus of APP/PS1/tau female mice (Cai et al., 2018).
The effects of lixisenatide are via the PI3K/AKT/GSK-3β
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signalling pathway and can prevent spatial memory and
synaptic insults that are induced by Aβ oligomers (Cai
et al., 2014). Peripheral administration of lixisenatide in
mice on HFDs showed improvement of recognition
memory, increased numbers of immature neurons in the
dentate gyrus and upregulation of hippocampal expres-
sion of neurotrophic tyrosine kinase receptor type
2 (NTRK2) and mammalian target of rapamycin (mTOR)
involved in modulating synaptic plasticity and LTP
(Lennox et al., 2014).

Administration of liraglutide to mice with STZ-
induced hyperglycaemia resulted in improved learning
and memory and reduced neuronal death in the hippo-
campus (Palleria et al., 2017). Treatment with liraglutide
before administration of STZ led to neuroprotective
effects against STZ-related hippocampal neuronal death
and cognitive impairments associated with the AMPK/
mTOR signalling pathway (Kong et al., 2018). Liraglutide
prevented tau hyperphosphorylation in the hippocampus
of db/db mice via activating insulin signalling pathways
and suppressed GSK-3β activation (Ma et al., 2015).
Liraglutide has been reported to reduce tau hyper-
phosphorylation, prevent learning and memory impair-
ments, and alleviate the structural changes of pyramidal
neurons in the hippocampus of mice with ICV injection
of Aβ (Qi et al., 2016)

A novel dual GLP-1 and glucose-dependent
insulinotropic polypeptide (GIP) combination (i.e., DA-
JC4) prevented hyperphosphorylation of tau, reduced
chronic neuroinflammation, decreased apoptotic signal-
ling and improved IR sensitivity in ICV-injected STZ rats
(Shi et al., 2017). A GLP-1/gastric inhibitory polypeptide
dual agonist (DA5-CH) reduced Aβ plaque load and
phosphorylated tau protein and improved learning and
memory in APP/PS1 mice (Grieco et al., 2019). A triple
receptor agonist that activated GIP-1, GIP and glucagon
receptors simultaneously significantly reduced Aβ accu-
mulation, neuroinflammation (e.g., activated astrocytes
and microglia) and mitochondrial oxidative stress in the
hippocampus and cortex of APP/PS1 mice; the animals
exhibited improved learning and memory (Tai
et al., 2018).

1.7.5 | Commentary on non-clinical and
animal model observations linking T2DM
and AD

The non-clinical studies reviewed provide an overview of
the complex relationship between AD and T2DM. There
is shared biology at the level of insulin resistance, IDE
function, vascular effects, inflammation and genetic
influences. Animal models have been informative

regarding the adverse influences of T2DM features
(e.g., hyperglycaemia and insulin resistance) on AD
pathology, either by inducing AD-like changes or
exacerbating AD pathology in AD models. Animal stud-
ies provide substantial insight into the mechanistic effects
of anti-diabetes medications and how they affect both
T2DM and AD-related pathology and behaviour. Figure 1
shows the complex interaction of T2DM and AD biologi-
cal mechanisms.

1.8 | Clinical trials of anti-diabetic drugs
for the treatment of AD

The many links between diabetes and AD suggest that
therapies for T2DM might be beneficial in the treatment
of AD. We performed a review of clinicaltrials.gov, a
comprehensive registry of clinical trials identifying all
T2DM therapies in trials for AD. We identified 10 trials
assessing the impact of insulin in AD and 20 AD trials
involving 10 non-insulin anti-diabetic agents conducted
since 2006. Among the insulin trials: eight were com-
pleted, one was terminated, and one was withdrawn.
Among the non-insulin anti-diabetic agents, seven trials
are on-going, eight trials have been completed, and five
trials were terminated. Table 1 provides the details of the
insulin trials including the trial phase, intended number
of participants, Mini-Mental Status (MMSE) score range
of the eligible participants, treatment duration in the trial
and clinical and biomarker outcomes included in the
trial. Table 2 provides the same information for the
non-insulin anti-diabetic agents. Classes of agents
represented in the trials include insulin, biguanides
(e.g., metformin and metformin-extended release [XR]),
thiazolidinediones (e.g., pioglitazone and rosiglitazone),
sodium-glucose co-transporter 2 (SGLT2) inhibitors
(e.g., dapagliflozin and empagliflozin) and GLP-1 analogs
(e.g., exenatide, liraglutide and semaglutide).

