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Abstract

COVID-19 pandemic has caused unprecedented negative impacts on our society, including further 

exposing inequity and disparity in public health. To study the impact of socioeconomic factors 

on COVID transmission, we first propose a spatial-temporal model to examine the socioeconomic 

heterogeneity and spatial correlation of COVID-19 transmission at the community level. Second, 

to assess the individual risk of severe COVID-19 outcomes after a positive diagnosis, we 

propose a dynamic, varying-coefficient model that integrates individual-level risk factors from 

electronic health records (EHRs) with community-level risk factors. The underlying neighborhood 

prevalence of infections (both symptomatic and pre-symptomatic) predicted from the previous 

spatial-temporal model is included in the individual risk assessment so as to better capture 

the background risk of virus exposure for each individual. We design a weighting scheme to 

mitigate multiple selection biases inherited in EHRs of COVID patients. We analyze COVID 

transmission data in New York City (NYC, the epicenter of the first surge in the United States) and 

EHRs from NYC hospitals, where time-varying effects of community risk factors and significant 

interactions between individual- and community-level risk factors are detected. By examining the 

socioeconomic disparity of infection risks and interaction among the risk factors, our methods can 

assist public health decision-making and facilitate better clinical management of COVID patients.

1 Introduction

The coronavirus disease 2019 (COVID-19) has created several surges of pandemic globally 

since early 2020 and continues to be a major public health threat. COVID-19 related 
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hospitalizations and deaths have caused immense burdens to the health systems [20, 21]. 

Therefore, it is crucial to study the community-level risk factors affecting the transmission of 

the disease and the individual-level risk factors of severe COVID-19 outcomes. We propose 

a spatial-temporal model for COVID-19 transmissions and a weighted semiparametric 

time-varying coefficient model for hospitalizations that can integrate multiple levels of 

information and perform causal inference.

Various models have been proposed to forecast the trend of COVID-19 transmissions [32, 

4, 18, 27, 14] based on susceptible-exposed-infectious-recovered (SEIR) model, Gaussian 

process, or agent-based modeling. Their main goals are on the prediction or forecast 

accuracy. On the other hand, socioeconomic disparities and spatial variations have been 

observed in COVID-19 transmissions and individual outcomes [12, 34]. Spatial correlations 

have been detected for infectious disease transmissions where the disease incidence tends 

to occur in spatial clusters especially during the initial stages of an outbreak [25, 5]. 

However, some of these previous forecast models analyze the individual-area temporal 

trends separately, and do not account for socioeconomic disparity effects.

Our first goal is to propose a joint model for the temporal and spatial patterns across all 

areas, which allows explaining what accounts for the spatial variability and the spread of 

infectious disease, and would be more efficient than modeling two trends and for different 

areas separately. Specifically, the temporal dependence is modeled by taking a convolution 

of past infection numbers during a transmissible time interval following the framework 

in [27]. The latent pre-symptomatic disease transmission phase is captured. To allow the 

spatial dependence, we construct a spatial conditional autoregressive (CAR) model under the 

Gaussian process to account for the correlation in the infection rates among neighborhood 

areas and improve the estimation for areas with fewer cases. Area-specific socioeconomic 

factors are included to account for the heterogeneity in infection rates across regions. For 

efficient estimation, the proposed temporal and spatial dependence structures are united 

under a single objective function linked by the infection rates. By examining the spatial 

disparities and community-level risk factors, our model can facilitate policy decisions and 

better allocation of healthcare resources to control the disease transmission.

To assess an individual’s risk of severe COVID outcomes after diagnosis, risk factors such 

as demographics and pre-existing medical conditions haven been identified to partially 

account for the heterogeneity in patients’ risks [22, 29, 16, 33]. These existing risk 

assessment models are solely based on individual-level data. However, community-level risk 

factors such as neighborhood poverty have been shown to be associated with hospitalization 

rate [26]. Another important community risk factor is the background risk of virus exposure 

in the neighborhood measured as the total number of diagnosed and pre-symptomatic 

infected individuals. This latent virus exposure can be estimated from the proposed spatial-

temporal disease transmission model. To fully capture individual risks, we need to consider 

all these community-level factors.

Furthermore, there are multiple challenges to construct a valid risk assessment model. 

Firstly, sample selection bias from multiple sources can be present. For example, it is shown 

that several neighborhoods in New York City (NYC) with high case rates also had high 
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testing rates [26]. As a result, residents from areas with high case rate are more likely to 

be tested positive and thus more likely to be included in the study sample consisting of 

only diagnosed patients. A serious challenge is that such selection bias may induce spurious 

association between risk factor and COVID outcomes and thus misleads interpretation and 

decision [15]. Secondly, considering the dynamic nature of the pandemic, the effect of the 

risk factors may not be the same over time. For instance, the number of infected subjects 

varies substantially throughout the outbreak [26] and the drivers of the variation (e.g., racial 

disparity) may be different early on in the pandemic versus a later period. Hospital capacity 

is another important time-varying factor that influences a patient’s chance of being admitted, 

especially during the initial outbreak [11]. However, most existing studies do not consider 

the selection bias inherited in their study samples [15] and ignore the time-varying effects 

of the risk factors due to the evolving dynamics of pandemic. Lastly, most of existing risk 

assessment models lack rigorous calibration and validation procedures [33].

