Skip to main content
. 2022 Jul 25;12(8):1211. doi: 10.3390/jpm12081211

Table 3.

Accuracy and evaluation matrices scores for each of the data groups.

Dataset Model Accuracy Precision Recall F1-Score AUC Log Loss
Blood Samples RF 0.81 0.76 0.92 0.82 0.78 7.6
SVM 0.81 0.77 0.89 0.82 0.78 7.8
DT 0.81 0.83 0.78 0.81 0.81 6.71
XGBoost 0.81 0.78 0.86 0.82 0.77 7.6
LR 0.80 0.79 0.81 0.80 0.78 7.6
GBM 0.82 0.82 0.84 0.83 0.82 6.23
LGBM 0.82 0.80 0.86 0.83 0.82 6.2
General Chemistry RF 0.81 0.80 0.83 0.82 0.80 6.71
SVM 0.80 0.76 0.90 0.81 0.79 7.11
DT 0.68 0.70 0.68 0.69 0.68 11.03
XGBoost 0.76 0.76 0.78 0.78 0.77 8.15
LR 0.80 0.75 0.89 0.82 0.79 7.11
GBM 0.75 0.76 0.76 0.76 0.75 8.63
LGBM 0.75 0.87 0.82 0.84 0.76 7.11
OC Marker RF 0.86 0.80 0.97 0.87 0.86 4.79
SVM 0.85 0.80 0.95 0.86 0.84 5.27
DT 0.85 0.81 0.92 0.86 0.85 5.2
XGBoost 0.86 0.80 0.97 0.86 0.86 4.79
LR 0.83 0.80 0.92 0.85 0.83 5.7
GBM 0.85 0.80 0.95 0.86 0.84 5.27
LGBM 0.85 0.80 0.95 0.86 0.84 5.27
Combined RF 0.88 0.83 0.95 0.89 0.87 4.31
SVM 0.81 0.77 0.89 0.83 0.80 6.71
DT 0.78 0.78 0.78 0.78 0.78 7.6
XGBoost 0.86 0.82 0.95 0.86 0.86 4.79
LR 0.82 0.79 0.89 0.84 0.82 6.23
GBM 0.88 0.83 0.95 0.89 0.87 4.31
LGBM 0.88 0.85 0.92 0.88 0.87 4.31