1.8.1 | Insulin

In most insulin trials investigating effects on memory or
AD, insulin is delivered by intranasal administration to
avoid hypoglycemia (Craft et al., 2012a). A trial of mem-
ory effects 15 minutes after intranasal insulin in normal
controls or patients with mild-moderate AD dementia or
MCI (N = 61) showed improvement in those without the
APOE-4 genotype (Reger et al., 2006). A 21-day random-
ized controlled study (N = 25) using intranasal adminis-
tration of insulin found improved memory, attention and
function (Reger et al., 2008). In a study comparing two
doses of insulin with placebo, Craft and colleagues
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showed an improvement in memory in the low-dose
group (Craft et al., 2012a). There were no effects of insu-
lin on CSF amyloid levels and modest effects on stabiliz-
ing decline of hypometabolism on fluorodeoxyglucose
(FDG) and positron emission tomography (PET) among
participants treated for 4 months (N = 104) (Craft
et al., 2012a). A 4-month study (N = 36) comparing regu-
lar insulin, long-acting insulin, and placebo found
improved memory and change in the Aβ42/p-tau ratio in
the CSF in those receiving regular insulin (Craft
et al., 2017). In a larger 12-month study (N = 289), no
drug-placebo differences were observed on the AD
Assessment Scale – cognitive subscale (ADAS-cog) or
CSF markers of AD (Craft et al., 2020). Treatment of

participants with mild to moderate AD given intranasal
insulin for 2 days following a course of high-dose Vita-
min D demonstrated improved memory on some assess-
ments and not others (Stein et al., 2011). A blinded cross-
over study of rapid-acting insulin (i.e., glulisin insulin) in
patients with the APOE4 genotype reported no benefit
for memory function (Rosenbloom et al., 2014).

No insulin trials have been rigorously conducted
using contemporary standards of diagnosis
(e.g., biological confirmation of the diagnosis of AD).
Many of the trials have involved relatively small numbers
of patients. Some of the trials have shown measurable
effects on recent memory; few have shown effects on
other cognitive functions, global ratings or functional

F I GURE 1 Pathophysiological links between T2DM and AD (AD, Alzheimer’s disease; AGEs, advanced glycation end products; Akt,

protein kinase B; BBB, blood–brain barrier; IDE, insulin degrading enzyme; IL1-B, interleukin 1 B; INF, interferon-gamma; IRS1, insulin

receptor substrate 1; GSK3B, glycogen synthase kinase-3B; JNK, c-Jun N-terminal kinase; PI3K, phosphoinositide 3 kinase; ROS, reactive

oxygen species; T2DM, type 2 diabetes mellitus; Th1, T helper cells 1; TNF-α, tumour necrosis factor-α)
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assessments. Overall, trials of insulin for the treatment of
AD do not comprise a body of evidence in favour of this
intervention in patients with symptomatic AD.

1.8.2 | Biguanides (metformin, metformin-
XR)

Metformin was assessed for its cognitive benefits in a
population of patients with MCI and obesity. Eighty par-
ticipants were randomized to metformin or placebo. Few
subjects (10%) tolerated the intended dose of 1,000 mg
twice daily. Primary outcomes were the Selective
Reminding Test (SRT) and the ADAS-cog. At trial end,
there was a significant drug-placebo difference in favour
of metformin on the SRT; other measures including FDG
PET showed not drug-placebo difference (Luchsinger
et al., 2004). In another trial, 20 non-diabetic subjects
with MCI or mild AD dementia were randomized to
active treatment or placebo in an 8-week cross-over
study. The metformin group exhibited significantly
improved executive function and a trend towards
improved memory and learning; no drug-placebo differ-
ence was seen on other cognitive assessments or on mea-
sures of cerebral blood flow (Koenig et al., 2017). Given
its pleiotropic effects, metformin has been proposed as an
anti-aging and multi-organ disease modifying interven-
tion; trials have been designed in which cognition would
be included among several age-related outcomes (Justice
et al., 2018).

Metformin has not been extensively assessed in clini-
cal trials. Trials for which results are available offer mod-
est support for further testing in AD. Improved
diagnostic specificity, larger sample sizes, and longer
durations of treatment are required to thoroughly test
metformin for possible efficacy in AD.