Our second goal is to assess individual risk of severe COVID-19 outcomes accounting for 

community virus exposure burden and selection bias by a weighted spatial-temporal model. 

Specifically, we integrate individual-level risk factor data and neighborhood environmental 

risk factors including the latent time-varying neighborhood virus exposure to better account 

for patients’ heterogeneous risks. Two sets of subject-specific weights are constructed to 

mitigate the selection biases so that after weighting the study sample could reflect the 

target population of interest and are not overly selected from neighborhoods with high 

infection rates. Furthermore, we build semiparametric models with time-varying coefficients 

to allow time-dependent effects of hospital capacity and community factors (e.g., number 

of infectious COVID-19 patients predicted from the spatial-temporal transmission model). 

The method is applied to model COVID-19 transmission in NYC and assess individual risks 

using electronic health records (EHRs) of PCR confirmed COVID-19 patients diagnosed 

at New York Presbyterian Hospital (NYPH). Validation and calibration are conducted to 

evaluate the proposed method. Our model assists medical decision making and clinical 

management by integrating risk factors at multiple levels to test which factors significantly 

influence individual’s severe health outcomes after COVID-19 infection.

2 Method

2.1 Community-level transmission model accounting for spatial and temporal correlation

Model structure—We propose a generative model that accounts for both temporal and 

spatial correlation of disease transmission while allowing heterogeneous infection rates 

across different areas accounted for by area-specific characteristics (e.g., distribution of 

minority population and social distancing measures in an area). We follow the framework 

of the survival convolution model proposed in [27] to account for the disease transmission 

during a pre-symptomatic phase. We let ai(t) denote the effective infection rate for the ith 

area (i = 1, … , n) on day t defined as

ai(t) = Ni(t)
Mi(t)

, (1)
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where Mi(t) is the number of infected subjects who remain in the transmission chain and can 

transmit virus to others (including those who are pre-symptomatic or asymptomatic) for the 

ith area on day t, and Ni(t) is the number of newly infected subjects for the ith area on day 

t. Note that Mi(t) and Ni(t) are both latent processes, and they are more accurate measures 

of the underlying virus exposure than the daily reported number of diagnosed cases. Let S(k) 

denote the proportion of individuals remaining infectious and who can transmit disease after 

k days of being infected, then Mi(t) and Ni(t) are related as

Mi(t) = ∑
k = 1

Ci
Ni(t − k)S(k + 1), (2)

where Ci = min t − ti0, C , ti0 is the unknown day when the first subject is infected in area i, 

and C is the maximum incubation period (i.e., 14–21 days for COVID-19 [19]). We let ti0 

be C days prior to the first reported diagnosis of COVID-19 case. We assume that subjects 

under quarantine will not be in the transmission chain, and thus ai(t) reflects the effective 

transmission rate either due to quarantine or out of infectious period of SARS-COV-2 virus. 

It follows that the expected number of diagnosed subjects out of transmission chain in area i 
on day t, denoted as Yi(t), can be calculated based on the latent processes as

Y i(t) = ∑
k = 1

Ci
Ni(t − k)[S(k) − S(k + 1)] . (3)

Note the number of diagnosed patients is the only quantity that is observe. To obtain other 

quantities, given ti0 and Ni(ti0) = 1, the expected number of newly infected cases Ni(t) and 

diagnosed cases Yi(t) can be updated sequentially based on (2), (1), and (3) if the infection 

rates ai(t) and the survival function S(·) are known. Here we model S(·) as the normalized 

survival function of the exponential distribution, i.e., S(k) = e−k/δ − e−C /δ / 1 − e−C /δ , and 

we set its mean δ = 5.2 following [19].

More importantly, we will model the time-varying infection rate ai(t) borrowing 

strength from the neighborhood areas and area-specific time-invariant and time-varying 

characteristics, e.g., demographics, social vulnerability index, and mobility. Let λi(t) 
denote the relative rate of infection in region i compared to a “baseline” expected rate 

at day t − 1 averaged across regions denoted by a(t − 1), i.e., λi(t) = ai(t)/a(t − 1), where 

a(t − 1) = 1
n ∑i = 1

n ai(t − 1), and λi(0) = 1. We denote the baseline average expected number 

of infections as Ei(t) = Mi(t)a(t − 1), and assume the actual number of new infections has a 

mean of Mi(t)ai(t), or equivalently a mean of Ei(t)λi(t).