1.8.3 | Thiazolidinediones (pioglitazone,
rosiglitazone)

Thiazolidinedione PPARγ agonists exert anti-diabetic
effects, lowering peripheral insulin and increasing insulin
sensitivity. In a randomized unblinded study of 32 partici-
pants with MCI or mild to moderate AD dementia
treated for 6 months with pioglitazone, those on active
treatment had significantly improved scores on the
ADAS-cog and a test of logical memory. No drug-placebo
difference was observed on the MMSE (Hanyu
et al., 2009). In a 6-month randomized unblinded study
of 42 patients with mild AD dementia and T2DM, those
on active treatment exhibited improved cognition and
increased blood flow in the parietal lobes not seen inT
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those assigned to placebo. A decrease in fasting periph-
eral insulin levels suggested improved insulin sensitivity
in those on pioglitazone (Sato et al., 2011). A randomized,
double-blind 18-month trial of 25 non-diabetic partici-
pants with AD dementia showed pioglitazone to be safe.
No cognitive benefits were observed (Geldmacher
et al., 2011).

Pioglitazone has been assessed in a Phase 3 AD
prevention trial (the TOMMORROW trial) intended to
determine whether treatment would delay time to pro-
gression to MCI due to AD. Eligible participants were
stratified based a combination of TOMM40 rs 10524523
genotype, APOE genotype and age, with high-risk indi-
viduals receiving low-dose pioglitazone or placebo and
low-risk individuals receiving placebo. A sample size of
2,346 participants was estimated to be required to assess
the intended outcome (Burns et al., 2019). During the
study, the sample size was reduced and the trial short-
ened. No drug-placebo difference was observed in time to
progression to MCI due to AD at the time of trial
termination.

Rosiglitazone is a PPARγ agonist assessed for possible
efficacy in the treatment of AD. A 6-month Phase
2 proof-of-concept study with 30 participants randomized
to rosiglitazone or placebo demonstrated significant
improvement in delayed recall and selective attention in
the active treatment group (Watson et al., 2005). A
6-month Phase 2 randomized controlled trial including
511 participants assessed cognitive and global outcomes
for 2, 4 and 8 mg of rosiglitazone compared with placebo.
No drug-placebo difference was observed on the primary
outcomes for any dose. An exploratory analysis of APOE4
non-carriers showed significant benefit on the ADAS-cog
for those on active treatment (Risner et al., 2006). A
follow-up 24-week Phase 3 study comparing rosiglitazone
2 mg, rosiglitazone XR 8 mg, donepezil and placebo
(N = 693) found no drug-placebo difference on cognitive
or global measures in the total population or the APOE4
non-carriers. Participants in the donepezil arm of the
study had no drug-placebo difference on the ADAS-cog
raising questions about the trial conduct. The partici-
pants receiving donepezil exhibited a significant benefit
of treatment as measured on the Clinician’s Interview-
Based Impression of Change with Caregiver Input
(CIBIC+) (Gold et al., 2010). In a 12-month randomized
controlled trial of rosiglitazone XR compared with pla-
cebo using FDG PET as the primary outcome, partici-
pants on active treatment showed a non-significant
increase in glucose metabolism in the first month of
treatment. No drug-placebo differences were observed in
decline in glucose metabolism, rate of cerebral atrophy,
or cognitive measures (Tzimopoulou et al., 2010). Two
Phase 3 48-week randomized controlled trials including

nearly 3,000 patients found no drug-placebo difference
on cognitive or global measures in the total study popula-
tion, APOE4 non-carriers or all patients except APOE4
homozygotes (Harrington et al., 2011). A follow-up study
of these trials showed that a predefined 6-protein meta-
bolic and inflammatory biomarker panel (i.e., IL-6, IL-10,
C-reactive protein [CRP], TNF-α, heart-type fatty acid-
binding protein 3 [FABP-3] and pancreatic polypeptide
[PPY]) correctly identified a treatment response among
those receiving rosiglitazone with 98% accuracy
(O’Bryant et al., 2021).

These large studies of rosiglitazone in mild-moderate
AD dementia demonstrate no treatment benefit. The
post hoc analysis of responders with a characteristic
biomarker profile leaves open the possibility that within
the population, there is a subgroup of rosiglitazone-
responsive individuals.

1.8.4 | SGLT2 inhibitors (dapagliflozin,
empagliflozin)

SGLT2 inhibitors reduce blood glucose levels by
inhibiting glucose reabsorption by the kidney, inducing
glucosuria. They reduce fasting and postprandial blood
glucose levels, body weight and blood pressure. SGLT2
inhibitors reduce mTOR kinase activity that may contrib-
ute to lysosomal and mitochondrial dysfunction in
AD. mTOR activity is associated with BBB endothelial
cell dysfunction, tau hyperphosphorylation and Aβ
plaque formation (Esterline et al., 2020). The first trials of
SGLT2 inhibitors in AD have been inaugurated.

1.8.5 | Incretin mimetics/GLP-1 analogs
(exenatide, liraglutide, semaglutide)

The National Institute on Aging (NIA) with support from
AstraZeneca, conducted an 8-month, double-blind, ran-
domized, placebo-controlled Phase 2 clinical trial to
assess the safety and tolerability of exenatide in early
AD. Eighteen participants with high probability of AD
completed the entire study prior to its early termination.
Exenatide was shown to be safe and well-tolerated in this
population. Among outcomes assessed, there were no dif-
ferences compared with placebo for clinical and cognitive
measures, magnetic resonance imaging (MRI) assess-
ments of cortical thickness and volume, or biomarkers in
CSF, or plasma. There was a reduction in Aβ42 in neuro-
nal extracellular vesicles. The investigators note that the
study was underpowered due to early termination, and
firm conclusions regarding efficacy cannot be drawn
(Mullins et al., 2019).
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In a 26-week, randomized, placebo-controlled,
double-blind trial conducted in Demark and including
24 non-diabetic participants with AD, those treated with
liraglutide were noted to have no difference in amyloid
deposition or cognition compared with those on placebo.
The researchers note that in patients with long-standing
AD, the 26 weeks of liraglutide treatment had prevented
the expected decline of regional cerebral glucose measure
on FDG PET (Gejl et al., 2016).

Liraglutide’s effect on cerebral glucose metabolism
and cognitive function was assessed in a 12-month, mul-
ticentre, randomized, double-blind, placebo-controlled,
Phase 2 trial (Evaluating Liraglutide in AD [ELAD]
study). Two hundred and four participants diagnosed
with probable AD were enrolled (Femminella et al., 2019).
No drug-placebo differences were observed in the pri-
mary outcome of cerebral glucose metabolism or in the
secondary outcomes of Clinical Dementia Rating - Sum
of Boxes (CDR-SB) score and AD Cooperative Study –
Activities of Daily Living (ADCS-ADL) scale. An
improvement was noted in the AD Assessment Scale –
Executive version (ADAS-Exec), and there was reduced
loss of temporal lobe and total brain grey matter volume
in participants receiving liraglutide (Alzforum, 2021).

Novo Nordisk A/S is currently recruiting for two trials
investigating semaglutide in participants with early AD,
the EVOKE and EVOKE+ trials. Participant diagnosis is
confirmed by amyloid PET or CSF amyloid measures
consistent with AD. The primary outcome is drug-
placebo difference in change in cognition from baseline
using the CDR-SB score (ClinicalTrials.gov, 2021). A sec-
ondary outcome is time to progression to AD dementia in
those with MCI at trial baseline. Participants of these tri-
als have amyloid PET at baseline to confirm the diagnosis
of AD. EVOKE+ allows participants with subcortical
cerebrovascular disease to enter the study, the EVOKE
trial does not allow such participants.

1.8.6 | Trial commentary

Among the insulin trials, two were Phase 1 trials, seven
were Phase 2 trials, and one was a Phase 3 trial (two trials
did not have identified phases). The trials of non-insulin
anti-diabetic agents included two Phase 1 trials, nine
Phase 2 trials and nine Phase 3 trials (one trial had no
declared phase). The non-insulin agents in Phase
3 included metformin (one trial), pioglitazone (two tri-
als), rosiglitazone (four trials) and semaglutide (two
trials).

Some insulin trials showed clinical benefit in explor-
atory trials (Claxton et al., 2015; Craft et al., 2012b, 2017).
Very acute trials with intravenous insulin suggested

improvement on memory measures (Craft et al., 2003;
Watson et al., 2009). These positive outcomes were not
replicated in larger longer term studies (e.g., 6- to
12-month duration). All the completed studies on the use
of non-insulin T2DM treatments for AD have been nega-
tive; seven of the 20 are currently ongoing. A trial with
liraglutide showed a numerical but not significant stabili-
zation of brain metabolism on FDGF PET contrasting
with metabolic decline in the placebo group (Gejl
et al., 2016). The observation supports the suggestion that
GLP-1 agonists have CNS effects despite not crossing
the BBB.