We model the logarithm of the relative infection rate, Zi(t) = log (λi(t)), by a spatial 

conditional autoregressive (CAR) model to account for correlation between regions. Let Z(t) 
= (Z1(t), … , Zn(t))T for time points t = 0, … , T. Similar to the small area estimation 

problem [10] where the disease rates for areas with smaller at-risk populations are estimated 

less accurately, here when estimating ai(t) in (1), areas with smaller infectious population 

Mi(t) are subject to more estimation variability. Therefore, to borrow strength from areas 
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with more infectious subjects, we assume Z(t) follows a Gaussian process that exhibits 

spatial dependence as

Z(t) MV N Xt
Tβt, Σt , (4)

where Xt is a matrix of covariates (e.g., demographics, social vulnerability index, mobility, 

and include a column of constants of one). The covariance matrix Σt should reflect 

heterogeneous variances of estimated infection rates at different locations due to differential 

baseline number of infectious subjects Mi(t). In addition, the infection rates estimated from 

smaller populations are more variable and should use more pooling than areas with larger 

populations. To accommodate these factors, following the spatial rate model used for disease 

mapping [9, 10] and a spatial CAR model [10], under the condition that I − ρtH is positive 

definite, we specify

Σt = τt2 I − ρtH −1Δ, where Δ = diag 1
E1(t) , ⋯, 1

En(t) . (5)

Furthermore, H = (hij) has zeros as the diagonal terms, and the off-diagonal terms are 

specified as hij = [Ej(t)/Ei(t)]1/2 if j ∈ G(i), and 0 elsewhere. where G(i) indicates the 

set of areas that share borders with the ith area (i.e., the neighborhood of area i). In 

other words, we only borrow information from the neighborhood areas to improve the 

estimation, without pooling over irrelevant areas. With the covariance matrix specified in 

(5), we account for the larger variability of small areas with lower expected infection 

numbers Ei(t) (or equivalent Mi(t)). Under this parametrization, it can be shown that ρt 

represents the spatial partial correlation at time t between neighborhood counties (i, j) given 

other regions, i.e., corr(Zi(t),Zj(t)|Zk(t), k ≠ i, j) = ρt. This correlation is invariant to the 

neighborhood structure of counties (i.e., does not depend on H), which is desirable. We 

provide more explanation of the model structure in the Supplementary material. We will 

estimate a separate model at each time point t. We present an illustrate diagram for the 

model architecture in Supplementary Figure A.1.

Estimation—For estimation, we will combine the loss function for the reported daily 

new cases Ri(t) to the expected number based on (3) and the likelihood of the log relative 

infection rates λi(t) as

∑
i = 1

n
∑

t = ti0

T
Ri(t) − Y i(t)

2 − ∑
t = t

T
logl Z(t); ξt + λ ∑

t = t + 1

T
ξt − ξt − 1 1, (6)

where l(Zt; ξt) is the likelihood under the multivariate Gaussian distribution in (4) with ξt 

denoting the parameters of (βt, ρt, τt2), and ∥.∥1 is the L1 norm. Note in (6), t  denotes the first 

day of diagnosed case across all areas. In other words, we align the areas according to the 

relative stage of disease transmission in modeling the spatial dependence. Here the first term 

in (6) is to evaluate the prediction performance from the latent disease transmission process 

where the square root transformation is a variance stabilization transformation for count 

data; the second term is to ensure the spatial smoothness between the areas and account 
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for the heterogeneous infection rates by area-specific factors such as socioeconomics 

and mobility; and the last term is the fused lasso penalty to ensure the smoothness of 

the estimated parameters over time. Note that the fused lasso penalty will consequently 

encourage smoothness in the daily infection rates over time, which reduces variability and is 

consistent with observed data.

Furthermore, to avoid the high computational burden involved in maximizing the likelihood 

of the high-dimensional multivariate Gaussian process Zt, we consider an alternative 

approach based on optimizing conditional pseudo-likelihood often used to learn Gaussian 

graphical models. For given Xt and all Zjt’s with j ≠ i, [6] and [24] showed that the 

multivariate Gaussian model (4) with covariance matrix of the form (5) implies the 

conditional normal distributions with

Zi(t) ∣ Zj(t), j ∈ G(i) N(θit, τit2), θit = μit + ∑
j ∈ G(i)

ρtℎij(Zj(t) − μjt)), (7)

where μit = E Zi(t) = Xit
Tβt and τit2 = τt2/Ei(t). Then the objective function (6) becomes

∑
i = 1

n
∑

t = ti0

T
Ri(t) − Yi(t)

2 + ∑
i = 1

n
∑

t = t

T
logτit + 2τit2

−1 Zi(t) − θit
2 + λ ∑

t = t + 1

T
ξt − ξt − 1 1,

so that the joint likelihood reduces to products of area-wise conditional likelihood and 

optimization is much easier. To obtain solution, we treat Zi(t) and ξt−1 as parameters and 

optimize the objective function by gradient descent implemented by PyTorch [23] on local 

and cluster CPUs.

Under this model, we can estimate the time-varying between-area correlations of the 

infection rate and the effects from time-dependent community area-level covariates on 

the infection rates. With available parameters, the log-relative infection rates θit can be 

estimated from (7) and forecast can be provided based on assumptions of the future 

epidemic trend (e.g., assuming similar trend over next d weeks as previous d weeks).

2.2 Individual risk assessment accounting for selection bias, time-varying effects and 
community risks

Weights for controlling selection biases—Presence of selection bias inherited in 

the study sample threatens validity of risk prediction models. Many existing models for 

predicting hospitalization/death once a subject is diagnosed of COVID-19 utilized study 

samples that only consisted of diagnosed patients. Also the study samples were usually 

collected from several selected hospitals. In this circumstance, one source of selection bias 

is that individuals who live closer to a specific hospital are more likely to be included in the 

study sample. Another source of selection bias is due to the heterogeneous COVID-19 case 

rates across different neighborhoods, so that individuals from areas with high case rate may 

be more likely to get tested and diagnosed [26] and thus over-represented in a study sample.
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More importantly, since we are interested in investigating whether the prevalence of 

neighborhood virus exposure (i.e., the underlying number of infectious subjects Mi(t)) as 

a measure of community COVID-19 disease burden has an effect on individual’s COVID-19 

outcomes, the second source of selection bias may induce spurious association. This 

phenomenon is also known as collider bias [15, 8], which we illustrate in Figure 1. Note 

that in this case the risk factor of interest (i.e., measure of community risk) and the outcome 

of interest (individual COVID outcome severity) are both associated with sample selection. 

This is because when the study population only consists of diagnosed patients, individuals 

from neighborhood with high infectious rate are more likely to be diagnosed and thus 

included in the sample. On the other hand, individuals with more severe symptoms are also 

more likely to seek testing and get diagnosed, thus prone to be included in the sample. 

This is particularly the case during the early COVID-19 outbreak when the healthcare 

facilities were limited and testing was restricted to patients with severe symptoms [2]. 

Taking these two associations into consideration, conditioning on the selected sample can 

induce association between the neighborhood infection prevalence and the disease severity 

even if they were marginally not correlated. Similar collider bias is present for other risk 

factors of interest (e.g., pre-existing medical conditions).

To address these two selection biases, we propose inverse-probability weighting (IPW) 

adjustment with two sets of subject-specific weights. We denote w1j as the first weight 

for the jth subject (j = 1, …,m) constructed as w1j = ∑i = 1
n pi/qiI Sj = i , where Sj denotes 

the neighborhood area (e.g., postal area) which subject j comes from, pi denotes the true 

population density for area i (i.e., number of residents in area i divided by the total 

population), and qi denotes the density of subjects coming from area i (i = 1, …, n) in the 

selected sample. Therefore, after weighting, our sample resembles the true spatial population 

composition. The bias due to association between other time-invariant risk factors and 

sample selection can be mitigated after addressing the sample selection bias with w1j.

The second subject-specific weight aims to remove the association between the time-varying 

community infection rate and sample selection in order to mitigate the collider bias in Figure 

1. Let w2j denote the second weight for subject j defined as

w2j = ∑
t = 0

T
∑

i = 1

n pi(t)
pi(t)

I Sj = i, Tj = t , pi(t) = Mi(t)/ ∑
i = 1

n
Mi(t), qi(t) = Ri(t)/ ∑

i = 1

n
Ri(t) .

Note Tj is the date when patient j is diagnosed of COVID-19. Mi(t) as defined in section 

2.1 is the number of infectious subjects in area i at day t (including those who are pre-

symptomatic and have not tested positive), and Ri(t) is the reported number of diagnosed 

subjects in area i on day t. In other words, if there is no causal effect between neighborhood 

infection prevalence and sample selection, the number of reported diagnosed patients in the 

sample should be proportional to the number of underlying infectious subjects from each 

neighborhood on each day. The weights w2j further balance the sample selection from each 

neighborhood on each day as pandemic continues and remove the bias due to unbalanced 

numbers of individuals seeking testing.
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High-dimensional feature extraction from EHR data—EHRs have been increasingly 

used to assist real world medical decision making. EHRs provide abundant information 

about patients’ medical history, diagnoses, medications, treatment plans, medical 

procedures, and laboratory test results, etc. To better account for patients’ heterogeneity 

in their existing medical conditions, in addition to the variables derived based on diagnoses 

and prescribed medications recorded in the EHRs (e.g., diabetes, chronic kidney disease, 

anticoagulant use), we extract features from the high-dimensional EHRs containing CPT 

procedure codes and medication prescription codes. Specifically, we filter the top 50 most 

common procedures and 100 most common medications, and for each of them we record 

the number of occurrences for each subject. Next, a factor model is fitted to account for the 

shared variability in the 150 procedures and medications. Specifically, for subject j, we let yj 

− μy = Λzj + ϵj, where yj is a vector of length p (p = 150) representing the number of each 

procedure or prescribed medication, μy is the population mean of yj(j = 1, …, m), zj is the 

lower-dimensional latent factors of length K, Λ is a p × K matrix of factor loadings, and ϵj 

is the residuals with E(ϵj) = 0 and a diagonal covariance matrix. zj and ϵj are assumed to be 

independent.