Of the 20 non-insulin trials of agents used to treat
T2DM, only four confirmed the diagnosis of AD with
amyloid biomarkers. Of the 10 insulin trials, none had
confirmatory amyloid biomarkers assessed. Studies show
that of patients recruited for trials of early AD (MCI due
to AD and mild AD dementia) and exhibiting AD clinical
features, 40% are excluded due to negative amyloid scans
(Sevigny et al., 2016). Similarly, in a trial of mild-
moderate AD, 30% of patients with the mild AD pheno-
type and 15% of these diagnosed with moderate AD had
negative amyloid imaging (Degenhardt et al., 2016).
These observations suggest that most of the trials of insu-
lin and of non-insulin T2DM therapies not using diagnos-
tic biomarkers likely have included 15%–40% of
participants who lack the biology of AD; the canonical
biology of AD—Aβ plaque formation—is absent in these
amyloid negative participants. Non-amyloid bearing par-
ticipants do not have AD and exhibit slower decline,
compromising the ability to observe treatment-placebo
differences (Ballard et al., 2019). Inclusion of non-AD
patients may have negatively affected the outcomes of
these trials.

There has been only one AD prevention trial using an
anti-diabetic agent—an assessment of pioglitazone in
cognitively normal individuals at increased genetic risk
for AD (Burns et al., 2019). This study was terminated
before the planned outcomes could be determined. Based
on the increased risk for AD observed in epidemiologic
studies of T2DM and the animal model studies demon-
strating the ability to induce aspects of AD pathology
with hyperglycaemia, additional long duration preven-
tion trials are warranted.

Ten of the non-insulin trials include individuals
with MMSE scores of 20 or above consistent with early
AD; the other trials include patients with mild-
moderate AD dementia. Entry criteria for the insulin
trials often did not specify an MMSE range; of those
providing this information, most of the trials included
patients with mild or moderate AD dementia. No
patients with severe dementia are included in any of
the trials.
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None of the insulin trials and two of the non-insulin
trials required participants to have risk factors for T2DM.
In both trials including T2DM risks, AD with concomi-
tant obesity was the identified trial population.

The primary outcomes of the trials commonly
included the ADAS-cog, CDR-SB or measures of memory
and delayed recall. Cerebral glucose metabolism mea-
sured by FDG PET, ketone bodies or adverse events were
primary outcomes in some trials. Diabetes-related
biomarkers including haemoglobin-A1c (HgbA1c) and
CRP were included in eight of 20 non-insulin trials and
none of the insulin trials.

Trial duration and number of participants vary
greatly among these studies. Insulin trials recruited
between 12 and 240 participants and were from a few
hours for single dose studies to 24 weeks in duration.
Non-insulin trials vary between short observation periods
of 2 weeks (empagliflozin) to studies intended to have up
to 5 years of exposure (pioglitazone). Non-insulin trial
populations have varied between 20 and 1,840 trial par-
ticipants among completed or ongoing trials. The size
and the duration of the trials are determined by the spe-
cific question being asked and the anticipated effect size
of the therapy. Industry-sponsored trials are typically
larger and longer than academic or government-
sponsored trials. Short-term trials can detect
improvement above baseline and the possible cognitive
enhancing properties of T2DM agents; they can assess
short-term effects on biomarkers that may predict
benefits with longer term treatment. Trials of 12-month
duration or longer are required to collect clinical and
biomarker data showing slowing of cognitive decline sup-
portive of disease modification (Cummings, 2019;
Cummings et al., 2018).

2 | DISCUSSION

Many avenues of information link T2DM with the AD
continuum. Animal models of T2DM with hyper-
glycaemia exhibit AD-type pathological changes in the
brain including tau hyperphosphorylation, tau aggregates
and neuroinflammation (Engin & Engin, 2021;
Murtishaw et al., 2018). Double and triple Tg mouse
models of AD exhibit insulin resistance and energy
dyshomeostasis similar to that observed T2DM patients
(Velazquez et al., 2017). Amyloid pathology is more
severe in several of the studies using AD model animals
with concomitant physiological changes of T2DM. In
humans, T2DM increases the risk for AD. T2DM is asso-
ciated with obesity, and obesity is a risk for
AD. Epidemiologic observations suggest that treatment of
T2DM with some types of agents including rosiglitazone

and GLP-1 agonists is associated with a diminished risk
for AD compared with those treated with other agents
(Akimoto et al., 2020). The biology of AD includes insulin
resistance similar to that seen in peripheral tissues of
T2DM patients (Talbot et al., 2012b).