These latent factors zi serve as efficient dimension reduction technique while capturing the 

most important common variations in a patient’s procedure and medication history. Thus, 

after fitting the factor model, we use the estimated Zi as extracted features for each subject. 

These latent factors are b shown to be very strong predictors of the COVID-19 hospital 

admission in later experiments. At the same time, we can interpret each latent factor by 

examining the loading matrix Λ. The factor loadings from the fitted model in the later 

experiment are explored in Figure D.7 in the Supplementary material and explained in 

section 3.

Semiparametric model for time-varying effects—As discussed in section 1, hospital 

capacity is a time-varying factor that could influence patient’s COVID-19 related outcomes 

[11, 28]. Additionally, the effect of neighborhood factors (e.g., number or prevalence of 

infectious COVID-19 patients) vary at different stages of the outbreak. To accommodate 

these effects, we construct time-varying coefficients in building the risk prediction 

models using splines. Mathematically, the time-varying coefficient α(t) can expressed as 

α(t) = ∑k = 1
K ϕk(t)ak where ϕk(t) are the basis functions (e.g., cubic splines), and we allow 

the effect of the covariates to vary by day. Then the postulated model for the probability of 

hospitalization can be written as

f Xj, Tj = σ α0 Tj + ∑
l = 1

d
αl Tj Xjl + ∑

l = d + 1

e
γlXjl ,

where σ(x) = 1/(1+e−x), and Xj = Xj1, …, Xje  are the feature variables for the jth subject 

and we assume the first d variables have time-varying effects. A roughness penalty for each 

time-varying coefficient is included in the objective function to prevent overfitting and to 

promote smoothness, which leads to the following objective function
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∑
j = 1

m
L yj, f Xj, Tj + λ ∑

l = 1

d ∫0
T

αl′′(t)dt = ∑
j = 1

m
L yj, f Xj, Tj + λ ∑

l = 1

d ∫0
T

alkϕlk′′ (t)dt,

where L yj, f Xj, Tj  is the cross-entropy loss for the binary outcome yj (e.g., hospital 

admission) and its fitted probability f Xj, Tj  for the jth subject. αl′′(t) is the second derivative 

of the lth time-varying coefficient. Generalized cross validation is used to choose the tuning 

parameter λ. Asymptotics for penalized splines have been previously established [7, 31]. 

Therefore, we can construct confidence intervals to evaluate the uncertainty of the model 

estimates and the predicted individual risks.

3 Experiments

3.1 Transmission model accounting for spatial dependence

New York City (NYC) was the epicenter of COVID-19 in the United States during spring 

2020 [26]. We applied the spatial-temporal disease transmission model described in section 

2.1 to the COVID-19 data in NYC from early March to end of July 2020, which correspond 

to the first wave of the outbreak in NYC. ZIP code-level daily reported new cases, social 

vulnerability index (SVI, e.g., minority percentage) and mobility data from opted-in users 

(percentage of individuals shelter-in-place captured by their mobile devices) were used 

to model disease transmission process. We plot the covariates in Supplementary Figure 

D.1 where heterogeneity across ZIP areas in NYC are observed. The data sources and 

preprocessing were described in the Supplementary material.

We identified a significant spatial correlation of COVID-19 transmission in NYC from 

the spatial-temporal model (ρ= 0.109, 95% CI: (0.102, 0.117)). To visualize the COVID 

transmission in NYC, in Figure 2 we show the estimated infection rate in each area at a 

few representative time points. The first surge of the pandemic in NYC was characterized 

by the highest infection rates during mid to late March and a much lower rate during May 

with a slight uptick from June, corresponding to the NYC stay-at-home order which was 

in full effect from March 22 to June 8, 2020. Change points of infection rates (e.g., peak 

around March 19 and rebound around June 11) were observed in Supplementary Figure 

D.2, which shows the infection rates in each neighborhood from late February to the end of 

July. Spatial disparity and correlation at the ZIP code level were also observed in the figure. 

Furthermore, we detected a significant racial disparity where neighborhoods with a denser 

minority population suffer a higher risk of COVID-19 infection. The effect coefficient βt has 

a decreasing trend and was estimated to be 0.046 (95% CI: (0.026, 0.066)) on March 10, 

0.030 (95% CI: (0.012, 0.048)) on March 19, 0.020 (95% CI: (0.017, 0.023)) on June 11, 

and 0.017 (95% CI: (0.015, 0.018)) on July 11. The confidence intervals were constructed 

based on permuting residuals, and we describe the procedure in the Supplementary material. 

The shelter-in-place percentage was not significantly associated with infection rates. Since 

this mobility variable was collected from only opted-in individuals, more accurate and 

representative measure is required in order to improve the estimation. Additionally, we 

show the observed and estimated daily new COVID-19 cases for each ZIP code area in 

Supplementary Figure D.5. The fitted curves captured the central trend with a smoother 
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fit. For a few zip-code areas, the number of cases was under-estimated, especially around 

the peak period due to multiple reasons. First, the data variability was high in some zip 

areas where there were abnormal/extreme spikes. Those spikes were primarily due to data 

backlog and sudden “data dumps” instead of true case rises [1]. Since our model encourages 

a smoother fit by incorporating penalty terms for consecutive days, those abnormal spikes 

cannot be (and perhaps should not be) captured. Second, since we pool information from 

neighborhood areas to infer infection rates, when the local spatial dependence is not very 

strong, pooling information may affect the area-specific case estimation. However, for the 

majority of zip areas, the proposed spatial model is beneficial. Future studies may extend the 

current model to allow more flexible spatial dependence structure, e.g., community-specific 

dependence parameters.

Experiments on simulated data—We conducted additional numerical studies using 

simulated data to evaluate the performance of our proposed method in recovering the true 

time-varying coefficients accounting for the spatial and temporal correlation in COVID-19 

transmission. Date were simulated based on observed NYC ZIP level data where minority 

percentage was included as the area specific feature variable. Area specific time-varying 

infection rates were simulated based on the Gaussian process model under the specified true 

parameters, where the true β0(t) ranged from −0.05 to 0.05, β1(t) ranged from 0 to 0.06, 

τ(t) ranged from 0.01 to 0.08, and ρ was set to 0.012 to mimic the parameters estimated 

from the real data. The number of infections and reported cases were then simulated based 

on the proposed disease transmission model. The simulation code are provided in the 

Supplementary materials. We considered two scenarios, one for the 44 ZIP-code defined 

areas in Manhattan only and one for the 176 ZIP areas in all boroughs of NYC.

We replicated the simulation experiments 100 times. The rooted mean squared errors 

(RMSEs) in estimating the time-varying parameters is presented in Supplementary Figure 

D.3, where the RMSEs were calculated across all time points and the figures show 

variability from the experiment replications. For the time-invariant parameter ρ, we obtained 

a mean estimate of 0.107 (RMSE of 0.015 from 100 replications) under 44 areas and a 

mean estimate of 0.116 (RMSE of 0.010) under 176 areas. Therefore, the parameters of 

interest (i.e., β0(t), β1(t), and ρ) are accurately estimated, and the accuracy increases with 

the increase of number of areas (lower RMSEs under 176 areas compared to 44 areas). 

Furthermore, in Supplementary Figure D.4 we present the RMSEs in estimating the reported 

diagnosed cases based on the estimated parameters from 100 replications. Small RMSEs 

were obtained compared to the large daily reported case numbers (an average of 31 cases 

across time and areas with an average maximum of 296 cases across replications in the 

scenario of 176 areas). These simulation results demonstrate that the proposed method and 

learning algorithm can recover the true parameters accounting for area heterogeneity and 

spatial correlations as well as the underlying transmission process of COVID-19.

3.2 Individual risk assessment accounting for selection biases and time-varying effects

We applied the proposed bias-corrected semiparametric risk assessment model introduced 

in section 2.2 to 6911 subjects who were diagnosed of COVID-19 from two New York-

Presbyterian hospitals from March 9 to July 6, 2020. Among these patients, 51.8% were 
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female, the median age was 60, and there were a total of 3676 hospital admissions and 717 

deaths. The EHR study protocol (with a study end date of July 6) was approved by the IRB.

In building the risk assessment model, we integrated the individual EHR data with the 

neighborhood risk factors on two levels, spatially and temporally. Specifically, for each 

subject, to evaluate the risk due to the background risk of virus exposure at infection, 

we incorporated the predicted number of infectious subjects (i.e., Mi(t) acquired from the 

transmission model in section 2.1) in his/her neighborhood 7 days prior to diagnosis (on 

average 5 days of incubation [19] and we consider 2 days of time lapse before diagnosis) as 

a covariate in the risk assessment model. This measure is the total prevalence of COVID-19 

infections including both symptomatic and pre-symptomatic subjects who have not yet 

tested positive, and thus more accurately assess community COVID-19 risk. Additionally, 

we matched each individual with the time-invariant neighborhood information (e.g., the 

neighborhood social vulnerability index) based on their billing ZIP codes. Interactions 

between individual-level race and ethnicity and neighborhood social vulnerability were 

examined. Time-varying intercept and time-varying coefficients for neighborhood infection 

prevalence, minority percentage, multi-unit living percentage were constructed.

To visualize the selection biases in the study sample, we plot in Supplementary Figure D.6 

the sample frequency and heterogeneous infection patterns across ZIP code areas in NYC. 

To assess the utility of the weights derived in section 2.2 accounting for the selection biases, 

we fit both weighted and unweighted models to assess hospitalization risk among diagnosed 

COVID-19 patients.

For the weighted model, we multiplied the two proposed weights, performed 

standardization, and then truncated at 5th and 95th percentiles to eliminate extreme values. 