Peripheral inflammation stimulates neu-
roinflammation through transfer of inflammatory
exosomes to the brain from the periphery and entry of
peripheral inflammatory cells through a compromised
BBB (Li et al., 2018; Pugazhenthi et al., 2017;
Ransohoff, 2016; Zlokovic, 2008); both diabetes and obe-
sity exhibit chronic low-grade inflammation in associa-
tion with insulin resistance (Osborn & Olefsky, 2012).
Some classes of T2DM therapies—metformin and GLP-1
agonists—reduce peripheral inflammation and this may
contribute to both their anti-diabetic properties and the
reduction in AD incidence reported with their use (Lee &
Jun, 2016; Saisho, 2015). GLP-1 agonists may facilitate
insulin entry in the brain, reduce insulin resistance,
decrease neuroinflammation and restore neurogenesis in
the absence of elevated peripheral inflammation
suggesting that they may be useful in the treatment of
non-diabetic AD patients (Bae & Song, 2017; Cai
et al., 2018).

Questions to be resolved in applying T2DM agents to
AD are raised by non-clinical and clinical observations.
Animal models of the relationship of T2DM to AD most
often involve STZ-induced hyperglycaemia and investiga-
tion of the ensuing AD-like pathological changes
observed in the brain (Murtishaw et al., 2018). This is a
strong model of the cognitive and pathological changes
occurring in diabetes, diabetes as a risk factor for AD and
brain changes in pre-diabetes. It is less suited to the study
of AD in the absence of T2DM. Most AD patients do not
have T2DM, peripheral insulin resistance or hyper-
glycaemia, although an undetermined number may have
pre-diabetes. Among the studies reporting an increased
incidence of AD in patients with T2DM, few had AD
diagnostic confirmation with amyloid biomarkers, and—
given the common occurrence of cerebrovascular disease
in T2DM—the dementia syndromes observed may be
AD, vascular dementia or mixed dementia (Ahtiluoto
et al., 2010; R. Yang et al., 2019). The reductions in
dementia incidence observed with treatment with T2DM
agents typically occurred in samples observed for many
years in registries or in long diabetes trials; this may
translate into challenges showing reductions in dementia
with shorter term trials and in patients without
predisposing T2DM. Agents that reduce dementia inci-
dence in T2DM cohorts do not necessarily exert effects
on AD biology once the disease is expressed in the brain
or may have limited effects that are difficult to demon-
strate in trials. Some agents used for the treatment of
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T2DM are of high molecular weight and may pass the
BBB in only limited amounts. More investigation of the
central versus peripheral effects of these agents is needed
to optimize effects on AD. Novel GLP-1/GIP mimetics
have shown neuroprotective effects in animal models of
neurodegenerative disease and may warrant testing in
next generation clinical trials (Holscher, 2018; Zhang
et al., 2020).

An unresolved issue central to clinical trial design is
whether to anticipate cognitive improvement as observed
in short-term (e.g., 6 months) cognitive enhancer-type tri-
als or to conduct disease-modifying-type trials that are
longer and designed to determine if there is slowing of
clinical decline (e.g., 12–24 months). Biomarkers relevant
to cognitive enhancer-type trials might include electroen-
cephalography, FDG PET, of functional MRI. Biomarkers
relevant to trials designed to show disease modification
are those reflective of AD biology including measures of
amyloid, tau, inflammation, and neurodegeneration.
Anti-diabetic agents may improve neuronal function pro-
ducing cognitive enhancement; they may enhance neuro-
nal survival leading to slowing of disease progression; or
they may do both. Defining the expected response to
these treatments is critical to designing trials most likely
to capture a treatment effect. Trials in preclinical
populations at-risk for AD with DM or pre-diabetes are
another avenue of study of these agents.

New data on the relationship of T2DM and AD are
accruing rapidly, and more insight into unresolved issues
is anticipated. The identification of discrete mechanisms/
signalling cascades that link T2DM and AD is needed to
differentiate interventions for diabetic patients at risk for
developing AD versus treatments targeting the core AD
biology that overlaps with T2DM. If therapeutic benefits
of agents used to treat T2DM can be extended to AD
based on the many links between these two disorders,
development of novel therapeutic regimens for patients
with AD will be facilitated.
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