Model discrimination and calibration were evaluated on independent subjects through 4-fold 

cross-validation. Experiments were conducted using R package “mgcv” 1.8.34 (license: 

GPL-2 | GPL-3) [30] on local CPUs.

Results in Table 1 suggests that accounting for the selection biases led to more meaningful 

model results than the unweighted model. Age, sex, race, medical conditions such as 

diabetes, chronic kidney disease, respiratory disease are shown to be strong predictors for 

hospitalization in the weighted model, which is consistent with the literature and CDC 

guidance [16, 3]. If we ignore the selection biases, some of these coefficients were not 

statistically significant and some were in the unexpected direction. For example, having 

diabetes was found to be associated with lower risk of hospitalization in the unweighted 

model. Additionally, we detected interactions between individual-level characteristics and 

neighborhood-level factors. Among African Americans and Hispanics, higher neighborhood 

minority percentage is associated with a higher risk of COVID-19 hospitalization. Hispanics 

from higher level multi-unit living environment in NYC were more likely to be hospitalized 

after being diagnosed of COVID-19.

The two factors we learned from the high-dimensional CPT codes and medication codes in 

the EHRs were shown to be strongly associated with severe COVID-19 outcomes. From the 

factor loadings in Figure D.7 in the Supplementary material, the first factor loads on almost 
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all medications and procedures and represents the general medical burden. The second factor 

is more sparse and more predictive of hospitalization. It is mainly characterized by pain 

relievers, ancillary drugs for surgery, drugs for controlling side effects of cancer treatments, 

and glucose for hypoglycemia. Hence, the result indicates that history of surgery, cancer, 

and hypoglycemia are strongly related to an individual’s higher risk of adverse COVID-19 

outcomes, which is consistent with the literature [13, 16].

We show the fitted time-varying coefficients in Figure 3. After accounting for individual 

risk factors, diagnosed patients had a higher probability of hospital admission at later time 

periods in the first surge of COVID-19 outbreak in NYC (Figure 3b). This may be explained 

by the limited hospital capacity during the initial outbreak [17], and more health care 

resources were available towards May 2020. However, the death rate decreased consistently, 

indicating mortality is higher when hospital resource is scarce [28] (Figure 3d). On the other 

hand, higher neighborhood virus exposure (indicated by number of infectious subjects) is 

associated with higher risk for both hospitalization and mortality especially during the post-

peak period of the outbreak (Figure 3a,3c). It suggests controlling neighborhood community 

infection prevalence may have an effect on preventing an individual’s severe COVID-19 

outcomes above and beyond an individual’s own risk factors.

To examine the marginal effect of the background virus exposure at infection, we further 

show in Figure 5 the predicted time-varying risk for hospitalization under different 

prevalence of neighborhood infections. When the neighborhood COVID-19 prevalence is 

low, we observe a decreasing risk of hospitalization which gradually tends stable after the 

peak of outbreak. However, the risk for hospitalization is consistently increasing if the 

neighborhood infection prevalence is persistently high.

We calibrated and validated the fitted model through a 4-fold cross validation, and results 

were averaged from all validation sets and presented in Figure 4. We evaluated the two fitted 

models on the validation sets after correcting selection biases via the two sets of weights w1j 

and w2j. A higher area under the receiver operating characteristic (ROC) curve is observed 

for the proposed method that addressed the selection biases. We assessed model calibration 

by comparing weighted mean predicted risk with mean observed risks grouped by deciles 

of the predicted risk on the validation sets. Much higher calibration is observed for the 

weighted model where the fitted regression line is very close to the diagonal line while the 

unweighted model fails to calibrate on the validation sets. These results demonstrate the 

generalizability of the proposed weighting strategy.

4 Discussion

In this work, we propose a spatial-temporal model for COVID-19 transmission and a bias-

corrected semiparametric time-varying coefficient model for assessing individual risk for 

severe COVID-19 outcomes to integrate multiple levels of information and draw causal 

inference. The spatial and temporal dependence for disease transmission and heterogeneous 

time-varying infection rates across areas are accommodated. The relative strength of 

community-level and individual-level risk factors on explaining severe COVID outcomes 

are assessed accounting for evolving dynamics of the pandemic.
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A limitation of this work is that the individual-level EHR data were collected from two 

hospitals in NYC. Larger and more general populations can be considered to further test our 

method. COVID-19 vaccines were not available during the time period of our EHR data. 

Future studies can consider including vaccination information in transmission and disease 

risk modeling.

Here we discuss the potential negative societal impacts. In this work, we account for 

the potential biases in the sample selection using carefully designed weights so that 

after weighting our sample could represent the general population of interest and avoid 

spurious association. Even though we have made best attempts to design the weights to 

balance the sample selections at the ZIP code level, there could be residual imbalances in 

specific socioeconomic factors because the weights were not explicitly defined by them. 

Additionally, although we have incorporated many risk factors to account for the individual 

health outcomes, individual-level behavioural measures such as masking were not included 

due to data availability. Therefore, when interpreting the results, potential unmeasured 

confounding shall be noted.

We detected a significant spatial correlation of COVID-19 transmission in NYC and 

a significant racial disparity where neighborhoods with a denser minority population 

suffer higher risk of COVID-19 infection. We also identified a significant interaction 

between individual’s race and community-level SVIs for COVID-19 hospitalization beyond 

an individual’s other risk factors (e.g., age, comorbidities). These findings suggest an 

intricate interplay between individual-level and community-level risks for COVID-19, and 

community-level risk factors are non-ignorable even after accounting for the individual-level 

characteristics. The significant interactions and time-varying effects can facilitate precision 

public health decision-making at both community- and individual-level, i.e., to inform when, 

which population, and in what communities should we target the intervention to better 

reduce the hospitalization burden. For example, our results suggest that it can be beneficial 

to target the intervention to Hispanic and black communities living in areas with dense 

minority populations and target the multi-unit living buildings specifically for the Hispanic 

population. To prepare for future pandemics, a comprehensive approach targeting both 

individual health and community risks is highly desirable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustration of the collider bias through a directed acyclic graph. Directed arrows indicate 

causal effects and dotted lines indicate induced associations.
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Figure 2: 
Estimated infection rates for neighborhood areas in NYC at selected dates.
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Figure 3: 
Time-varying coefficient of neighborhood infection prevalence (including pre-symptomatic 

infections) and intercept (with 95% confidence bands) on the risk of hospitalization and 

death respectively for subjects diagnosed with COVID
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Figure 4: 
ROC and calibrations of the weighted and unweighted individual risk model on the 

validations sets. In (b) and (c), a regression line (the solid line) is plotted for the observed 

vs. predicted risks (the closer to the diagonal dash line is more desirable), and the fitted 

intercept and slope are reported in the figure.
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Figure 5: 
Estimated risk of hospitalization over time under different prevalence of neighborhood 

infections (including pre-symptomatic infections as oppose to only reported infections). 

Other covariates fixed at the mean age of 59, male, white, non-hispanic, no diabetes or other 

comorbidities, median value of the factor scores for procedure and medication, median value 

of the neighborhood minority level and multi-unit living level.
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Table 1:

Fitted coefficients of hospitalization risk among patients diagnosed with COVID-19.

Weighted Unweighted

Age (standardized) 0.18 (0.1, 0.25)*** 0.4 (0.33, 0.46)***

Female −0.29 (−0.43, −0.15)*** −0.33 (−0.45, −0.21)***

Asian vs. White −0.82 (−1.41, −0.23)** −1.18 (−1.7, −0.67)***

Black vs. White −0.08 (−0.38, 0.22) −0.02 (−0.22, 0.18)

Minority vs. White −0.42 (−1.62, 0.78) −1.23 (−2.1, −0.36)**

Hispanic: Yes vs. No 0.75 (0.49, 1.01)*** 1.06 (0.89, 1.24)***

Diabetes 0.47 (0.03, 0.92)* −0.11 (−0.56, 0.34)

Chronic kidney disease 1.44 (0.2, 2.68)* 0.76 (−0.39, 1.91)

Respiratory disease 2.46 (1.34, 3.58)*** 1.69 (0.9, 2.48)***

Cancer 1.31 (−0.03, 2.64) 0.25 (−0.69, 1.18)

Mental illness 0.86 (−0.52, 2.23) 0.87 (−0.17, 1.91)

Anticoagulant use 0.35 (−0.12, 0.81) 0.08 (−0.37, 0.54)

Procedure & medication F1 0.1 (0.03, 0.18)** −0.04 (−0.11, 0.03)

Procedure & medication F2 1.3 (1.09, 1.5)*** 1.11 (0.92, 1.29)***

White × Minority (%) 0.85 (−0.73, 2.44) 2.75 (1.75, 3.74)***

Asian × Minority (%) 0.2 (−1.91, 2.31) −0.86 (−3.13, 1.41)

Black × Minority (%) 1.85 (0.71, 2.99)** −0.91 (−1.91, 0.1)

Minority × Minority (%) −4.44 (−9.61, 0.73) −3.03 (−7.73, 1.68)

Hispanic Yes × Minority (%) 1.77 (0.86, 2.68)*** 0.21 (−0.67, 1.1)

White × Multi-unit (%) 1.19 (−0.71, 3.08) −0.95 (−2.56, 0.66)

Asian × Multi-unit (%) −1.07 (−3.82, 1.67) 0.5 (−2.36, 3.36)

Black × Multi-unit (%) 0.31 (−1.1, 1.73) 5.64 (4.12, 7.16)***

Minority × Multi-unit (%) −0.59 (−7.16, 5.97) 0.05 (−8.11, 8.21)

Hispanic Yes × Multi-unit (%) 2.46 (1.02, 3.9)*** 5.05 (3.58, 6.52)***

*
for p-value < 0.05

**
for p-value < 0.01

***
for p-value < 0.001.
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